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Abstract

Let G be a finite group and let δ(G) be the number of prime order subgroups of G. We determine the
groups G with the property δ(G) > |G|/2− 1, extending earlier work of C. T. C. Wall, and we use our
classification to obtain new results on the generation of near-rings by units of prime order.
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1. Introduction

Let G be a finite group and let δ(G) be the number of prime order subgroups of G. In
this paper we determine the groups G with δ(G) > |G|/2− 1. As our main theorem
demonstrates (see Theorem 1.1 below), such a group has a rather simple structure
which is easy to describe. In particular, we find that A5 is the only nonsoluble group
with this property, while δ(G)= |G|/2 if and only if G = Z2 or S3 × D8 × E with
exp(E)≤ 2 (where exp(E) denotes the exponent of E).

One of our main motivations comes from a theorem of Wall. In [18], Wall classifies
the finite groups G with the property i2(G) > |G|/2− 1, where i2(G) is the number
of involutions in G. Since δ(G)≥ i2(G), our main theorem is a natural extension of
Wall’s result.

Related problems have been investigated by various authors. For example, Liebeck
and MacHale [7] classify the finite groups in which more than half of the elements are
inverted by some automorphism of the group, extending earlier work of Manning and
Miller (see [8, 9], for example). All such groups are soluble, and the aforementioned
theorem of Wall follows as a corollary. In fact, Potter [13] has proved that the
proportion of elements in a nonsoluble group which are inverted by an automorphism
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is at most 4/15. For soluble groups, recent work of Hegarty [4] attempts to bound this
proportion in terms of the derived length of the group.

In order to state our main theorem, we first need to define a collection of groups. We
say that a nontrivial finite group G belongs to the collection L if and only if G is one of
the following (up to isomorphism). Here E denotes an elementary abelian 2-group of
order 2n (for some n ≥ 0) and D8 is the dihedral group of order 8. We also remind the
reader that a generalized dihedral group is a group of the form D(A)= A〈τ 〉 = A.2,
where A is abelian and τ acts by inversion.

(I) G = D(A) is a generalized dihedral group, where A is abelian.
(II) G = D8 × D8 × E .
(III) G = H(r)× E , where H(r)∼= (D8 × · · · × D8)/Zr−1

2 is a central product of
r ≥ 1 copies of D8 so that

H(r)= 〈x1, y1, . . . , xr , yr , z | x2
i = y2

i = z2
= 1, all pairs of generators

commute except [xi , yi ] = z〉.

(IV) G = S(r)× E , where S(r) is the split extension of an elementary abelian group
of order 22r (r ≥ 1) by a cyclic group Z2 = 〈z〉 so that

S(r)= 〈x1, y1, . . . , xr , yr , z | x2
i = y2

i = z2
= 1, all pairs of generators

commute except [z, xi ] = xi yi 〉.

(V) G = T (r) is the split extension of an elementary abelian group A of order
22r (r ≥ 1) by a cyclic group Z3 = 〈z〉 so that

T (r) = 〈x1, y1, . . . , xr , yr , z | x2
i = y2

i = z3
= 1, all pairs of generators

commute except [z, xi ] = xi yi and [z, yi ] = xi 〉.

(VI) G is a group of exponent 3.
(VII) G = S3 × D8 × E .
(VIII) G = S3 × S3.
(IX) G = S4.
(X) G = A5.

In this list, groups of type (I)–(IV) correspond respectively to the groups labelled
I–IV by Wall (see [18, pp. 261–262]); these are precisely the finite groups G with the
property i2(G) > |G|/2− 1. A group of type (VI) is nilpotent of class at most 3 and
we refer the reader to [17, Theorem 5.2.1] for additional information on such groups.
We also note that D(Z3)∼= S3, D(Z4)= D8, T (1)∼= A4 and D(A)× E ∼= D(A × E),
while D(E)∼= E × Z2 is an elementary abelian 2-group.

It is not difficult to see that the only overlap between the classes (I)–(X) are groups
of the form D8 × E with exp(E)≤ 2, which appear in (I) (with A = Z4 × E), (III)
and (IV) (both with r = 1). We can now state our main theorem.

THEOREM 1.1. Let G be a nontrivial finite group and let δ(G) be the number of prime
order subgroups of G. Then δ(G) > |G|/2− 1 if and only if G ∈ L. The precise value
of δ(G) for each G ∈ L is listed in Table 1.
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TABLE 1. Values of δ(G), G ∈ L.

Type of G |G| δ(G)

(I) D(A) 2|A| |G|/2+ δ(A)
(II) D8 × D8 × E 2n+6 9|G|/16− 1
(III) H(r)× E 22r+n+1

|G|/2+ 2n+r
− 1

(IV) S(r)× E 22r+n+1
|G|/2+ 2n+r

− 1
(V) T (r) 3.22r 2|G|/3− 1
(VI) Exponent 3 3m (|G| − 1)/2
(VII) S3 × D8 × E 3.2n+4

|G|/2
(VIII) S3 × S3 36 19
(IX) S4 24 13
(X) A5 60 31

COROLLARY 1.2. Let G be a finite group. Then δ(G)≥ 3|G|/4 if and only if G is an
elementary abelian 2-group.

REMARK 1.3. In view of Corollary 2.5 below, we deduce that δ(G)≥ 3|G|/4 if and
only if i2(G)≥ 3|G|/4.

COROLLARY 1.4. Let G be a finite group with exp(G)≥ 3. Then δ(G) > 2|G|/3 if
and only if G = D(A) and either A = Z4 × E with exp(E)= 2, or exp(A)= 3.

The next corollary follows immediately from Theorem 1.1.

COROLLARY 1.5. Let G be a finite group. Then δ(G)= |G|/2 if and only if G = Z2
or S3 × D8 × E with exp(E)≤ 2.

In the final section of this paper we describe an application of Theorem 1.1 to the
study of near-rings. Recall that a near-ring is a set R with two binary operations
+ and · such that (R,+) is a group (not necessarily abelian) and · satisfies a single
distributive law. For example, if G is a finite group then the set of functions from G
to G which fix the identity element has the structure of a near-ring with respect to the
operations ( f + g)(x)= f (x)g(x) and ( f · g)(x)= f (g(x)), where x ∈ G. We write
M0(G) to denote this particular near-ring associated with G.

There are several results in the literature concerning the generation of M0(G) by
units (that is, bijections) of prescribed order. For example, in [15] it is shown that
M0(G) is generated by a unit of order 2 if and only if exp(G)≥ 3 and G 6= Z3.
Similarly, the M0(G) which can be generated by a unit of order 3 are determined
in [16]. Bounds on the proportion of units of arbitrary order which generate M0(G)
are established in [10]; upper and lower bounds are given as functions of |G| and i2(G).
Roughly speaking, the proportion is high if and only if i2(G)/|G| is small.
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The main theorem of [14] states that if p is a prime number then either M0(G) is
generated by a unit of order p, or G is an elementary abelian 2-group with |G| 6≡ 1
mod p, or G belongs to a finite collection of groups. Moreover, this finite collection
can be defined in terms of δ and p, and we can use Theorem 1.1 to obtain various
results on the exceptional groups which arise. We refer the reader to Section 6 for
more details.

This paper is organised as follows. In Section 2 we record a number of useful
results which we will need in the proof of Theorem 1.1. Some of these results are
new and may be of independent interest. In particular, Lemma 2.16 provides a sharp
upper bound for the number of elements of order 3 in a finite nonsoluble group.
Next, in Section 3, we prove that G = A5 is the only nonabelian simple group with
δ(G) > |G|/2− 1; we extend this result to all nonsoluble groups in the following
section. In Section 5 we assume that G is soluble and we complete the proof of
Theorem 1.1 by establishing the nonexistence of a minimal counterexample. It is
worth noting that our proof uses the main theorem of [18]. Here we also establish
Corollaries 1.2 and 1.4, and justify the precise values of δ(G) listed in Table 1. The
aforementioned application to near-rings is discussed in Section 6.

NOTATION. Our group theoretic notation is standard. If G and H are groups then
G.H denotes an unspecified extension of G by H , while exp(G) is the exponent of G.
If m is a positive integer then Gm denotes the direct product of m copies of G. We
use Zn to denote the cyclic group of order n and write Dn for the dihedral group
of order n. We adopt the notation of [5] for groups of Lie type. In particular, we
write Ln(q)= L+n (q)= PSLn(q), Un(q)= L−n (q)= PSUn(q), E+6 (q)= E6(q) and
E−6 (q)=

2 E6(q). If X is a subset of a finite group G and r is a positive integer
then ir (X) denotes the number of elements of order r in X . We sometimes write |g|
for the order of a group element g, while bxc denotes the largest integer less than or
equal to the real number x .

2. Preliminaries

Let G be a finite group and let δ(G) be the number of prime order subgroups of G.
If r is a positive integer and X is a subset of G then let ir (X) be the number of elements
of order r in X . Then

δ(G)=
∑

r∈π(G)

(r − 1)−1ir (G), (2.1)

where π(G) is the set of distinct prime divisors of |G|.

LEMMA 2.1. Let G be a finite group and let N be a normal subgroup of G. Then

δ(G)≤ δ(N )+ |N | · δ(G/N ).

PROOF. It suffices to show that i p(G)≤ i p(N )+ |N | · i p(G/N ) for any prime p
which divides |G|. Suppose that x ∈ G has order p, so either x ∈ N or N x ∈ G/N
has order p. The desired bound follows since there are precisely i p(G/N ) elements of
order p in G/N , and i p(N y)≤ |N | for all y ∈ G \ N . 2
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COROLLARY 2.2. Let G be a finite group with a normal subgroup N such that
δ(G/N )≤ |G/N |/2− 1. Then δ(G)≤ |G|/2− 1.

PROOF. This follows immediately from Lemma 2.1 since δ(N )≤ |N | − 1. 2

LEMMA 2.3. Let G be a finite group such that 3+ 3i2(G)+ i3(G)≤ |G|. Then
δ(G)≤ |G|/2− 1.

PROOF. As in (2.1) we have

δ(G) =
∑

r∈π(G)

(r − 1)−1ir (G)= i2(G)+
1
2

i3(G)+
∑
r≥5

(r − 1)−1ir (G)

≤ i2(G)+
1
2

i3(G)+
1
4
(|G| − i2(G)− i3(G)− 1)

=
1
4
|G| +

1
4
(3+ 3i2(G)+ i3(G))− 1

and the result follows. 2

In view of Lemma 2.3, it will be useful to have upper bounds on the number of
elements of order 2 and 3 in various finite groups.

