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1. Introduction. In this paper we shall say "E has the
(F,G) (extension) property' to mean the following: F is a
subspace of the real normed linear space G, E 1is a real normed
linear space, and any bounded linear mapping F — E has a
linear extension G — E with the same bound (equivalently, every
linear mapping F - E of bound 1 has a linear extension G —- E
with bound 1).

The Hahn-Banach theorem asserts that the real field R
has the unrestricted (F,G) property (that is, for all F and G
with F CG).

If X is a topological space, C(X) will denote the normed
linear lattice of all continuous, bounded functions f : X = R
with supremum norm: |[f] = suptexlf(t)l (if X is compact

every continuous f 1is necessarily bounded). We recall that X
is called extremally disconnected if the closure of every open
setis again open. Now M.H. Stone has proved [5, Theorem 14]
that if X is extremally disconnected then C(X) is boundedly
complete. Using Stone's result, it is easy to verify that Banach's
proof [1, page 28] that R has the unrestricted (¥, G) property
remains valid when R 1is replaced by C(X) provided that X is
extremally disconnected.

Nachbin [4, page 42], Goodner [2, page 103] and Kelley [3]
have shown a converse: if E has the unrestricted (F, G) pro-
perty then E must be isometric to C(X) for some extremally
disconnected compact Hausdorff space X.
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The authors are indebted to the referee for pointing out
that the results of this paper are closely related to some results
in the paper by Lindenstrauss [6].

2. Main theorem of this paper. The question arises:
is there a single pair (FO, GO) such that whenever E has the

(FO, GO) property then E must have the unrestricted (F, G)
property?

We shall show that the answer is <<yes>> if E is re-
stricted to have finite dimension. More precisely, let Go be

the real normed space C(3) (the integer n will be used to de-
note the discrete topological space of n elements) and let FO

be the subspace of Go generated by (0,1,1) and (1,0,1). We
shall prove the theorem: if dim E =n< o and E has the

(Fo, GO) property then E is isometric to the space C(n).

Our proof is elementary, is independent of the literature
referred to above, and gives a new result for the finite dimen-
sional case. But in most of our arguments it is not assumed
that dim E is finite.

We shall give examples (see Theorem 5) of spaces which
have the (FO, GO) property and yet fail to have the unrestricted

(F,G) property (necessarily they are infinite dimensional).

3. Some definitions and notations.

(i) B = B(E), S = S(E) will denote respectively the closed
unit ball and the unit sphere of the real normed linear space E.

(ii) J = J(a,b,...) will denote the convex hull of a,b, ...
J(a, b) will be called a segment if a # b.

L = L(a,b,...) will denote the linear set of a,b,...
(of course, L 1is a subspace if and only if 0 ¢ L).

(iii) We shall use the following notation:

“x- J(a,b)” = k means “x—y” =k
for all y e J(a,b);

llx - J(a,b)]| < k means [x-y]| <k
for all y e J(a,b) with a #y # b;

| x- L(a,b)|| > k means [x-y]| > k
for all y e L(a,b).
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We note that in any normed linear space: if ¢ ¢ J(a, b)
and a#c#b and [x-c| > max ([[x-af, [[x-b]) then
- L@, o) [ 2 flx- .

(iv) Suppose that V 1is a linear space, K a convex subset.
Then a point x e K will be called an extreme point of K if

a,beK and xe¢ J(a,b) = x=a or x =Db;
a segment J(a,b) C K will be called an edge of K if

J(u,v) CK and p e J(u,v)N J(a,b) withu #p # v
= J(u, v)CJ(a, b).

We note that if J(a,b) is an edge then a,b are different ex-

treme points but the converse may be false.

4. LEMMA. E has the (FO,G ) property if and only
if: x,y,x-y ¢ B(E) implies that there is a point z ¢ B(E) such
that the points 2x - z, 2y - z, 2x + 2y -3z (obtained by re-
flecting z in x,y,x+y-2z, respectively) are also in B(E).

Proof. (1) B(FO) is the convex hull of +(0, 1, 1),
+(1,0,1) and +(-1,1,0). Every linear mapping f:FO - E is
determined by (arbitrary) values of £(0,1,1) = x (say) and
£(1,0,1) =y (say). Then necessarily f(-1,1,0) = x-y and hence
{(B(F ))CB(E) if and only if x,y,x-y are all in B(E).

o

(ii) Clearly, E has the (FO, Go) property if

and only if for every linear mapping f:FO — E for which
f(B(FO))CB(E) there is a point z ¢ B(E) such that the linear
extension f determined by f(i,i,i) = z maps B(GO) into B(E).

