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1. Introduction. In this paper we shall say " E has the 
(F,G) (extension) proper ty" to mean the following: F is a 
subspace of the r ea l normed linear space G , E is a r ea l normed 
linear space, and any bounded linear mapping F -+• E has a 
linear extension G -*• E with the same bound (equivalently, every 
linear mapping F -*• E of bound 1 has a linear extension G -*• E 
with bound 1). 

The Hahn-Banach theorem a s s e r t s that the r ea l field R 
has the unrestr ic ted (F, G) property (that is , for all F and G 
with F CG) . 

If X is a topological space, C(X) will denote the normed 
linear lattice of all continuous, bounded functions f : X -*• R 
with supremum norm: ||f || = sup | f ( t ) | (if X is compact 

t € X 
every continuous f is necessar i ly bounded). We reca l l that X 
is called extremally disconnected if the closure of every open 
set is again open. Now M.H. Stone has proved [5, Theorem 14] 
that if X is extremally disconnected then C(X) is boundedly 
complete. Using Stone's resul t , it is easy to verify that Banach 's 
proof [ l , page 28] that R has the unrestr ic ted (F, G) proper ty 
remains valid when R is replaced by C(X) provided that X is 
extremally disconnected. 

Nachbin [4, page 42], Goodner [2, page 103] and Kelley [3] 
have shown a converse: if E has the unres t r ic ted (F, G) p ro ­
per ty then E must be i sometr ic to C(X) for some extremal ly 
disconnected compact Hausdorff space X. 
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The a u t h o r s a r e indebted to the r e f e r e e for point ing out 
tha t the r e s u l t s of th i s p a p e r a r e c l o s e l y r e l a t e d to s o m e r e s u l t s 
in the p a p e r by L i n d e n s t r a u s s [6 ] , 

2 . Ma in t h e o r e m of this p a p e r . The ques t i on a r i s e s : 
is t h e r e a s ing le p a i r (F , G ) s u c h tha t w h e n e v e r E has the & ^ o o 
(F , G ) p r o p e r t y then E m u s t have the u n r e s t r i c t e d (F , G) 

o o 
p r o p e r t y ? 

We s h a l l show tha t the a n s w e r is « y e s » if E is r e ­
s t r i c t e d to have f in i te d i m e n s i o n . M o r e p r e c i s e l y , le t G be 

o 
the r e a l n o r m e d space C(3) (the i n t e g e r n wi l l be used to d e ­
note the d i s c r e t e topo log ica l s p a c e of n e l e m e n t s ) and le t F 

be the s u b s p a c e of G g e n e r a t e d by (0, 1, 1) and (1,0, 1). We 

s h a l l p r o v e the t h e o r e m : if d i m E = n < co and E has the 
(F , G ) p r o p e r t y then E i s i s o m e t r i c to the space C(n). 

Our proof i s e l e m e n t a r y , i s i ndependen t of the l i t e r a t u r e 
r e f e r r e d to above , and g ives a new r e s u l t for the f ini te d i m e n ­
s i o n a l c a s e . But in m o s t of our a r g u m e n t s i t i s not a s s u m e d 
tha t d i m E i s f in i t e . 

We s h a l l give e x a m p l e s ( s ee T h e o r e m 5) of s p a c e s which 
have the (F , G ) p r o p e r t y and ye t fa i l to have the u n r e s t r i c t e d 

o o 
(F , G) p r o p e r t y ( n e c e s s a r i l y they a r e inf ini te d i m e n s i o n a l ) . 

3. Some def in i t ions and n o t a t i o n s . 

(i) B = B(E) , S = S(E) wi l l denote r e s p e c t i v e l y the c losed 
uni t b a l l and the uni t s p h e r e of the r e a l n o r m e d l i n e a r s p a c e E . 

(ii) J = J(a, b , . . . ) wi l l denote the convex hul l of a, b , . . . . 
J(a , b) wi l l be ca l led a s e g m e n t if a ^ b . 

L» = L»(a, b , . . . ) wi l l denote the l i n e a r s e t of a, b , . . . 
(of c o u r s e , L i s a s u b s p a c e if and only if 0 € L ) . 