LEMMA 2.4. Let G be a finite group with an automorphism α such that S = {x ∈ G |
α(x)= x−1

} has more than 3|G|/4 elements. Then G is abelian and S = G.

PROOF. This is [18, Lemma 7]. 2

COROLLARY 2.5. Let G be a finite group. Then i2(G)≥ 3|G|/4 if and only if G is
an elementary abelian 2-group.

PROOF. Take α to be the identity automorphism in Lemma 2.4. 2

COROLLARY 2.6. Let G be a finite group, let N be a nonabelian normal subgroup
of G, and let x ∈ G\N be an involution. Then i2(N x)≤ 3|N |/4.

PROOF. Let α ∈ Aut(N ) be the automorphism induced by conjugation by x . Then
nx ∈ N x is an involution if and only if α(n)= n−1, so Lemma 2.4 implies that
i2(N x)≤ 3|N |/4 since N is nonabelian. 2

LEMMA 2.7. Let G be a finite group with an abelian subgroup N. Then i2(N x)
divides |N | for any involution x ∈ G \ N.

PROOF. Let H be the set of elements n ∈ N such that nx is an involution. Then H is
a subgroup of N since N is abelian, so the result follows from Lagrange’s theorem. 2

LEMMA 2.8. Let G be a finite group with a subgroup N of odd order. Then i2(N x)
divides |N | for any involution x ∈ G \ N.
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PROOF. This follows from [3, Lemma 4.1(i), Section 10.4]. Indeed, we have
i2(N x)= |N : CN (x)|. 2

LEMMA 2.9. Let G be a finite nonsoluble group. Then i2(G)≤ 4|G|/15− 1.

PROOF. This follows from the main theorem of [13]. 2

LEMMA 2.10. Let G be a finite group with a normal subgroup N. If x ∈ G \ N has
order r then ir (N x)= ir (N y) for all cosets N y which are G/N-conjugate to N x.

PROOF. Suppose that N y is G/N -conjugate to N x , so N y = N z−1xz for some z ∈ G.
Then the map ϕ : N x→ N y, defined by nx 7→ z−1nxz, induces a bijection between
the subset of elements of order r in N x and the corresponding subset of N y. 2

LEMMA 2.11. Let G be a finite group with a normal subgroup N, where N is an
elementary abelian p-group. Then the following hold.
(i) Suppose x ∈ G \ N has order 2. Then i2(N x)= |N | if and only if x inverts N

elementwise, that is, x−1nx = n−1 for all n ∈ N.
(ii) If x ∈ CG(N ) \ N has prime order r 6= p then ir (N x)= 1.
(iii) If x ∈ G \ N has prime order r then ir (N x)= pd for some integer d. In

particular, if ir (N x) < |N | then ir (N x)≤ |N |/p.

PROOF. Parts (i) and (ii) are trivial, so let us consider (iii). Suppose that N has
order pm . We can view N as an m-dimensional vector space over Fp, so Aut(N )∼=
GLm(p). Now conjugation by x induces an automorphism of N , so we can identify x
with an invertible Fp-linear map A : N → N of order r .

Now nx ∈ N x has order r if and only if n(I + A + · · · + Ar−1)= 0, where I
denotes the identity linear map N → N . If r 6= p then basic linear algebra implies
that this condition holds if and only if n ∈ im(I − A), so ir (N x)= pm−α where
α = dim CN (A). Similarly, if r = p then the condition n ∈ ker(I + A + · · · + Ar−1)

implies that ir (N x)= pm−β , where β is the number of indecomposable blocks of
size p in the Jordan form of A on N . 2

LEMMA 2.12. Let G be a finite group with an index-two subgroup N such that
i2(G \ N ) > |G|/3. Then N = N1 × N2, where N1 ≤ Z(N ) has odd order and N2
is a 2-group.

PROOF. Let a ∈ G \ N be an involution and let 3= {ni a | 1≤ i ≤ m} be a set of
distinct involutions in the coset Na, where m > |G|/3= 2|N |/3. Fix j ∈ {1, . . . , m}
and define 3 j = {ni n j a | 1≤ i ≤ m}. Note that |3 ∩3 j |> |N |/3. Let x ∈3 ∩3 j ,
so x = nkn j a for some k ∈ {1, . . . , m}. Since x ∈3, then x2

= 1 and we quickly
deduce that nk ∈ CN (n j ). Therefore, |CN (n j )| ≥ |3 ∩3 j |> |N |/3 and thus CN (n j )

has index at most 2 in N . In particular, CN (n j ) is normal in N and it contains every
element of odd order in N . Moreover, if y ∈ N has odd order then n j ∈ CN (y) for
all 1≤ j ≤ m, hence y ∈ Z(N ) since m > 2|N |/3. Therefore, the set of elements of

https://doi.org/10.1017/S1446788709000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000226


[7] On the number of prime order subgroups of finite groups 335

TABLE 2. Bounds on i2(G), i3(G) and |G|.

G f (G, 2) f (G, 3) g(G)

L±n (q) (n2
+ n − 2)/2 (2n2

+ n − 3)/3 1
2 (q + 1)−1qn2

−1

PSpn(q)′ (n2
+ 2n)/4 (2n2

+ 3n)/6 1
4q(n

2
+n)/2

P�±n (q) n2/4 (2n2
− n)/6 1

8q(n
2
−n)/2

�n(q) (n2
− 1)/4 (2n2

− n − 1)/6 1
4q(n

2
−n)/2

E8(q) 128 168 1
2q248

E7(q) 70 91 1
4q133

E±6 (q) 42 54 1
6q78

F4(q) 28 36 1
2q52

G2(q) 8 10 1
2q14

3 D4(q) 16 20 1
2q28

2 F4(q) 14 18 1
2q26

2G2(q) 4 5 1
2q7

2 B2(q) 3 11/3 1
2q5

odd order in N forms a central subgroup, N1 say, and it follows that N = N1 × N2,
where N2 is a 2-group (possibly trivial). 2

The next lemma provides rather accurate bounds on i2(G), i3(G) and |G| in the case
where G is a simple group of Lie type. In view of the isomorphisms G2(2)′ ∼= U3(3)
and 2G2(3)′ ∼= L2(8), in Table 2 we regard G2(2)′ and 2G2(3)′ as classical groups.
In addition, we regard the Tits group 2 F4(2)′ as a sporadic group and it is therefore
omitted from Table 2.

LEMMA 2.13. Let G be a finite simple group of Lie type over Fq . For r ∈ {2, 3},

ir (G)≤ ir (Aut(G)) < 2(1+ q−1)q f (G,r),

where the values of f (G, r) are recorded in Table 2. In the table we also record a
lower bound |G|> g(G).

PROOF. The upper bounds on ir (Aut(G)) are given in [6, Proposition 1.3]. If G
is classical then the lower bound on |G| follows from [1, Proposition 3.9], while
the corresponding bound for exceptional groups can be checked directly (using [6,
Lemma 1.2], for example). 2
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To close this preliminary section we will establish an analogue of Lemma 2.9 for
elements of order 3. First we require the following technical result.

LEMMA 2.14. Let G be a nonabelian finite simple group. Then the following hold:
(i) If G 6= L2(8) then 1+ i3(Aut(G))≤ 7|G|/20.
(ii) If G = L2(8) then 1+ i3(Aut(G))= 225|G|/504.
(iii) |Out(G)|2 ≤ |G|/15.
In parts (i) and (iii), equality holds if and only if G = A5.

PROOF. First consider (i). If G is a sporadic group then i3(Aut(G))= i3(G) and the
character table of G is available in the GAP Character Table Library [2]. The desired
result quickly follows. 2

Next suppose that G = An , where n ≥ 5. Again, we have i3(Aut(G))= i3(G)
since |Out(G)| is not divisible by 3. Now, if G = A5 then i3(G)= 20 and thus
1+ i3(Aut(G))= 7|G|/20 in this case. Now assume that n ≥ 6. Then

i3(G)=
bn/3c∑
k=1

n!

k!(n − 3k)!3k ≤

(
1

3(n − 3)!
+

1
18

bn/3c∑
k=2

1
(n − 3k)!

)
n!

and
bn/3c∑
k=2

1
(n − 3k)!

<

∞∑
l=0

1
(3l)!

<

∞∑
l=0

1
6l =

6
5
. (2.2)

Therefore, for n ≥ 6, we get

1+ i3(Aut(G))≤ 1+ 1
18 (1+

6
5 )n!<

7
20 |G|,

as required.
Finally, let us assume that G is a group of Lie type over Fq , where q = p f and p

is prime. First, suppose that G = L2(q). Note that we may assume that q ≥ 7
since L2(2) and L2(3) are not simple, while L2(4)∼= L2(5)∼= A5. Now i3(G)≤
|GL2(q)|/(q − 1)2 = q(q + 1) and any element x ∈ Aut(G) \ G of order 3 is a field
automorphism. Therefore

1+ i3(Aut(G)) ≤ 1+ q(q + 1)+ 2α
(
|PGL2(q)|

|PGL2(q1/3)|

)
= 1+ q(q + 1)+ 2α · q2/3(q4/3

+ q2/3
+ 1),

where α = 1 if logp q is divisible by 3, otherwise α = 0. Since |G| = (2, q − 1)−1

q(q2
− 1), where (2, q − 1) denotes the highest common factor of 2 and q − 1, it is

easy to check that 1+ i3(Aut(G)) < 7|G|/20 for all q ≥ 7 with q 6= 8. However, if
G = L2(8) then 1+ i3(Aut(G))= 225 and (ii) follows.

Now assume that G 6= L2(q). Here we apply the bound on i3(Aut(G)) given
in Lemma 2.13. For example, suppose that G = L±n (q), where n ≥ 3. In view of
Lemma 2.13, it suffices to show that

1+ 2(1+ q−1)q f (G,3)
≤

7
20 g(G),
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where the terms f (G, 3) and g(G) are given in Table 2. The reader can check that
this bound holds unless (n, q)= (4, 2), or n = 3 and q ≤ 13. These small cases can be
checked directly. The remaining groups of Lie type are handled in a similar fashion and
we leave the details to the reader. (Note that we may assume that q ≥ 3 if G = G2(q)′

since G2(2)′ ∼= U3(3). Similarly, we may assume that q ≥ 27 if G = 2G2(q), and that
q ≥ 8 if G = 2 B2(q).)

