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1. Introduction. If / is an entire function in the complex plane such that

max |/(2)| = O(e°r) (r-oo),
Ul-r

where 0 ̂  a < 1, and all the derivatives of / at 0 are integers, then it is easy to show that /
is a polynomial (see e.g. Straus [10]). The best possible result of this type was proved by
P61ya [9]. The main aim of this paper is to prove two analogous results for harmonic
functions defined in the whole of the Euclidean space R", where n > 2 (i.e. entire
harmonic functions).

Before stating the main results, we give some notations. A point of R" is denoted by
X = ( x j , . . . , Xn). Throughout the paper a denotes an n-tuple (aly..., a,,) of non-negative
integers, and we put

and

We shall use m consistently to denote a non-negative integer. If / is an infinitely
differentiable function in an open subset of Rn, the norm of the gradient of order m of / is
defined by

t _ -11/2

ml I (D^ta!)"1 .
lal=m ->

|a|=m

Thus |V0/| = |/| and |Vj/| is the usual norm of the gradient (of order 1) of /. Also, it is easy
to show that

{ n n 11/2

X .. . I (dmfldxbi...dxbj
2\ (1)

b , = l b m = l J

(see Calder6n and Zygmund [3]), whence it follows that if h is harmonic in Rn, then

|VJt|2 = 2-mAm(h2), (2)
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where Am is the mth iterated Laplacian operator in Rn. In particular, we note that by (1)
our definition of IV^I agrees with that given by Kuran [6]. We denote the origin of R" by
O. If r is a positive number, the open ball and the sphere of centre O and radius r in Rn

are denoted by Bir) and Sir) respectively. If a function g is defined and continuous at
least on Sir), then the mean of g over Sir) is given by the equation

Mig,;,r) = (snrn-1)-1 f gda,
JS(r)

where a is the surface area measure on Sir) and sn is the surface area of S(l).

THEOREM 1. Let h be harmonic in R" and suppose that

Mi\h\,r) = Oiear) (r-»oo), (3)

where O s a < l . 7/Dah(O) is an integer for each n-tuple a, then h is a polynomial. The
result is false with a = 1.

THEOREM 2. Let h be harmonic in Rn and suppose that (3) holds for some a such that
0 ̂  a < 1/V2. If |Vmh(O)| is an integer for all m, then h is a polynomial. The result is false
with a = l/>/2.

It will become obvious that, in proving Theorem 1, we need only suppose that
DahiO) is an integer when a is sufficiently large. Similarly, in Theorem 2 we need only
suppose that |Vmfi(O)| is an integer for all sufficiently large m. In fact, in Theorem 1, we
require only that there is a positive integer p such that Dah{O) is an integer whenever
a2+ .. .+an^p and ax = 0 or 1, for the identity A1DaH = 0, which holds for each a, will
then imply that Dah(O) = 0 for any a such that \a\>p.

Theorems 1 and 2 will follow easily from the following lemmas respectively.

LEMMA l.Ifh is harmonic in Rn and (3) holds for some non-negative number a, then

DahiO) = Oi\a\n~3naM) ( |o | -»») .

LEMMA 2. If h is harmonic in Rn and (3) holds for some non-negative number a, then

|Vmh(O)| = O(m3n/4-1(aV2r) (m -* 00).

The special case of Lemma 1 in which a2= .. .=am = 0 (so that Dah is an xt-
derivative) was proved in [1].

2. Preliminary results. In this section we reduce the proofs of Lemmas 1 and 2 to
problems about harmonic polynomials.

The Poisson kernel of Bir) is the function Kn defined in Bir) x Sir) by the equation

KriX, Y) = (vTV- |X|2 ) |X- Y|-, (4)
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where

It is well known that if h is harmonic in an open set containing the closure B(r) of B(r),
then

h(X)=\ Kr(X, Y)h(Y) dcr(Y) (XeB(r))

(see e.g. Helms [5, p. 16]). Since Kr and all its partial derivatives with respect to xu ..., x,,
are continuous in B(r)xS(r), we have

Dah(O)=\ DaKr(O,Y)h(Y)da(Y) (5)

for any a. The main problem thus becomes that of estimating DaKr(O, Y), and this will be
solved by expressing £,('» Y) as & series of harmonic polynomials and studying the terms
of this series.

The vector space of all homogeneous harmonic polynomials of degree m in R" is
denoted by 9ifm. (Note that 0e2tfm). Brelot and Choquet [2] introduced the norm |||| on
$?m, denned by the equation

11/2

S(l)

We shall need the following results.

THEOREM A. If Y€Rn\{O}, then there exists a unique element I m Y (a Brelot-Choquet
axial polynomial) of%tm such that I^y is invariant under rotation about the line OY (i.e. for
each orthonormal transformation T of Rn for which T( Y) = Y, we have Im V ° T = Im,v) and

The polynomial I^Y 'S given in R"\{O} by the equation

where

r = (x1y1+...+xnyn)(|X||y|)-1 (7)

and Pm is the n-dimensional Legendre polynomial of degree m. Further,

P - (dim SifJ-MJV^n))-1, say. (8)
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Most of this theorem can be found in [2]. The relation (6) is well known (see e.g.
Miiller [8]).

THEOREM B. The Poisson kernel Kr is given in B(r)xS(r) by the equation

oo

Kr(X, Y) = (v""1)-1 I N(k, n)r-k4,Y(X). (9)

When X = O this equation is trivial. When X^ O, we deduce it from (4), (6) and the
equation

£ l, -lstsl)
k=O

(see e.g. [8, p. 30]) by taking u = \X\/r and t to be given by (7).