(iii) We sha l l u s e the following no ta t ion : 

| |x - J(a , b) || = k m e a n s | | x - y || = k 
for a l l y e J(a , b ) ; 

| |x - J(a , b) || < k m e a n s | | x - y || < k 
for a l l y € J(a, b) wi th a ^ y f b ; 

|| x - L(a, b) || > k m e a n s | | x - y || > k 
for a l l y € L(a, b ) . 
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We note that in any normed linear space: if c € J(a, b) 
and a i c f b and || x - c || > max ( |j x - a jj, !j x - b j| ) then 
| [ x - L ( a , b ) [ | > | | x - c | | . 

(iv) Suppose that V is a linear space, K a convex subset . 
Then a point x € K will be called an extreme point of K if 

a, b € K and x 6 J(a, b) => x = a or x = b; 

a segment J(a,b) C K will be called an edge of K if 

J(u, v) CK and p e J(u, v) f] J(a, b) with u j- p i v 
=> J(u, v)CJ(a, b). 

We note that if J(a, b) is an edge then a, b a re different ex­
t reme points but the converse may be false, 

4. LEMMA. E has the (F , G ) proper ty if and only 
if: x, y, x-y e B(E) implies that there is a point z € B(E) such 
that the points 2x - z, 2y - z, 2x + 2y -3z (obtained by r e ­
flecting z in x, y, x+y-z, respectively) a re also in 3 ( E ) . 

Proof. (i) B(F ) is the convex hull of +(0, 1, 1), 

_+(l, 0, 1) and j+(-l , 1, 0). Every linear mapping f:F -*- E is 

determined by (arbi t rary) values of f(0, 1, 1) = x (say) and 
f(l , 0, 1) = y (say). Then necessar i ly f ( - l , 1, 0) = x-y and hence 
f(B(F ))CB(E) if and only if x, y, x-y a re all in B(E), 

o 

(ii) Clearly, E has the (F , G ) proper ty if 

and only if for every linear mapping f:F -* E for which 

f(B(F ))CB(E) there is a point z € B(E) such that the linear 

extension f determined by f ( l , 1, 1) = z maps B (G ) into B(E). 

(iii) Next, B(G ) is the convex hull of o 
+ ( 1 , 1 , l ) r + ( -1 ,1 ,1 ) , + (1 , -1 ,1 ) and + ( - 1 , - 1 , 1 ) . Suppose that 
?:G ~* E is a linear extension of f:F -*-E. Let f(0, 1, 1) = x 

o o 
and f(l, 0, 1) = y. Then f is determined by f(l , 1, 1) = z (say) 
and then £(- 1, 1, 1) = 2x- z, f(l, - 1, 1) = 2y- z, f ( - l , - l , l ) = 
2x + 2y - 3z. Hence f(B(G ))CB(E) if and only if z, 2x- z, 

2x + 2y - 3z are all in B(E). 

The Lemma follows easily from (i), (ii), (iii). 

5. THEOREM. Let X denote any topological space, 
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let Y denote any closed subset of X and let E denote the 
subspace of C(X) consisting of those functions in C(X) which 
vanish on Y. Then E has the (F , G ) p roper ty . 

o o 
Proof. By Lemma 4 we need only show that if 

x, y, x-y € B = B(E) then there exists z e B such that 2x - z, 
2y - z, 2x + 2y - 3z a re also in B . 

x + y j j 
Set z = -—i —i . We note that 2 - x-y > 1. Hence 

2 - | x - y | / ! -
z is defined and is in E. 

To prove z, 2x - z, 2y - z, 2x + 2y - 3z a re all in B, 
we fix t € X, write x, y, z for x(t), y(t), z(t), and show 
-1 <_ 2x - z, 2y - z, 2x + 2y - 3z <_ 1. 

We may suppose y >_ x. Then 0 <_ y - x <_ 1. Now 
x+y 

Z = 2-(y-x) * 

Since -1 < x, y < 1 we have (-2-x) +y <C x+y < x+(2-y), 
hence -1 < z < 1. 

x+y , (y-x)(x+l) 
Next, z = 7 = x + y J- > x , hence 

2-(y-x) (x+l) + ( l-y) ~ 
(y-x)(x+l) J ^ x+1 

2x - z = x - . W
JX \A—\ < x < 1 and 2x - z > x - —— = -1 . 

(x+1) +( l -y ) — ~ — 1 
Thus - 1 < 2 X - Z < 1 . 

(y-x)(l-y) 
Again, z = y - w ^ / " - < y, hence 

2-(y-x) ~ 
2y - z = y + ( y ^ H 1 " ^ > y > . i and 2y - z < y + ^ " ^ = 1. 