Now let us consider part (iii). If |Out(G)| ≤ 2 then |Out(G)|2 ≤ |G|/15, with
equality if and only if G = A5. Therefore, we may assume that |Out(G)|> 2. If
G = A6 then |Out(G)|2 = 16< |G|/15, so we can assume that G is a group of Lie
type. Suppose that G = L2(q), where q ≥ 7. Then |Out(G)| = (2, q − 1) logp q and
it is easy to check that

((2, q − 1) logp q)2 < (2, q − 1)−1q(q2
− 1)/15

for all q ≥ 7. Next suppose that G = L±n (q), where n ≥ 3. In this case, |Out(G)| =
2(n, q ∓ 1) logp q , so in view of Lemma 2.13 it suffices to show that

4(q + 1)2(logp q)2 < 1
15 g(G),

where g(G) is defined in Table 2. One can verify that this bound holds unless n = 3
and q ≤ 3; these cases can be checked directly. The other cases are entirely similar
and we omit the details (see [5, p. 170] for a convenient list of the orders |Out(G)|). 2

REMARK 2.15. We note that if G = L2(8) then 1+ i3(G)= 57< 7|G|/20.

LEMMA 2.16. Let G be a nonsoluble finite group. Then i3(G)≤ 7|G|/20− 1.

PROOF. We proceed by induction on |G|. Seeking a contradiction, suppose that

i3(G) > 7
20 |G| − 1. (2.3)

Let L be the soluble radical of G. Now

i3(G)+ 1≤ |L| · i3(G/L)+ i3(L)+ 1≤ |L| · (i3(G/L)+ 1)

and thus i3(G/L) > 7|G/L|/20− 1. In particular, if L is nontrivial then the inductive
hypothesis implies that G/L is soluble, hence G is soluble, which is a contradiction.
Therefore, we may assume that L is trivial.

Let N be a minimal normal subgroup of G. Since L is trivial, it follows that N is
nonsoluble, so N ∼= J × · · · × J is a direct product of isomorphic nonabelian simple
groups, with t factors, say. By Lemma 2.14(i) (and Remark 2.15),

i3(N )= (1+ i3(J ))
t
− 1≤ ( 7

20 |J |)
t
− 1≤ 7

20 |N | − 1,

so (2.3) implies that there exists g ∈ G \ N of order 3 such that i3(Ng) > 7|N |/20.
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If g ∈ CG(N ) then again Lemma 2.14(i) and Remark 2.15 imply that

i3(Ng)= i3(N )+ 1≤ ( 7
20 |J |)

t
≤

7
20 |N |,

with equality if and only if N = A5. Therefore, we may assume that conjugation by g
induces a nontrivial automorphism of N , say ψg ∈ Aut(N ).

Now i3(Ng)≤ i3(Inn(N )ψg), where Inn(N )ψg is a coset of Inn(N )∼= N in
Aut(N )= Aut(J ) o St . Suppose that ψg ∈ Aut(J )t . If J 6= L2(8) then Lemma 2.14(i)
yields

i3(Ng)≤ i3(Aut(J )t )= (1+ i3(Aut(J )))t − 1< ( 7
20 |J |)

t
≤

7
20 |N |.

Similarly, if J = L2(8) then applying Lemma 2.14(ii) leads to

i3(Ng) <

(
225
504
|J |

)t

≤
7
20
|N |

for all t ≥ 2, while if t = 1 then

i3(Ng)≤ 84< 7
20 |N |

since any coset of J in Aut(J ) contains at most 84 elements of order 3 (equality if the
coset contains field automorphisms).

Now suppose that ψg ∈ Aut(N ) \ Aut(J )t , so t ≥ 3 and ψg = (g1, . . . , gt ; σ),
where gi ∈ Aut(J ) and σ ∈ St has cycle-shape (3k, 1t−3k) for some k ≥ 1. Then by
Lemma 2.14,

i3(Ng)≤ i3(Aut(J )tσ) = |Aut(J )|2k(i3(Aut(J )t−3k)+ 1)

≤

(
1

15
|J |3

)k

((i3(Aut(J ))+ 1)t−3k
− 1+ 1)

≤

(
1

15
|J |3

)k(225
504
|J |

)t−3k

<
7

20
|N |.

We conclude that i3(Ng)≤ 7|N |/20 for all elements g ∈ G \ N of order 3. This final
contradiction completes the proof of the lemma. 2

REMARK 2.17. If G is nonsoluble then it is easy to see that the above argument
implies that i3(G)= 7|G|/20− 1 if and only if G = A5 × B with i3(B)= |B| − 1.

3. Simple groups

In this section we prove the following result.

PROPOSITION 3.1. Let G be a finite simple group. Then one of the following holds:
(i) G = Z2 and δ(G)= 1;
(ii) G = Z3 and δ(G)= 1;
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(iii) G = A5 and δ(G)= 31;
(iv) δ(G)≤ |G|/2− 1.

If G is an abelian simple group then G = Z p for some prime p, so δ(G)= 1 and
thus Z2 and Z3 are the only examples with δ(G) > |G|/2− 1. Now suppose that G is
a nonabelian finite simple group. We partition the analysis into a number of separate
lemmas, according to the type of G.

LEMMA 3.2. Let G be a sporadic simple group. Then δ(G)≤ |G|/2− 1.

PROOF. The character table of G is available in the GAP Character Table Library [2]
and it is straightforward to calculate δ(G) precisely. 2

LEMMA 3.3. Suppose that G = An with n ≥ 5. Then either δ(G)≤ |G|/2− 1, or
n = 5 and δ(G)= 31.

PROOF. The case n = 5 can be checked directly, so let us assume that n ≥ 6. In view
of Lemma 2.3, it suffices to show that

3+ 3i2(G)+ i3(G)≤ |G|. (3.1)

We have

i2(G)=
bn/4c∑
l=1

n!

(2l)!(n − 4l)!22l
≤

(
1

8(n − 4)!
+

1

4!24

bn/4c∑
l=2

1
(n − 4l)!

)
n!

and

i3(G)=
bn/3c∑
k=1

n!

k!(n − 3k)!3k ≤

(
1

3(n − 3)!
+

1
18

bn/3c∑
k=2

1
(n − 3k)!

)
n!.

Now
bn/4c∑
l=2

1
(n − 4l)!

<

∞∑
l=0

1
(4l)!

<

∞∑
l=0

1
24l =

24
23

and thus (2.2) implies that

3i2(G)+ i3(G) <

(
3

8(n − 4)!
+

1
3(n − 3)!

+
3

4!24 ·
24
23
+

1
18
·

6
5

)
n!.

We conclude that (3.1) holds for all n ≥ 6. 2

LEMMA 3.4. Let G = L2(q), where q ≥ 7. Then δ(G)≤ |G|/2− 1.

PROOF. As before, it suffices to show that (3.1) holds. If q is even then

i2(G)= q2
− 1, i3(G)≤

|GL2(q)|

(q − 1)2
= q(q + 1), |G| = q(q2

− 1)
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and thus (3.1) holds for all q ≥ 8. Similarly, if q is odd then

i2(G)≤
|GL2(q)|

2(q − 1)2
=

1
2

q(q + 1), i3(G)≤ q(q + 1), |G| =
1
2

q(q2
− 1)

and again (3.1) follows.

LEMMA 3.5. Suppose that G = L±4 (2) or L±3 (q), where 3≤ q ≤ 7. Then δ(G)≤
|G|/2− 1.

PROOF. Direct calculation, using GAP [2] for example. 2

To deal with the remaining simple groups of Lie type we apply the bounds in
Lemma 2.13. Indeed, one can check that if G 6= L2(q) is a group of Lie type over Fq ,
and G is not one of the cases listed in Lemma 3.5, then

3+ 3 · 2(1+ q−1)q f (G,2)
+ 2(1+ q−1)q f (G,3)

≤ g(G)

where the terms f (G, 2), f (G, 3) and g(G) are given in Table 2. Therefore (3.1)
holds and we are done.

REMARK 3.6. It is interesting to consider the asymptotic behaviour of δ(G),
especially in the case where G is a simple group. Here we expect that δ(G)/|G| → 0
as |G| →∞; for example, explicit calculation suggests that δ(An)/|An|< 1/n for
all n ≥ 8. This is clearly not true for nonsoluble groups in general. For instance, if
G = A5 × E , where E is elementary abelian of order 2n , then

δ(G)/|G| = 4
15 + 2−n−2.

Let p(G) be the proportion of elements of prime order in a finite group G. It would
also be interesting to study the asymptotic behaviour of p(G) when G is a simple
group. We note that if G is a group of Lie type of bounded rank then perhaps p(G)
does not tend to zero. For example, if q is a Germain prime—that is, a prime of the
form 2p + 1 with p prime—then i p(PSL2(q))≈ |G|/2. However, it is not known
whether or not there are infinitely many such primes. The same applies for primes of
the form cp + 1, where c ≥ 4 is a fixed even integer.

4. Nonsoluble groups

In this section we use Proposition 3.1 to establish Theorem 1.1 for nonsoluble
groups. More precisely, we prove the following proposition.

PROPOSITION 4.1. Let G be a finite nonsoluble group. Then δ(G) > |G|/2− 1 if and
only if G = A5.

LEMMA 4.2. Let G be a finite group and let N be a maximal normal subgroup of G
such that G/N 6∈ {Z2, Z3, A5}. Then δ(G)≤ |G|/2− 1.

PROOF. By Proposition 3.1 we have δ(G/N )≤ |G/N |/2− 1, hence Corollary 2.2
yields δ(G)≤ |G|/2− 1. 2

https://doi.org/10.1017/S1446788709000226 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788709000226


[13] On the number of prime order subgroups of finite groups 341

LEMMA 4.3. Let G be a nonsoluble group with a normal subgroup N such that
G/N ∼= Z2. Then δ(G)≤ |G|/2− 1.

PROOF. Since G and N are nonsoluble, Lemmas 2.9 and 2.16 imply that

i2(G)≤ 4
15 |G| − 1, i3(G)= i3(N )≤ 7

20 |N | − 1= 7
40 |G| − 1,

whence 3+ 3i2(G)+ i3(G)≤ |G| − 1 and the result follows from Lemma 2.3. 2

LEMMA 4.4. Let G be a nonsoluble group with a normal subgroup N such that
G/N ∼= Z3. Then δ(G)≤ |G|/2− 1.

PROOF. Here Lemmas 2.9 and 2.16 imply that

i2(G)= i2(N )≤ 4
15 |N | − 1= 4

45 |G| − 1, i3(G)≤ 7
20 |G| − 1

and again we get 3+ 3i2(G)+ i3(G)≤ |G|. 2

LEMMA 4.5. Let G be a finite group with a nontrivial normal subgroup N such that
G/N ∼= A5. Then δ(G)≤ |G|/2− 1.