(iii) Next, B(GO) is the convex hull of

1,1,1), +(1,-1,1) and +(-1,-1,1). Suppose that

_-t(17 11 1): i('
s a linear extension of f:FO - E. Let f(0,1,1) =x

.G - E i
o

and f(1,0,1) =y. Then f is determined by f(i, 1,1) = z (say)
and then f(-1,1,1) = 2x-z, f(1,-1,1) = 2y-2z, f(-1,-1,1) =
2x + 2y - 3z. Hence f(B(GO))CB(E) if and only if 2z, 2x- z,

2x + 2y - 3z are all in B(E).
The Lemma follows easily from (i), (ii), (iii).

5. THEOREM. Let X denote any topological space,
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let Y denote any closed subset of X and let E denote the
subspace of C(X) consisting of those functions in C(X) which
vanish on Y. Then E has the (Fo, Go) property.

Proof. By Lemma 4 we need only show that if
X, v, %x-y € B = B(E) then there exists z ¢ B such that 2x - z,
2y - z, 2x + 2y - 3z are alsoin B.

Set z = XtV .
2- [x-v]
z is defined and is in E.

We note that 2 - Ix—y] > 1. Hence

To prove z, 2x -2z, 2y -2, 2x+2y - 3z are allin B,
we fix te X, write x,vy,2z for x(t), y(t), z(t), and show
-1<2x -2z, 2y-12z, 2x+2y - 3z2<1.

We may suppose y>x. Then 0<y-x<1. Now
2 - Xty .
2-(y-x)
Since -1<x,y<1 we have (-2-x)+y < xty < x+(2-y),
hence -1<z< 1.

__xty _ (y-x)(x+1)

N = =

ext, z 2-(y-%) X+(x+1)+(1-y) > x, hence
-x)(x+1) x+1

2X - 2z = X - <x< d 2x-z>x-—"=-1.

X-2z=X (x+1)+(1-—y)—x—1 and 2x-2z > x N

Thus -1<2x-2<1.

{y-x)(1-vy)

Again, z = < , hence
¢ Ty =Y
2y-z=y+('zé—x%§r%}))2y_>_—i and 2y-z_§_y+'(1—;ﬂ =1.

Thus -1<2y-z<1.
Now x<z<y, hence 2x-2z<2x +2y- 3z2<2y - z.
This completes the proof.

6. Remark. Theorem 5 shows that C{O} ([0,1]) has the

(FO, Go) property. I C ([0,1]) had the unrestricted (F, G)

{9}
property, then the results of Nachbin, Goodner and Kelley would
imply that it was isometric to some C(X) with X compact and

extremally disconnected. However C ([O, 1]) is not isomet-

{0} .
(0} [0,1] has

ric to C(X) for any X. (Indeed, the unit ball of C
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no extreme points but in every C(X) the function f(t) =1 for
all t e X 1is an extreme point of the unit ball of C(X).)

7. LEMMA. (Corollary of Lemma 4). Suppose that E
has the (FO, GO) property and x is an extreme point of B and

vy € B, Yy # x. Then the segment J(x, Yi) is part of a chord of
S of length 2. In particular, if e, e1 are different extreme

points of B then “e- e, ” = 2.

Proof, We may obviously pass to the case that J(x, Yi)

is an inextensible chord of S, and we need only show that
lx-y, [l =2. Clearly, [lx-y [l< =]+ ]y, [ <2 Suppose
if possible that ||x- vy | < 2. Then choose y e J(x, y1) so that
”x-y1 /72 < [x-v] < 1. Then Lemma 4 applies; the resulting

z must coincide with x, since x is an extreme point. Hence
the segment J(x, 2y-x) is in B, J(x, y1)C J(x, 2y-x), contra-
#

dicting the fact that J(x, Yi) was chosen to be inextensible.
This contradiction shows that “x— Yy | =2 holds.

8. LEMMA. (Corollary of Lemma 4). Suppose that E
has the (FO,GO) property and J(a,b) is an edge of B, c ¢ B,

c ¢ J(a,b), and ”b— J(a, c)” =2. Then J(a,c)CS,
J(b,b+c-a) CS, and [a- J(b,b+c-a)| = 2.
Proof. Apply Lemma 4 with x = 5‘—? .y = E—JYZE . The

resulting z must be in J(a, b), since this is an edge.

We shall now show that z = a. We have: 2y - z ¢ B,
hence ”b - (2y- 2) ” < 2; z #a would imply ” b-z ” < 2 and
hence byl = | {R=2ltb-2riz

”b~ J(a, c) ” = 2, since y e J(a, c).

)” < 2, contradicting

Consequently z=a, b+c-a = 2x+2y- 3z ¢B, and
J(b, b+c-2)CB.

If m ¢ J(b,b+c-a) then a-m =a-b-0(c-a) for some
0<0<1, hence [a-m] = [Ju-b| with u=a-0(c-a)e L(a,c)
SO ”a- m” > 2. Since a,m ¢B it follows that “a - mfl < 2,
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hence [la-m]| =2. Thus [a- J(b,b+c-a)] = 2. It follows that
J(b,b+c-a)C S, for if u,veB and |u-v]| =2 then necessarily
u,VveS.