2-(y-x) — — ~ 1 
Thus -1 < 2y - z < 1. 

Now x £ z < y, hence 2x - z < 2x + 2y - 3z < 2y - z. 

This completes the proof. 

6* Remark . Theorem 5 shows that G, . ([0, l]) has the 

(F , G ) proper ty . If C ([0, l]) had the unrest r ic ted (F, G) 

property, then the resu l t s of Nachbin, Goodner and Kelley would 
imply that it was i somet r ic to some C(X) with X compact and 
extremally disconnected. However C, . ([0, l]) is not isomet­
r ic to C(X) for any X. (Indeed, the unit ball of C, [0, l ] has 
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no extreme points but in every C(X) the function f(t) = 1 for 
all t e X is an extreme point of the unit ball of C(X).) 

7. LEMMA. (Corollary of Lemma 4). Suppose that E 
has the (F , G ) proper ty and x is an extreme point of B and 

o o 
y j 6 B, y j i x. Then the segment J(x, v ) is par t of a chord of 

1 1 ' 1 

S of length 2. In par t icular , if e, e a re different extreme 

points of B then j| e - e || = 2. 

Proof. We may obviously pass to the case that J(x, y ) 

is an inextensible chord of S, and we need only show that 
| | x - y i | | = 2 . Clearly, | | x - y± || < || x || + jj y± || < 2. Suppose 

if possible that | |x - y || < 2. Then choose y e J(x, y ) so that 

l!x~y,i II / 2 < j | x - y | | < 1. Then Lemma 4 applies; the result ing 

z must coincide with x, since x is an extreme point. Hence 
the segment J(x, 2y-x) is in B, J(x, y ) C J(x, 2y-x), contra-

1 t 

dieting the fact that J(x, y ) was chosen to be inextensible. 

This contradiction shows that | | x - y || = 2 holds. 
8. LEMMA. (Corollary of Lemma 4). Suppose that E 

has the (F , G ) proper ty and J(a, b) is an edge of B, c e B, 
c ^ J ( a , b), and ||b - J(a, c) j| = 2. Then J(a, c )CS, 
J(b,b+c-a) CS, and | | a - J(b, b+c-a) || = 2 . 

T̂  . i a+b a+c _,, 
Proof. Apply Lemma 4 with x = —— , y = —— . The 

result ing z mus t be in J(a, b), since this is an edge. 

We shall now show that z = a. We have: 2y - z € B, 
hence ||b - (2y- z) || £ 2; z ^ a would imply || b - z || < 2 and 

hence || b - y || = || ihz^l+i^I+ll [| < 2f c o n t r a d i c t i n g 

|| b - J(a, c) || = 2, since y e J(a, c). 

Consequently z = a, b + c - a = 2x + 2 y - 3 z € B , and 
J(b, b+c-a) C B . 

If m € J(b, b+c-a) then a - m = a - b - 9 (c-a) for some 
° £ 9 £ 1 ' hence || a -m || = || u-b || with u = a - 9(c-a) € L(a, c) 
so || a - m II > 2. Since a, m € B it follows that a - m || < 2, 
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hence | | a - m | | = 2 . Thus ||a - J(b, b+c-a) || = 2. It follows that 
J(b, b+c-a) C S, for if u, v ç. B and | | u - v | | = 2 then necessa r i ly 
u, v € S. 

9. LEMMA. (Corollary of Lemmas 7 ,8) . Suppose that 
E has the (F , G ) proper ty and J(a, b), J(a, c) a re different 

o o 
edges of B . Then J(b, b+c-a) is an edge. 

Proof. J(a, b) is an edge, c 4 J(a, b) and by Lemma 7, 
since b is an extreme point and J(a, c) is an edge, 
||b - J(a, c) || = 2; hence by Lemma 8, || a - J(b, b+c-a) || = 2. 

Now suppose if possible that J(b, b+c-a) is not an edge. 
Then there exist u, v e B such that J(u, v) Q J(b, b+c-a) is a 
single point x, u ^ x ^ v. 

We shall now show that || a - J(b, u) || = 2 . Suppose that 
9< 9< 1 and set u1 = b + 9 (u-b), v' = b + 0 (v-b), x ! = b +0(x -b ) . 
Then | j a - u 1 | | < 2 , | | a - v t | | < 2 , | | a - x l || = 2, and x l € J (u \ v"). 
Hence | | a - u l | | = 2 . Thus || a - J(b, u) || = 2. 