PROOF. As before, it suffices to show that 3+ 3i2(G)+ i3(G)≤ |G|. Note that
Lemma 2.16 implies that i3(G)≤ 7|G|/20− 1. First suppose that N is nonabelian.
Then Corollaries 2.5 and 2.6 give i2(N )≤ 3|N |/4− 1 and i2(N x)≤ 3|N |/4 for all
involutions x ∈ G \ N . Therefore

i2(G)≤ i2(N )+ i2(G/N ) · 3
4 |N | ≤ 16 · 3

4 |N | − 1= 1
5 |G| − 1,

and the result follows since

3+ 3i2(G)+ i3(G)≤ 3
5 |G| +

7
20 |G| − 1< |G|.

Now assume that N is abelian. First consider the case where N is an elementary
abelian p-group. Let N x = (1, 2)(3, 4) and N y = (1, 2, 3) represent the unique
classes of elements of order 2 and 3 in G/N ∼= A5, with respective class sizes 15
and 20.

First suppose that p > 2. If i2(N x)= |N | then Lemma 2.10 indicates that every
involution in G \ N inverts N elementwise, but this is not possible since x commutes
with an involution z ∈ G \ N in the coset N z = (1, 3)(2, 4), so xz centralizes N .
Therefore, i2(N x) < |N |, hence i2(N x)≤ |N |/3 (see Lemma 2.7) and thus

3+ 3i2(G)+ i3(G)≤ 3+ 3 · 15 · 1
3 |N | +

7
20 |G| − 1< |G|.

Next assume that p = 2. If x ∈ CG(N ) then y ∈ CG(N ) (since every element
of order 3 in A5 is a product of two involutions), so i3(G)≤ i3(A5)= 20 and the
result follows since i2(G)≤ 16|N | − 1. On the other hand, if i2(N x) < |N | then
i2(N x)≤ |N |/2 by Lemma 2.7, so

3+ 3i2(G)+ i3(G)≤ 3+ 3 · (|N | − 1+ 15 · 1
2 |N |)+ 20|N |< |G|.
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To deal with the general abelian case, let p be a prime which divides |N | and
let M = {n p

| n ∈ N }. Then M is a characteristic subgroup of N and N/M is an
elementary abelian p-group. Now (G/M)/(N/M)∼= A5, so our earlier argument
yields δ(G/M)≤ |G/M |/2− 1 and thus Corollary 2.2 gives δ(G)≤ |G|/2− 1. 2

Proposition 4.1 now follows from Lemmas 4.2–4.5.

5. Proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1. In view of Proposition 4.1
and Lemma 4.2, we may assume that G is soluble and that any maximal normal
subgroup N of G satisfies G/N ∈ {Z2, Z3}. We will establish Theorem 1.1 by proving
the nonexistence of a minimal counterexample (see Propositions 5.9 and 5.10). To do
this, we require several preliminary lemmas which deal with various special cases.

At the end of this section we also establish the precise values of δ(G) listed in
Table 1, and we prove Corollaries 1.2 and 1.4.

LEMMA 5.1. Let G be a finite soluble group with a nontrivial normal subgroup N
such that G/N ∼= S4. Then δ(G)≤ |G|/2− 1.

PROOF. Here G/N ∼= S4 has two classes of involutions, with representatives N x1 =

(1, 2), N x2 = (1, 2)(3, 4) and respective class sizes 6 and 3. There is a unique class
of elements of order 3, with representative N y = (1, 2, 3) and class size 8.

If N is nonabelian then Corollary 2.6 implies that i2(G \ N )≤ 9 · 3|N |/4, hence

δ(G)= δ(N )+ i2(G \ N )+ 1
2 i3(G \ N )≤ |N | − 1+ 27

4 |N | + 4|N |< 1
2 |G| − 1

since δ(N )≤ |N | − 1 and i3(G \ N )≤ 8|N |.
Next suppose that N is an elementary abelian p-group. First assume that p = 2. If

x1 ∈ CG(N ) then y ∈ CG(N ), so i3(G)≤ 8 and the trivial bound i2(G)≤ 10|N | − 1
is sufficient since |G| ≥ 48. Otherwise, i2(N x1)≤ |N |/2 (see Lemma 2.7) and the
desired result follows since

i2(G)≤ |N | − 1+ 6 · 1
2 |N | + 3|N | = 7|N | − 1, i3(G)≤ 8|N |

and δ(G)= i2(G)+ i3(G)/2.
Now assume that p = 3. If x1 ∈ CG(N ) then x2, y ∈ CG(N ) and the bounds

i2(G)≤ 9 and i3(G)≤ 9|N | − 1 are sufficient. Similarly, if x1 inverts N elementwise
then x2, y ∈ CG(N ) and the result follows since i2(G)≤ 3+ 6|N | and i3(G)≤
9|N | − 1. Finally, if x1 neither centralizes N nor inverts N elementwise then
i2(N x1)≤ |N |/3 (see Lemma 2.7) and the bounds

i2(G)≤ 6 · 1
2 |N | + 3|N | = 6|N |, i3(G)≤ 9|N | − 1

are good enough. A very similar argument applies if p ≥ 5 and we leave the details to
the reader.
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To deal with the general abelian case, let p be a prime which divides |N | and
set M = {n p

| n ∈ N }. Then N/M is an elementary abelian p-group and the
above argument yields δ(G/M)≤ |G/M |/2− 1 since (G/M)/(N/M)∼= S4. Now
Corollary 2.2 yields δ(G)≤ |G|/2− 1 as required. 2

LEMMA 5.2. Let G be a finite soluble group with a nontrivial normal subgroup N
such that G/N ∼= S3 × S3. Then δ(G)≤ |G|/2− 1.

PROOF. The group G/N ∼= S3 × S3 has three classes of involutions, with
representatives N x1 = ((1, 2), 1), N x2 = (1, (1, 2)), N x3 = N x1x2 and respective
class sizes 3, 3 and 9. Similarly, there are three classes of elements of order 3, with
representatives N y1 = ((1, 2, 3), 1), N y2 = (1, (1, 2, 3)), N y3 = N y1 y2 and class
sizes 2, 2 and 4.

If N is nonabelian then Corollary 2.6 implies that i2(G \ N )≤ 15 · 3|N |/4, so
δ(G)≤ |G|/2− 1 since δ(N )≤ |N | − 1 and i3(G \ N )≤ 8|N |.

Next suppose that N is an elementary abelian p-group. First assume that p = 2.
Suppose that x3 ∈ CG(N ), so that y3 ∈ CG(N ). If x1, x2 ∈ CG(N ) then y1, y2 ∈

CG(N ), hence i3(G)≤ 8 and the bound i2(G)≤ 16|N | − 1 is good enough since
|G| ≥ 72. Similarly, if x1 ∈ CG(N ) and x2 6∈ CG(N ) then i2(G)≤ 13|N | − 1+
3|N |/2 (since i2(N x2)≤ |N |/2; see Lemma 2.7), i3(G)≤ 2|N | + 6 and again the
desired bound follows. On the other hand, if x1 6∈ CG(N ) then i2(N x1)≤ |N |/2 and
the subsequent bounds

i2(G)≤ |N | − 1+ 3 · 1
2 |N | + 12|N |, i3(G)≤ 4|N | + 4

suffice. Finally, if x3 6∈ CG(N ) then i2(N x3)≤ |N |/2 and the result follows since

i2(G)≤ |N | − 1+ 6|N | + 9 · 1
2 |N |, i3(G)≤ 8|N |.

Now assume that p = 3. Since i3(G)≤ 9|N | − 1, it suffices to show that i2(G)≤
13|N |. Suppose that x3 inverts N elementwise. If x1 also inverts N then x2 does not
(since x3 6∈ CG(N )), so Lemma 2.7 implies that i2(N x2)≤ |N |/3 and thus

i2(G)≤ 9|N | + 3|N | + 3 · 1
3 |N | = 13|N |

as required. The same bound on i2(G) clearly holds if x1 does not invert N
elementwise. Finally, if x3 does not invert N elementwise then i2(N x3)≤ |N |/3 and
thus

i2(G)≤ 9 · 1
3 |N | + 6|N | = 9|N |.

An entirely similar argument applies when p ≥ 5 and we omit the details.
The general abelian case now follows as in the proof of the previous lemma. 2

LEMMA 5.3. Let G be a finite soluble group with a nontrivial normal subgroup N
such that G/N ∼= S3 × D8 × E, where exp(E)≤ 2. Then one of the following holds:
(i) G ∼= S3 × D8 × F with exp(F)≤ 2;
(ii) δ(G)≤ |G|/2− 1.
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PROOF. Here i2(G/N )= |G/N |/2− 1 and i3(G/N )= 2. If N is nonabelian then
Corollary 2.6 implies that i2(N x)≤ 3|N |/4 for all involutions x ∈ G \ N , hence

δ(G)≤ |N | − 1+ ( 1
2 |G/N | − 1) · 3

4 |N | + |N | ≤
1
2 |G| − 1.

Now assume that N is abelian. Suppose that there exists a noncentral involution
N x ∈ G/N such that i2(N x) < |N |. Then Lemma 2.7 implies that i2(N x)≤ |N |/2,
hence

i2(G \ N )≤ 2 · 1
2 |N | + (|G/N |/2− 3)|N | = 1

2 |G| − 2|N |

and (ii) follows since i3(G \ N )≤ 2|N | and δ(N )≤ |N | − 1. Therefore, we may
assume that all noncentral involutions N x ∈ G/N satisfy i2(N x)= |N |. Clearly
there exist distinct noncentral involutions N x1, N x2 such that N x1x2 is also a
noncentral involution, so x1x2 both inverts and centralizes N elementwise, hence N
is an elementary abelian 2-group. The noncentral involutions generate G/N , so
G ∼= (G/N )× N ∼= S3 × D8 × (E × N ) and (i) holds. 2

LEMMA 5.4. Let G be a finite soluble group with a minimal normal subgroup N such
that G/N ∼= S3. Then one of the following holds:
(i) G ∼= D(A), where A is abelian and exp(A)≥ 3;
(ii) G ∼= S4;
(iii) δ(G)≤ |G|/2− 1.

PROOF. Here N is an elementary abelian p-group, of order pm say. Let N x = (1, 2)
and N y = (1, 2, 3) represent the unique classes of elements of order 2 and 3 in
G/N ∼= S3, with respective class sizes 3 and 2.