9. LEMMA. (Corollary of Lemmas 7,8). Suppose that
E has the (Fo, Cro) property and J(a,b), J(a,c) are different

edges of B. Then J(b,b+c-a) is an edge.

Proof. J(a,b) is an edge, c¢ ¢ J(a,b) and by Lemma 7,
since b 1is an extreme point and J(a, c) is an edge,
”b- J(a, c)” = 2; hence by Lemma 8, ”a- J(b,b+c-a)” = 2.

Now suppose if possible that J(b,b+c-a) is not an edge.
Then there exist u,v ¢ B such that J(u, v)[) J(b, btc-a) is a
single point x, u# x # v.

We shall now show that [a- J(b,u)|| = 2. Suppose that
< 6< 1 and set u'=b +06(u-b), v' =b +0(v-b), x' = b +0(x-b).
Then |la-u'| <2, Jla-v'[<2, [la-x'|| =2, and x'e J(u',v').
Hence [a-u'l[ =2. Thus [a- J(b,u)] = 2.

Now J(b,a) is an edge, ueB, ud J(b,a), and
”a- J(b, u) ” = 2, hence by Lemma 8, J(a, atu-b)CS. Similarly
J(a, at+v-b)C S.

Then J(atu-b, a+v-b)CB and a + x-b ¢ J(atu-ba+v-b)NJI(a, c)
with a+tu-b # a+x-b # atv-b, but J(atu-b, at+v-b)& J(a, c). This
contradicts the fact that J(a, c) is an edge and shows that Lemma
9 must hold.

10. LEMMA. Suppose that E is an n-dimensional
(n < ©) real normed linear space which has the (FO, GO) pro-

perty. Then

(i) the set W of extreme points of the unit ball B is
finite;

(ii) there existin B different extreme points
€ ,€ ,.4.,€ such that the vectors v, = e, -e , 1i=1,...,n

o 1 n 1 1 o

are linearly independent and each J(eo, ei), i=14,...,n is an
edge of B.

(iii) if e ei, e are chosen as in (ii) then the unit

ball B coincides with the parallelepiped
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n

: .
{e,+ T tv, o<t <1, i=1,...,n};

i=1
nooy
hence eo + = ‘2' vi =0, and B coincides with the
i=1
parallelepiped .
n 1 Vi i
{Zi=1 t (7) l -1<t'<1,i=1,...,n};

(iv) E is isometric with C(n).

Proof of (i). Since the dimension of E 1is finite, B 1is

compact. Since "e - ey “ = 2 whenever e, e, are different

extreme points of B it follows that the number of extreme points
of B is finite.

Proof of (ii). We now introduce a euclidean metric into
E. With respect to this metric B is a bounded, convex, closed
subset of the finite dimensional space E and L(B) = E. Hence
W is not empty and L(W) = E. Suppose that e 18yl are

1
the different extreme points of B and let Conv(ei, cee, € )
mey i mey -
consist of all zZ ot ei with all t >0 and Z t =1, Let
i=1 i=1

d be the point in Conv(ei, cees em) which is closest to e in

the euclidean metric. Then d # e .
o
d+e

Let y = and let H be the n-1 dimensional hyper-

plane which contains y and is orthogonal to e - d with respect
to the euclidean metric. Then HN B is a closed, bounded con-
vex subset of H.

If x is an extreme point of HN B it follows that

x e J(e ,e ) for some unique extreme point e of B. Hence
o x x

H{1 B has a finite number of extreme points x . xr, and

R
it is easily seen that L(x,,...,x )= H and each J(e ,e ),
1 r o x

i=1,...,r, is anedgeof B, and L(e ,e ,...,e )=E. It
o X, -
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follows that r > n and it is possible to choose xi, ..., X so

n
that the vectors v. = eX - eo, i=1,...,n are linearly inde-
’ i
pendent.
Proof of (iii). By repeated application of Lemma 9 it

follows that

J(p, ptv.) is an edge of B
i

whenever p=e + X, v. with JC{4,2,...,n}, i¢d J.

o} jed j
oo i
Hence {e + X tv, ,0<t<1, i=1,...,n} is part

(¢} i=1 1 - -

noog i
of B. Moreover, if x = eo+ = tvi with 0<t <1 for all
i=1
J

i but t =0 for some j, then x and x+vj are bothin B
and |x - (y+vj) | =2 which implies that x ¢ S. It follows that

the parallelepiped
"o i
{e,+Z  tv, o<t <1, i=1,...,n}
i=1

coincides with B.

Since x ¢ B implies that -x ¢ B, the rest of (iii) and
then (iv), the main result of this note, follow at once.
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