Now J(b, a) is an edge, u 6 B, u 4 J(b, a), and 
|| a - J(b, u) || = 2, hence by Lemma 8, J(a, a+u-b)CS. Similarly 
J(a, a+v-b)CS. 

Then J(a+u-b, a+v-b)CB and a + x-b € J(a+u-b,a+v-b)n J(a, c) 
with a+u-b f a+x-b i a+v-b, but J(a+u-b, a+v-b) <t J(a, c). This 
contradicts the fact that J(a, c) is an edge and shows that Lemma 
9 must hold. 

10. LEMMA. Suppose that E is an n-dimensional 

(n < co) r ea l normed linear space which has the (F , G ) p ro ­

per ty . Then 
(i) the set W of extreme points of the unit ball B is 

finite; 
(ii) there exist in B different extreme points 

e , e , . . . , e such that the vectors v = e - e , i = 1,. . . , n 
o 1 n i l o 

a re l inearly independent and each J(e , e.), i = 1, . . . , n is an 

edge of B. 
(iii) if e , e , . . . , e are chosen as in (ii) then the unit 

o 1 n 
ball B coincides with the parallelepiped 
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n 
{e + £ tV. | 0 < t1 <̂  1F i = l , . . . , n . } ; 

i=l 

n 1 
hence e + S — v. = 0, and B coincides with the 

o . A Z l 
i = l 

parallelepiped , 
. v. 

r _ n 1 , 1 , I 1 

{ 2 . = 1 t ( y ) | -1< t < 1, i = l , . . . , n } ; 
(iv) E is isometric with C(n). 

Proof of (i). Since the dimension of E is finite, B is 
compact. Since || e - e || =2 whenever e, e are different 

extreme points of B it follows that the number of extreme points 
of B is finite. 

Proof of (ii). We now introduce a euclidean metric into 
E. With respect to this metric B is a bounded, convex, closed 
subset of the finite dimensional space E and L(B) = E. Hence 
W is not empty and L(W) = E. Suppose that e , e . . . , e are 

o 1 m 
the different extreme points of B and let Conv(e . . . . , e ) 

r 1 m 
m . m 

i l i 
consist of all 2 t e . with all t >̂  0 and S t = 1. Let 

i=l X i=l 
d be the point in Conv(e , . . . , e ) which is closest to e in 

1 m o 

the euclidean metric. Then d ^ e . 

d+eQ 

Let y = —-— and let H be the n-1 dimensional hyper-

plane which contains y and is orthogonal to e - d with respect 
to the euclidean metric. Then Hfl B is a closed, bounded con­
vex subset of H. 

If x is an extreme point of H(1 B it follows that 
x € J(e , e ) for some unique extreme point e of B. Hence 

o x x 
Hfl B has a finite number of extreme points x . . . . , x , and 

r 1 r 
it is easily seen that L(x,, . . . , x ) = H and each J(e , e ), 

1 r o x . 
i 

i = 1, . . . , r , is an edge of B, and L(e , e , . . . , e ) = E. It 
o x, x 

1 r 
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follows that r > n and it is possible to choose x . . . . , x so 
— I n 

that the vectors v. = e - e , i = 1, . . • , n a re l inearly inde-
1 X . O 

l 

pendent. 

Proof of (iii). By repeated application of Lemma 9 it 

follows that 

J(p, p+v.) is an edge of B 

whenever p = e + 2 . v. with J C { 1 , 2, . . . , n} , i 4 J . 
o j€ J j 

n 
Hence {e + 2 t \ . | 0 < t1 < 1, i = l , . . . , n } is pa r t 

° i=l 1 

of B . Moreover, if x = e + 2 t V with 0 < t1 < 1 for all 
i=l x " " 

i but t = 0 for some j , then x and x + v. are both in B 
J 

and ||x - (x+v.) || = 2 which implies that x 6 S. It follows that 

the parallelepiped 
n 

{ e + 2 t V | 0 < t1 < 1, i = 1, . . . , n} 
o . , l — — J 

i = l 
coincides with B . 

Since x € B implies that -x e B, the r e s t of (iii) and 
then (iv), the main resu l t of this note, follow at once. 
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