First suppose that p = 2. If x ∈ CG(N ) then y ∈ CG(N ) and it follows that
G ∼= N × S3 ∼= D(N × Z3), so (i) holds. Now assume that x 6∈ CG(N ). If i2(N x)≤
|N |/4 then i2(G)≤ |N | − 1+ 3|N |/4 and the bound i3(G)≤ 2|N | is good enough.
Therefore, we may assume that i2(N x)= |N |/2. If i3(N y)≤ |N |/2, which must be
the case if m is odd (see the proof of Lemma 2.11(iii)), then the result follows since
i2(G)= 5|N |/2− 1 and i3(G)≤ |N |.

Therefore, we may assume that m is even, i2(N x)= |N |/2 and i3(N y)= |N |. If
m ≥ 4 then the hypothesis i2(N x)= |N |/2 implies that there exists a nontrivial n ∈ N
which is centralized by x and x ′, where x ′ ∈ G \ N is an involution and xx ′ has order 3.
Then xx ′ ∈ CG(n) and thus i3(N y) < |N |, which is a contradiction. Finally, if m = 2
then it is easy to see that G ∼= S4 and thus (ii) holds.

Next suppose that p = 3. If x inverts N elementwise then y ∈ CG(N ) and it
follows that G ∼= D(N × Z3). Otherwise, i2(G)≤ 3|N |/3 and the bound i3(G)≤
|N | − 1+ 2|N | is sufficient.

An entirely similar argument applies when p ≥ 5 and we omit the details. 2

In the next lemma we refer to the groups T (r) which are defined in the introduction
(see collection (V) in the definition of L).
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LEMMA 5.5. Let G be a finite group with a nontrivial normal elementary abelian
2-subgroup N of index 3. Then one of the following holds:
(i) G ∼= T (r)× E and Z(G)∼= E, where r ≥ 1 and exp(E)≤ 2;
(ii) G ∼= Z3 × N.
In particular, either δ(G)≤ |G|/2− 1, or G ∼= T (r) for some r ≥ 1.

PROOF. Here G is a split extension of N by 〈x〉 = Z3, where |N | = 2n for some n ≥ 1.
Let ψ ∈ GLn(2) be the automorphism of N induced by x . If ψ is trivial then (ii) holds,
so assume otherwise. Then ψ is GLn(2)-conjugate to a block-diagonal matrix of the
form [A, . . . , A, In−2r ] (r copies of A), where A =

(
0 1
1 1

)
and r ≥ 1. (Indeed, any

element of order 3 in GLn(2) is conjugate to such a matrix.)
Fix a basis {u1, v1, . . . , ur , vr , w1, . . . , wn−2r } of N so that ψ = [A, . . . , A,

In−2r ] with respect to this basis. Then

G ∼= 〈u1, v1, . . . , ur , vr , w1, . . . , wn−2r , x |u2
i = v

2
i = w

2
i = x3

= 1,

all pairs of generators commute except [x, ui ] = uivi , [x, vi ] = ui 〉

and thus

G ∼= 〈u1, v1, . . . , ur , vr , x〉 × 〈w1, . . . , wn−2r 〉 ∼= T (r)× E,

where r ≥ 1 and exp(E)≤ 2. It is not difficult to see that Z(T (r)) is trivial, whence
Z(G)∼= E as claimed.

The bound δ(G)≤ |G|/2− 1 is clear in case (ii), so let us consider (i). Here
i2(T (r))= |T (r)|/3− 1 and i3(T (r))= 2|T (r)|/3 (since δ(T (r))= 2|T (r)|/3− 1;
see Table 1), hence

δ(G)=

(
1
3
+

1
3|E |

)
|G| − 1

and thus δ(G)≤ |G|/2− 1 if and only if E is nontrivial. 2

LEMMA 5.6. Let G be a finite group with a nontrivial normal abelian 2-subgroup N
of index 9. Then δ(G)≤ |G|/2− 1.

PROOF. First observe that i2(G)= i2(N )≤ |N | − 1. If G/N is cyclic then i3(G)≤
3|N | so we may as well assume that G/N ∼= Z3 × Z3. Let N xi denote the elements
of order 3 in G/N , 1≤ i ≤ 8.

First suppose that N is elementary abelian, of order 2n say. As observed in
the proof of the previous lemma, we have i3(N xi )= 2n−αi , where |CN (xi )| = 2αi

and each n − αi is even (or zero). If xi ∈ CG(N ) for some i then i3(N xi )=

i3(N x2
i )= 1, so i3(G)≤ 6|N | + 2 and the result follows. Now assume that

xi 6∈ CG(N ) for all i . If i3(N xi )= |N | for all i then G is a Frobenius group with kernel
N and complement Z3 × Z3, but this is not possible since a Sylow p-subgroup of a
Frobenius complement must be cyclic for any odd prime p (see [3, Theorem 3.1(iv),
Section 10.3], for example). Therefore, i3(N xk)= i3(N x2

k ) < |N | for some k. In fact,
if n is odd then i3(N xi )≤ |N |/2 for all i (since n − αi is even), hence i3(G)≤ 4|N |
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and we are done. Similarly, if n is even then the bound i3(N xk) < |N | implies that
i3(N xk)≤ |N |/4 and the result follows since i3(G)≤ 2|N |/4+ 6|N |.

To deal with the general case, let M = {n2
| n ∈ N }. Then N/M is an elementary

abelian 2-group and the above argument shows that δ(G/M)≤ |G/M |/2− 1 since
(G/M)/(N/M)∼= Z3 × Z3. The desired result now follows from Corollary 2.2. 2

LEMMA 5.7. Let G be a finite soluble group with a nontrivial normal subgroup N of
odd order such that G/N is a nontrivial 2-group. Then one of the following holds:
(i) G ∼= D(A), where A is abelian and exp(A)≥ 3;
(ii) G ∼= S3 × S3;
(iii) G ∼= S3 × D8 × E, where exp(E)≤ 2;
(iv) δ(G)≤ |G|/2− 1.

PROOF. Here G is a split extension of N by a nontrivial 2-subgroup K , and

δ(G)= i2(G)+ δ(N ). (5.1)

First suppose that i2(N x) < |N | for all x ∈ K . Then Lemma 2.8 implies that i2(N x)≤
|N |/3 and thus

i2(G)≤ i2(K ) · 1
3 |N | ≤ (|K | − 1) · 1

3 |N | =
1
3 (|G| − |N |).

Now δ(N )≤ (|N | − 1)/2 (maximal if exp(N )= 3), hence (5.1) yields

δ(G)≤
1
3
(|G| − |N |)+

1
2
(|N | − 1)=

(
1
3
+

1
6|K |

)
|G| −

1
2
≤

5
12
|G| −

1
2

and thus (iv) holds since |G| ≥ 6.
For the remainder we may assume that there exists an involution x ∈ K such that

i2(N x)= |N |, so N is abelian by Lemma 2.4. Now, if |K | = 2 then G ∼= D(N ) and (i)
holds, so we may assume that |K | ≥ 4.

For now we will assume that CG(N )≤ N . If x1, x2 ∈ K are distinct involutions
such that i2(N x1)= i2(N x2)= |N | then x1x2 ∈ CK (N ) is nontrivial, but this
contradicts the hypothesis that CG(N )≤ N . Therefore, there is at most one involution
x ∈ K with i2(N x)= |N |; for any other involution y ∈ K we have i2(N y)≤ |N |/3 by
Lemma 2.8. This implies that

i2(G)≤ |N | + (i2(K )− 1) · 1
3 |N | ≤

1
3 (|G| + |N |)

since i2(K )≤ |K | − 1, and thus (5.1) yields

δ(G)≤
1
3
(|G| + |N |)+

1
2
(|N | − 1)=

(
1
3
+

5
6|K |

)
|G| −

1
2

since δ(N )≤ (|N | − 1)/2. In particular, (iv) holds if |K | ≥ 8.
Next suppose that |K | = 4 and let us continue to assume that CG(N )≤ N . If K ∼=

Z4 then δ(G/N )= |G/N |/2− 1 and thus (iv) follows from Corollary 2.2. Therefore,
we may assume that K is elementary abelian. Let x1, x2 and x3 be the distinct
involutions in K , where x3 = x1x2 and i2(N x1)= |N |. For i = 2, 3 let Qi be the
set of elements n ∈ N such that nxi is an involution. Since N is abelian, each Qi is a
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subgroup of N , and the hypothesis CG(N )≤ N implies that Q2 and Q3 are nontrivial.
More precisely, we have N = Q2 × Q3, Q2 = CN (x3) and Q3 = CN (x2), hence
G ∼= D(Q2)× D(Q3) and (5.1) implies that

δ(G)≤

(
3
8
+

1
4|Q2|

+
1

4|Q3|

)
|G| −

1
2

(5.2)

since δ(N )≤ (|N | − 1)/2. If |Q2| ≥ 7 then one can check that (5.2) yields δ(G)≤
|G|/2− 1 since |Q3| ≥ 3. By symmetry, the same is true if |Q3| ≥ 7, so we may
assume that |Qi | ∈ {3, 5} for i = 2, 3. If |Q2| = |Q3| = 5 then (5.2) is good enough,
while i2(G)= 23 and δ(N )= 2 if |Q2| = 3 and |Q3| = 5 (or vice versa), hence
δ(G)= 5|G|/12. Finally, if |Q2| = |Q3| = 3 then G ∼= S3 × S3 and (ii) holds.

To complete the proof of the lemma, let us now assume that CG(N ) is not contained
in N . Then CG(N )= N × L , where L is a nontrivial normal 2-subgroup of G. If
G = N × L then the bound δ(G)≤ |G|/2− 1 quickly follows, so let us assume that
G 6= N × L . Then G/L is a split extension of N L/L ∼= N by a nontrivial 2-subgroup
J/L ∼= G/N L , and we claim that

CG/L(N L/L)≤ N L/L .

To see this, suppose that Lg ∈ CG/L(N L/L). Then for each nontrivial n ∈ N there
exists l ∈ L such that g−1ng = ln, but l must be trivial since n has odd order, L is a
2-group and [l, n] = 1. Hence Lg ∈ N L/L and the claim follows. In particular, we
may apply our earlier work to the factor group G/L .