LEMMA 3. If h is harmonic in an open set containing B(r), then

Dah(O) = (v-V'Nfla l , n)r'M [ DaIM,Yh(Y) dor(Y).
JS(r)

From (4) and (8), we easily obtain

Dah(O) = ( v - 1 ) - 1 f D"\ t N(k, n)r%Y(O)}h(Y) dcr(Y). (10)

Clearly

DaIfc,Y(O) = 0 (k^|a|), DaI|a l.Y^Da7|a |.y(O).

Hence, to prove the lemma, it is enough to show that the operator Da can be taken inside
the summation in (10). Now, for each fixed Y on S(r), the function Kr(-, Y) is harmonic in
B(r) and therefore real-analytic in B(r). Hence Kr(-, Y) is equal to its multiple Taylor
series about O in some neighbourhood of O. Bracketing together terms of equal degree in
this Taylor series, we obtain a series of homogeneous polynomials, convergent to JCr(-, Y)
in some neighbourhood of O. Since such a series is unique, it is equal term-by-term to the
right-hand side of (9). Since the Taylor series can be differentiated term-by-term arbitrar-
ily often, so also can the series in (10).

3. Harmonic polynomials. In view of Lemma 1, our interest now turns to the
estimation of the partial derivatives of ImY at O.

LEMMA 4. If HsXm and \a\ = m, then

\DaH\<m\(N(m,n))1/2\\H\\,
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and in particular

for each Y in R"\{O}.

When m = 0 the lemma is trivial. For positive values of m, we appeal to the inequality

(i = l , . . . , n ) . (11)

This inequality is implicit in the work of Calder6n and Zygmund [3, Chapter 1]. (To
deduce (11) from their work one needs an explicit formula for N(m, n), for which see e.g.
[8].) Kuran [7, p. 17] gives (11) explicitly together with the cases of equality. Observing
that each of the operators 3/dXj (i = l , . . . , n ) maps 3i?m into %!m-i and using (11)
repeatedly, we find that

N(0, n) ||DaH||2<(m!)2N(m, n)

Since N(0,n) = l and DaH = \\DaH\\, the main result of the lemma now follows. The
special case where H = I^y comes from the main result and (8).

LEMMA 5. If He%m, then

|VmH| = {m\n(n + 2 ) . . . (n + 2m -2 )} 1 / 2 ||H||.
In particular,

I V ^ V I = {mln(n + 2 ) . . . (n + 2m - 2)(N(m, n))"1}1'2

for each Yin Rn\{O}.-

When m = 0 the lemma is trivial. For positive values of m, we use a result of Kuran
[7; Lemma 2] which states that if Q is a homogeneous polynomial of degree 2m in Rn,
then

f Qdcr.

Applying this equation with Q = H2 and using (2), we obtain the main result of the
lemma, from which by using (8) we obtain the particular result for H = I^y.

4. Proof of Lemmas 1 and 2. To prove Lemma 1, we have, by Lemmas 3 and 4, for
each positive number r

\Dah(O)\ < (sB)-1r | o | -+ 1N(|a| , n) f |Da7|ol,v h(Y)| da(Y)
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where A is the constant implied by the O-notation in (3). Now, there is a constant C,
depending only on n, such that

Hence
H||ar-2|a|!ear (|a|>l, r>0).

In particular, taking r = \a\/a, we obtain

\Dah(O)\ < AC \a\n~2 \a\\(ae)M \a\~M (\a\ > 1),

and the theorem now follows by an application of Stirling's formula.
To prove Lemma 2, we have, by Lemma 1 and the Cauchy-Schwarz inequality, for

each positive number r

(snr"-1)-1N(m,n)m!r-'"{ £ ( a l W f D<7m,Yh(Y) <fer(Y)

s(sBr"-1r1N(m,ii)m!r-m{ I (a!)"1 f (D"!^)2 |h(Y)| da(Y)

\h(Y)\da(Y)\

(r) J

f
x |ft(Y)|

JS(r)

1
dcr(Y) .

J

By Lemma 5, we now have

|Vmh(O)|s{m!n(n + 2 ) . . . (n + 2m-2)iV(m, n)}mrmM(\h\, r)

<A{Cm\n(n + 2)... (n + 2m-2)mn-2}ll2rme''r,

where A and C are as before. Hence, taking r = m/a, we obtain

|Vmh(O)|<A{Cm!n(n + 2 ) . . . (n + 2m-2)mn-2}1/2(ae)mm-m

= O({(m!r1n(n + 2) . . . (n + 2m-2)mn-1}1/2am) (m

by Stirling's formula. When m i l ,

m l m —
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and

Hence

(m\)-1n(n + 2)...(n + 2m-2)mn-1 = O(2mm3n/2-2) (m-»<»),

and the lemma follows.

5. Proofs of Theorems 1 and 2. If h satisfies the hypotheses of Theorem 1, then, by
Lemma 1,

Hence there exists a non-negative integer q such that Dah(O) = 0 whenever | a | sq . It
follows that the multiple Taylor series of h about O has only finitely many non-zero terms
and hence that h, being equal in R" to the sum of this series (see e.g. [4]), is a polynomial.

If h satisfies the hypotheses of Theorem 2, then by Lemma 2,

|VJi(O)|->0 (m->«).

Hence there exists a non-negative integer q such that |VmJi(O)! = 0 when m^q. This
implies that Dah(O) = 0 when \a\^q and hence that h is a polynomial.

Consideration of the functions h,x and h2, defined in R" by the equations

hj(X) = e*1 cos x2

and

MX) = e*l/72{cos (xjy/l)+sin

shows that Theorems 1 and 2 fail with a = 1 and a = 1/V2, respectively. The verifications
are left to the reader.
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