Now, if |J/L| ≥ 8 then our earlier analysis implies that δ(G/L)≤ |G/L|/2− 1,
so (iv) holds by Corollary 2.2. Next suppose that |J/L| = 4. As before, if J/L ∼= Z4
then our earlier work gives δ(G/L)≤ |G/L|/2− 1 and again (iv) holds. Therefore,
we may assume that J/L ∼= Z2 × Z2. Once again, by our previous analysis, we reduce
to the case G/L ∼= S3 × S3, so Lemma 5.2 implies that δ(G)≤ |G|/2− 1 and we
are done.

Finally, let us assume that |J/L| = 2, so that G is a split extension of CG(N )=
N × L by 〈x〉 ∼= Z2, where x inverts N elementwise. Let H = L .〈x〉 and note that
H is a Sylow 2-subgroup of G. If H is elementary abelian then G ∼= N .〈x〉 × L ∼=
D(N × L) and (i) holds. For the remainder, let us assume that H is not elementary
abelian, so that i2(H)≤ 3|H |/4− 1 by Corollary 2.5. Now, if L is elementary abelian
then

i2(H \ L)= i2(H)− i2(L)≤ 3
4 |H | − 1− (|L| − 1)= 1

4 |H |

so
i2(G \ (N × L))≤ i2(H \ L) · |G : NG(H)| ≤ 1

4 |H | · |N | =
1
4 |G|

and thus (5.1) yields

δ(G)≤ |L| − 1+
1
4
|G| +

1
2
(|N | − 1)=

(
1
4
+

1
2|N |

+
1

4|L|

)
|G| −

3
2
.

We conclude that δ(G)≤ 23|G|/48− 3/2 since |N | ≥ 3 and |L| ≥ 4 (if |L| = 2 then
H = L .〈x〉 is elementary abelian, which is not the case).
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For the remainder, we may assume that H and L are not elementary abelian. If
i2(Lx)= |L| then L is abelian (see Lemma 2.4) and x inverts N × L elementwise,
hence G ∼= D(N × L) and (i) holds. Therefore, we may assume that i2(Lx) < |L|, so
that i2(Lx)≤ 3|L|/4 (see Lemma 2.4) and thus

i2(G \ (N × L))≤ |N | · 3
4 |L| =

3
8 |G|.

Since i2(L)≤ 3|L|/4− 1 (see Corollary 2.5) and δ(N )≤ (|N | − 1)/2, (5.1) gives

δ(G)≤
3
4
|L| − 1+

3
8
|G| +

1
2
(|N | − 1)=

(
3
8
+

3
8|N |

+
1

4|L|

)
|G| −

3
2

and thus (iv) holds if |N | ≥ 5 (again recall that |L| ≥ 4 because H is not elementary
abelian). Therefore, we may assume that N = Z3. Now, if i2(Lx) < 3|L|/4 or
i2(L) < 3|L|/4− 1 then by (5.1) we have

δ(G)≤ 3
4 |L| +

3
8 |G| − 1= 1

2 |G| − 1,

so we may assume that i2(Lx)= 3|L|/4 and i2(L)= 3|L|/4− 1.
Now by the main theorem of [18] (and the values of δ(G) listed in Table 1), it

follows that L ∼= D8 × E , where exp(E)≤ 2. Similarly, if H = L .〈x〉 then i2(H)=
3|H |/4− 1 so we also have H ∼= D8 × F , where exp(F)≤ 2. We deduce that
H = L .〈x ′〉, where x ′ ∈ Z(H) and x ′ inverts N elementwise, so that

G = (N × L).〈x ′〉 = N .〈x ′〉 × L ∼= S3 × D8 × E

and thus (iii) holds. 2

LEMMA 5.8. Let G be a finite soluble group with a minimal normal subgroup N such
that G/N ∼= D(A), where A is abelian and exp(A)≥ 3. Then one of the following
holds:
(i) G is a 2-group;
(ii) G ∼= D(B), where B is abelian and exp(B)≥ 3;
(iii) G ∼= S3 × D8 × E, where exp(E)≤ 2;
(iv) G ∼= S3 × S3;
(v) G ∼= S4;
(vi) δ(G)≤ |G|/2− 1.

PROOF. Here N is an elementary abelian p-group. Let H be an index-two subgroup
of G containing N such that H/N ∼= A. Since A is abelian, H/N = H1/N × H2/N
where H1/N is a 2-group and H2/N has odd order. Note that H1 and H2 are normal
subgroups of G.

First assume that p ≥ 3. Here H2 has odd order and G/H2 ∼= (G/N )/(H2/N ) is a
nontrivial 2-group, so the desired conclusion follows from Lemma 5.7.

For the remainder we may assume that N is an elementary abelian 2-group, say
|N | = 2m . If A is a 2-group then so is G and thus (i) holds, so we may as well assume
that |A| is divisible by an odd prime. Suppose that i2(G \ H) > |G|/3. Then
Lemma 2.12 implies that H = K1 × K2, where K1 is a 2-group and |K2| is odd, so
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either G is a 2-group (and thus (i) holds), or G is an extension of a group of odd order
by a nontrivial 2-group and Lemma 5.7 implies that (ii), (iii), (iv) or (vi) holds.

Therefore, for the remainder of the proof, we may assume that i2(G \ H)≤ |G|/3,
so that, by Lemma 2.1,

δ(G)= i2(G \ H)+ δ(H)≤ 1
3 |G| + δ(N )+ |N | · δ(A) (5.3)

with δ(N )= |N | − 1.
Suppose that |A| is divisible by a prime r ≥ 5, so A = A1 × A2, where A1 is an

r -group and |A2| is coprime to r . Then δ(A)= δ(A1)+ δ(A2), δ(A1)≤ (|A1| − 1)/4
and δ(A2)≤ |A2| − 1, hence (5.3) yields

δ(G)≤

(
1
3
+
|A1| + 4|A2| − 1

8|A1||A2|

)
|G| − 1.

If either |A1| ≥ 9 or |A2| ≥ 2 then this bound implies that (vi) holds. If A = Z7
then δ(A)= 1 and (5.3) gives δ(G)≤ 10|G|/21− 1, so we may assume that A = Z5.
Here G/N ∼= D5 has a unique class of involutions, with representative N x and class
size 5. If i2(N x)= |N | then G ∼= N × D5 ∼= D(N × Z5), so (ii) holds. On the
other hand, if i2(N x) < |N | then Lemma 2.7 yields i2(N x)≤ |N |/2, hence i2(G)≤
|N | − 1+ 5|N |/2 and thus δ(G)≤ 9|G|/20− 1 since i5(G)≤ 4|N |.

For the remainder, we may assume that A = A1 × A2 where A1 is a 2-group
(possibly trivial) and A2 is a nontrivial 3-group. If exp(A1)≥ 4 then δ(A1)≤

3|A1|/4− 1 (equality if A1 = Z4 × E with exp(E)≤ 2) and thus (5.3) yields

δ(G)≤

(
1
3
+

3|A1| + 2|A2| − 2
8|A1||A2|

)
|G| − 1

since δ(A2)≤ (|A2| − 1)/2. Therefore δ(G)≤ |G|/2− 1 since |A1| ≥ 4 and
|A2| ≥ 3, so we may assume that exp(A1)≤ 2.

Next we reduce to the case where A2 = Z3. Suppose that |A2| ≥ 9. Since δ(A1)≤

|A1| − 1 and δ(A2)≤ (|A2| − 1)/2, one can check that (5.3) yields δ(G)≤
|G|/2− 3/2 if A1 is nontrivial. Therefore, we may assume that A = A2 is a 3-group.
If exp(A)≥ 9 then δ(A)= i3(A)/2≤ |A|/6− 1/2 and thus (5.3) implies that (vi)
holds. Now suppose that A is an elementary abelian 3-group. The case A = Z3 follows
from Lemma 5.4 since D(Z3)∼= S3, so we may assume that |A| ≥ 9.

Here G/N ∼= D(A) has a unique conjugacy class of involutions, represented by N x ,
of size |A|, and there are precisely (|A| − 1)/2 classes of elements of order 3, each of
size 2. If i2(N x)= |N | then it is easy to see that G ∼= D(A × N ), so (ii) holds. Now
suppose that i2(N x) < |N |. If i2(N x)≤ |N |/4 then i2(G)≤ |N | − 1+ |A||N |/4,
i3(G)≤ (|A| − 1)|N | and we deduce that (vi) holds. Therefore, we may assume
that i2(N x)= |N |/2, so i2(G)= |N | − 1+ |A||N |/2. Since A is noncyclic, there
exists an element y ∈ G \ N of order 3 such that i3(N y) < |N |; this quickly follows
from [3, Theorem 3.1(iv), Section 10.3] (the same argument was used in the proof of
Lemma 5.6). In particular, Lemma 2.7 implies that i3(G)≤ (|A| − 3)|N | + 2|N |/2,
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and thus

δ(G)≤ |N | − 1+ |A| · 1
2 |N | +

1
2 ((|A| − 3)|N | + |N |)= 1

2 |G| − 1.

To complete the proof, we may assume that A = A1 × Z3 where A1 is an
elementary abelian 2-group of order 2n , n ≥ 1. Recall that H/N = H1/N × H2/N ∼=
A1 × Z3, so H = H1 H2 and the Hi are normal subgroups of G. Note that H1 is
the unique Sylow 2-subgroup of H and i3(G)= i3(H2)≤ 2|H2|/3 since H2 = N .Z3.
Also recall that we may assume that i2(G \ H)≤ |G|/3, hence

δ(G)= i2(H)+ i2(G \ H)+ 1
2 i3(G)≤ i2(H1)+

1
3 |G| +

1
3 |H2|. (5.4)

First assume that H1 is not elementary abelian. Then Corollary 2.5 implies that
i2(H1)≤ 3|H1|/4− 1= |G|/8− 1 (since |G : H1| = 6), hence (vi) follows from (5.4)
if |A1| ≥ 4. Now suppose that |A1| = 2. If there exists an involution in H1 \ N
then H1 = N .Z2 is a split extension. Moreover, Z(H1) ∩ N is a nontrivial normal
subgroup of G, so N ≤ Z(H1) since N is a minimal normal subgroup of G. Therefore
Z(H1)= N or H1, but both possibilities imply that H1 is elementary abelian, which is
a contradiction. Therefore, i2(H1)= i2(N )= |G|/12− 1 and (vi) follows from (5.4).

Now assume that H1 is elementary abelian. Here H = H1.Z3 so Lemma 5.5 implies
that H = T (r)× E or Z3 × H1, where r ≥ 1 and exp(E)≤ 2. In the latter case, G is
an extension of Z3 by a nontrivial 2-group and Lemma 5.7 applies. Therefore we may
assume that H = T (r)× E . Now all elements of order 3 in H are contained in H2,
hence T (r)≤ H2 since T (r) is generated by elements of order 3 (this is clear since
i3(T (r))= 2|T (r)|/3). Therefore H2 = T (r)× (E ∩ H2) and E ∩ H2 is a normal
subgroup of G contained in N . By the minimality of N , E ∩ H2 is either trivial,
or equal to N . The latter possibility is absurd since H2 = N .Z3, so E ∩ H2 is trivial
and thus H2 = T (r).

It follows that H = H2 × E with E normal in G and exp(E)≤ 2. Now N E/E is
a minimal normal subgroup of G/E and we have (G/E)/(N E/E)∼= S3. Therefore
Lemma 5.4 implies that either δ(G/E)≤ |G/E |/2− 1, G/E = D(B) or G/E = S4,
where B is abelian and exp(B)≥ 3. In the first case, Corollary 2.2 yields δ(G)≤
|G|/2− 1, while Lemma 5.1 deals with the case G/E = S4. Finally, suppose that
G/E = D(B). Now H/E = H2 = N .Z3 is a subgroup of G/E , so Z3 is contained
in B and thus Z3 is normal in D(B) (any subgroup of B is normal in D(B)).
Therefore Z3 is normal in H2, so G is an extension of Z3 by a nontrivial 2-group
and thus Lemma 5.7 applies. 2

We are now in a position to complete the proof of Theorem 1.1. Suppose that G
is a finite soluble group of minimal order such that δ(G) > |G|/2− 1 and G 6∈ L,
where L denotes the collection of groups labelled (I)–(X) in the introduction. Let N
be a maximal normal subgroup of G and note that G/N ∈ {Z2, Z3} by Lemma 4.2.
We consider both cases in turn.

PROPOSITION 5.9. The case G/N = Z2 leads to a contradiction.
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PROOF. Suppose that G has a normal subgroup N of index 2. Let K =
⋂

i Ni be the
intersection of all normal subgroups Ni of G such that G/Ni is a 2-group. Then G/K
is a nontrivial 2-group and K is nontrivial since all 2-groups with δ(G) > |G|/2− 1
are in L by the main theorem of [18].

Let K1 be maximal among normal subgroups of G properly contained in K . Then
K/K1 is a minimal normal subgroup of G/K1, so K/K1 is an elementary abelian
p-group, and the definition of K implies that p > 2. By Corollary 2.2, δ(G/K1) >

|G/K1|/2− 1 and thus Lemma 5.7 implies that one of the following holds:
(i) G/K1 ∼= D(A), where A is abelian and exp(A)≥ 3;
(ii) G/K1 ∼= S3 × D8 × E , where exp(E)≤ 2;
(iii) G/K1 ∼= S3 × S3.

Suppose that G/K1 ∼= D(A) as in (i). Note that K1 is nontrivial since we are
assuming that G 6∈ L. Let K2 be minimal among normal subgroups M of G such
that G/M is of the form D(A2), where A2 is abelian and exp(A2)≥ 3. Note that K2
is nontrivial (since K1 is nontrivial) and let K3 be maximal among normal subgroups
of G properly contained in K2. Then K2/K3 is a minimal normal subgroup of G/K3,
so δ(G/K3) > |G/K3|/2− 1 and thus Lemma 5.8 (and the minimality of K2) implies
that G/K3 ∼= S4, S3 × S3 or S3 × D8 × E with exp(E)≤ 2.

Therefore, to complete the proof we may assume that G has a nontrivial normal
subgroup L such that G/L ∼= S4, S3 × S3 or S3 × D8 × E . The latter case is ruled out
by Lemma 5.3, so let us consider the other two. Let M be maximal among normal
subgroups of G which are properly contained in L . Then L/M is a minimal normal
subgroup of G/M and (G/M)/(L/M)∼= G/L . Therefore, Lemmas 5.1 and 5.2 imply
that δ(G/M)≤ |G/M |/2− 1, so that δ(G)≤ |G|/2− 1 by Corollary 2.2. This final
contradiction completes the proof of the proposition. 2

PROPOSITION 5.10. The case G/N = Z3 leads to a contradiction.

PROOF. Suppose that G has a normal subgroup N of index 3. If δ(N )≤ |N |/2− 1
then Lemma 2.1 implies that δ(G)≤ |G|/2− 1 (since δ(G/N )= 1), which is a
contradiction. Therefore, δ(N ) > |N |/2− 1 and so N ∈ L by the minimality of G.
We now consider the various possibilities for N , labelled (I)–(X) in Section 1.

Suppose that N ∼= D(A) is of type (I). If exp(A)≤ 2 then G is a split extension
of an elementary abelian 2-group by Z3, so Lemma 5.5 implies that either G ∈ L or
δ(G)≤ |G|/2− 1, a contradiction. If exp(A) > 2 then A is a characteristic subgroup
of N , so A is normal in G and δ(G/A)= |G/A|/3 since G/A ∼= Z6. This contradicts
Corollary 2.2. Similarly, we can rule out cases (VIII) and (IX) since G has a normal
subgroup M with G/M ∼= Z6, while Lemma 5.6 deals with (V) as G has a normal
abelian 2-subgroup of index 9 in this case. Of course, if N is of type (VI) then G is
a 3-group and the hypothesis δ(G) > |G|/2− 1 implies that exp(G)= 3, so G ∈ L.
Also note that N is not of type (X) since G is soluble.

Next suppose that N is of type (II), (III), or (IV), so N = Y × E with exp(E)≤ 2
and Y = D8 × D8, H(r) or S(r), for some positive integer r . We claim that G admits
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a homomorphism α such that Nα is a 2-group, Gα/Nα ∼= Z3 and one of the following
holds:
(i) Nα = D8 × D8; or
(ii) Nα has a minimal characteristic (central) subgroup of order 2n with n odd.

To see this, first observe that G is a split extension of N by 〈x〉 = Z3, and N 2
=

Y 2
= Z(Y ) is a characteristic subgroup of N . Moreover, Z(Y ) is an 〈x〉-invariant

subgroup of the elementary abelian 2-group Z(N )= Z(Y )× E , so by Maschke’s
theorem there exists an 〈x〉-invariant subgroup K such that Z(N )= Z(Y )× K .
Then K is normal in G and N/K ∼= Y (since N = Y × K ). If N is of type (II) then
the natural homomorphism from G to G/K satisfies (i), so we may as well assume
that N is of type (III) or (IV). Here |N/K | = |Y | = 22r+1. Let L1 be a characteristic
subgroup of N/K , maximal with respect to having order 2m with m ≥ 0 even. Then L1
is a proper subgroup of N/K so there exists a characteristic subgroup L2 of N/K such
that L2/L1 is a minimal characteristic subgroup of (N/K )/L1. Now L2 > L1, so the
choice of L1 implies that L2/L1 has order 2n , with n odd. Therefore, the natural
homomorphism from G to (G/K )/L1 satisfies (ii). This justifies the claim.

Let α be the above homomorphism and set G1 = Gα, N1 = Nα, so that G1 is a split
extension of N1 by 〈x ′〉 = Z3. In (II), N1 = D8 × D8 does not admit an automorphism
of order 3, so Z(D8 × D8)= Z2 × Z2 is a central subgroup of G1. In (III) and (IV),
N1 has a minimal characteristic subgroup H ≤ Z(N1) of order 2n with n odd. By
Lemma 5.5, since n is odd, there is an element y = y1 y2 ∈ H.〈x ′〉 of order 6, with
|y1| = 3, |y2| = 2 and [y1, y2] = 1. Since G1 = N1.〈y1〉, y2 ∈ H and H ≤ Z(N1),
it follows that Z(G1) ∩ H is nontrivial, hence H ≤ Z(G1) since H is a minimal
characteristic subgroup of G1 (note that N1 is characteristic in G1).

In all three cases, we have shown that N1 contains a nontrivial elementary abelian
2-subgroup L which is central in G1. Now

i2(G1)= i2(N1)≤ |N1| − 1= 1
3 |G1| − 1

and
i3(G1)= i3(G1/L)≤ 2|N1/L| ≤ |N1| =

1
3 |G1|

since i3(Lg)= 1 for all g ∈ G1 \ L of order 3, and G1/L = (N1/L).Z3 with N1/L a
2-group. We conclude that δ(G1)≤ |G1|/2− 1, and this contradicts Corollary 2.2.

Finally, suppose that N is of type (VII), so that N = S3 × D8 × E with exp(E)≤ 2.
Then N has a characteristic subgroup M of order 3 such that N/M ∼= H(1)× F with
exp(F)≤ 2. Then N/M < G/M is a subgroup of type (III), so the previous analysis
implies that δ(G/M)≤ |G/M |/2− 1, and this contradicts Corollary 2.2. 2

We conclude that a minimal counterexample does not exist; the proof of the main
statement of Theorem 1.1 is complete. To close this section, we justify the precise
values of δ(G) listed in Table 1, and we establish Corollaries 1.2 and 1.4.

It is entirely straightforward to calculate the precise value of δ(G) in cases (I),
(II) and (VI)–(X), so let us consider (III), (IV) and (V). In [18], Wall calculates
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that i2(H(r))= 22r
+ 2r
− 1 (see [18, p. 258]) and thus δ(G)= |G|/2+ 2n+r

− 1
if G is of type (III), as claimed in Table 1. Next suppose that G is of type (IV).
Here S(r)= N .〈z〉 = N .Z2, where N is an elementary abelian 2-group of order 22r ,
and it suffices to show that i2(S(r))= 22r

+ 2r
− 1. By construction, the Jordan

form of the matrix A ∈ GL2r (2)∼= Aut(N ) corresponding to conjugation by z has
exactly r indecomposable blocks, hence the proof of Lemma 2.11(iii) implies that
i2(N z)= 2r and thus i2(S(r))= |N | − 1+ 2r

= 22r
+ 2r
− 1 as claimed. Finally, in

(V) we have G = N .〈z〉 = N .Z3, where N is an elementary abelian 2-group of order
22r . Now i2(G)= |N | − 1 and i3(N z)= i3(N z2)= |N |, so i3(G)= 2|N | and thus
δ(G)= 2|N | − 1= 2|G|/3− 1 as claimed.

Corollary 1.2 quickly follows from the values of δ(G) listed in Table 1. First
observe that if A is abelian with exp(A)≥ 3 then δ(A)≤ (|A| − 1)/2, with equality
if and only if exp(A)= 3. Therefore, if G is of type (I) and exp(A)≥ 3 then
δ(G)≤ 3|G|/4− 1/2 and equality is possible. In (III) and (IV) we have

δ(G)=

(
1
2
+

1

2r+1

)
|G| − 1 (5.5)

and thus δ(G)≤ 3|G|/4− 1, with equality if and only if r = 1. The desired bound is
clear in each of the remaining cases.

Finally, let us consider Corollary 1.4. Suppose that G is a finite group with
exp(G)≥ 3 and δ(G)≥ 2|G|/3. By inspecting Table 1, it is clear that G must be of
type (I), (III) or (IV). Suppose that G = D(A), where A is abelian and exp(A)≥ 3,
so that δ(G)= |G|/2+ δ(A). As before, if exp(A)= 3 then δ(A)= (|A| − 1)/2
and thus δ(G)= 3|G|/4− 1/2. Similarly, if A = Z4 × E with exp(E)= 2 then
δ(A)= |A|/2− 1, so δ(G)= 3|G|/4− 1. In all other cases, A has a homomorphic
image of the form Z p (p ≥ 5 prime), Z p2 (p ≥ 3 prime), Z pq (p and q distinct primes)
or Z4 × Z4, and the bound δ(A)≤ |A|/3 quickly follows. Now, if G is of type (III)
or (IV) then (5.5) holds and we deduce that δ(G)≥ 2|G|/3 if and only if r = 1 and
|G| ≥ 12. However, these conditions imply that G ∼= D(Z4 × E) for some nontrivial
elementary abelian 2-group E . This proves Corollary 1.4.

This completes the proof of Theorem 1.1, together with Corollaries 1.2 and 1.4.

6. An application

In this final section we describe an application of Theorem 1.1 to the study of near-
rings. Recall that a near-ring is a set R with two binary operations + and · such that
(R,+) is a group (not necessarily abelian) and · is associative and satisfies a single
distributive law. Near-rings were first introduced by Dickson in 1905 in the context of
near-fields, and Neumann (among others) investigated their connections with groups in
the 1950s (see [11], for example). We refer the reader to [12] for general background
on near-rings.

Near-rings arise naturally in studying functions on a group. Let G be a finite
group and let M0(G) be the set of functions from G to G which fix the identity.
Then M0(G) is a near-ring with respect to the operations ( f + g)(x)= f (x)g(x) and
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( f · g)(x)= f (g(x)), where x ∈ G. These near-rings are particularly important since
any finite (zero-symmetric) near-ring can be embedded as a subnear-ring of M0(G) for
some finite group G. (Here a near-ring (R,+, ·) is zero symmetric if r · 0= 0 · r = 0
for all r ∈ R, where 0 is the identity element of the group (R,+).) In this sense, the
M0(G) play a role similar to that of the symmetric groups in group theory.

It is easy to see that a function α generates M0(G) (as a near-ring) only if α is a
bijection. Let n be a positive integer. We say that M0(G) is n-gen if it can be generated
by a bijection of order n (order with respect to composition). In [15], it is shown that
M0(G) is 2-gen if and only if G 6= Z3 and exp(G)≥ 3, while the M0(G) which are
3-gen are determined in [16]. Bounds on the proportion of bijections which generate
M0(G) are obtained by Neumaier in [10].

Let p ≥ 5 be a prime number and observe that M0(G) is p-gen only if |G|> p
since there are no bijections of order p in M0(G) if |G| ≤ p. Let G be a finite group
with |G|> p. Then the main theorem of [14] states that precisely one of the following
holds:
(i) M0(G) is p-gen;
(ii) exp(G)= 2 and |G| 6≡ 1 mod p;
(iii) G belongs to a finite collection of groups, denoted by D(p).

Rather surprisingly, it turns out that this finite collection D(p) can be defined in
terms of δ. To see this connection, first observe that a bijection α ∈ M0(G) generates
M0(G) only if there are no nontrivial proper α-invariant subgroups of G. Indeed,
if H < G is such a subgroup then the near-ring generated by α is contained in the
maximal subnear-ring { f ∈ M0(G) | f (H)⊆ H}. Suppose that α has order p and that
|G| is small (relative to p). The idea is that if δ(G) is sufficiently large then G may
have so many subgroups of prime order that it is impossible to define a bijection α
which avoids fixing such a subgroup.

More precisely, in [14] it is shown that D(p) is the disjoint union

D(p)=D(2, p) ∪D(3, p),

where a group G ∈D(i, p) if and only if G satisfies the three conditions

p(i − 1) < |G| ≤ pi, δ(G) > (i − 1)p, exp(G)≥ 3. (6.1)

In particular, G ∈D(2, p) only if δ(G) > |G|/2, while G ∈D(3, p) only if δ(G) >
2|G|/3. Therefore, in view of Theorem 1.1 (and the δ(G) values recorded in Table 1),
we can determine the groups in the collections D(2, p) and D(3, p).

PROPOSITION 6.1. We can determine the groups in D(p) for any prime p ≥ 5.

If p = 2 or 3 then the groups G for which M0(G) is p-gen are determined by the
second author in [15, 16]. For p ≥ 5 we have the following corollary.

COROLLARY 6.2. Let p ≥ 5 be a prime and let G be a finite group with |G|> p.
Then M0(G) is p-gen if and only if the following hold:
(i) G is not an elementary abelian 2-group with |G| ≡ 1 mod p; and
(ii) G is not in D(p), as specified in Proposition 6.1.
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To illustrate the general approach, below we will use Theorem 1.1 to determine the
groups in D(p), where p = 28

+ 1= 257. First we record a couple of results on the
general nature of the subsets D(2, p) and D(3, p).

PROPOSITION 6.3. |D(2, p)| →∞ as p→∞.

PROOF. Suppose that p ≥ 5. Then there exists a unique integer m ≥ 3 such that
p < 2m

≤ 2p, and there are precisely b(m − 1)/2c distinct pairs of integers (r, n),
where r ≥ 1, n ≥ 0 and m = 2r + 1+ n. Therefore, D(2, p) contains precisely
2b(m − 1)/2c − 1 pairwise nonisomorphic groups of types (III) and (IV), hence

|D(2, p)| ≥ 2b(m − 1)/2c − 1≥ m − 3> log2 p − 3 (6.2)

and the result follows. 2

REMARK 6.4. In practice, most of the groups in D(2, p) are of type D(A) and thus
the lower bound in (6.2) could be improved. However, computer calculation suggests
that the size of D(2, p) grows slowly, perhaps logarithmically with respect to p. For
example, we have calculated that |D(2, p)| ≤ 576 for all primes p less than 106.

PROPOSITION 6.5. Let p ≥ 5 be a prime. Then |D(3, p)| ≤ 2.

PROOF. Suppose that G ∈D(3, p). Then 2p < |G| ≤ 3p and δ(G) > 2p ≥ 2|G|/3.
By Corollary 1.4, we have G = D(A) where either exp(A)= 3 or A = Z4 × E with
exp(E)= 2. If exp(A)= 3 then |A| = 3m for some m ≥ 1, and it is clear that there
can be at most one such m so that 2p < |G| ≤ 3p. Similarly, there is at most one
possibility for |E | if A = Z4 × E . We conclude that |D(3, p)| ≤ 2. 2

Let us now determine the groups in the collection D(257). Now, if G ∈D(3, 257)
then the proof of Proposition 6.5 indicates that there exist positive integers a and b
such that |G| = 2.3a or 2b+3. However, the constraint 514< |G| ≤ 771 (see (6.1))
rules out such a possibility, hence D(3, 257) is empty.

Now suppose that G ∈D(2, 257), so that 258≤ |G| ≤ 514 and δ(G)≥ 258. By
Theorem 1.1, G is a group of type (I)–(X). By inspecting Table 1, it is clear that G
is not of type (VI)–(X). Suppose that G is of type (V). Here δ(G)= 2|G|/3− 1, so
the condition δ(G)≥ 258 implies that |G| ≥ 389. Now |G| = 3.22r for some positive
integer r , but there is no r such that 389≤ |G| ≤ 514, so G is not of type (V). Next
suppose that G is of type (III) or (IV). Then |G| = 22r+n+1 for some r ≥ 2 and n ≥ 0,
and (5.5) holds (note that if r = 1 then G is isomorphic to a group of type (I)). The
bounds on |G| imply that (r, n) ∈ {(2, 4), (3, 2), (4, 0)}, so there are six possibilities
for G:

H(2)× Z4
2, H(3)× Z2

2, H(4), S(2)× Z4
2, S(3)× Z2

2, S(4),

where Z k
2 denotes the direct product of k copies of Z2. If G is of type (II) then |G| =

2n+6 for some n, so the constraints on |G| imply that n = 3, so G = D8 × D8 × Z3
2 is

the only example in (II).
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TABLE 3. Abelian groups A with G = D(A) ∈D(257) and exp(A)≥ 3.

A |G| δ(G) A |G| δ(G)

(33, 9) 486 283 (22, 64) 512 263
(35) 486 364 (44) 512 271
(52, 10) 500 282 (22, 82) 512 271
(3, 84) 504 258 (2, 42, 8) 512 271
(6, 42) 504 260 (22, 4, 16) 512 271
(255) 510 258 (23, 32) 512 271
(162) 512 259 (22, 43) 512 287
(8, 32) 512 259 (23, 4, 8) 512 287
(4, 64) 512 259 (24, 16) 512 287
(2, 128) 512 259 (24, 42) 512 319
(4, 82) 512 263 (25, 8) 512 319
(2, 8, 16) 512 263 (26, 4) 512 383
(42, 16) 512 263 (257) 514 258
(2, 4, 32) 512 263

Finally, suppose that G = D(A) is a group of type (I). If G is elementary
abelian then G = Z9

2 is the only possibility, so let us assume that exp(A)≥ 3. Now
Corollary 1.2 implies that δ(G) < 3|G|/4, so |G| ≥ 344 and it remains to classify the
abelian groups A such that 172≤ |A| ≤ 257, exp(A)≥ 3 and δ(G)= |A| + δ(A)≥
258. With the aid of a computer, it is easy to check that there are exactly 27 possibilities
for A, up to isomorphism, listed in Table 3. Here we use the notation (na1

1 , . . . , nak
k )

to denote the abelian group Za1
n1 × · · · × Zak

nk , where n1 < n2 < · · ·< nk .
We conclude that D(3, 257) is empty, while |D(2, 257)| = 6+ 1+ 1+ 27= 35.

REMARK 6.6. In view of Corollary 6.2, it would be interesting to investigate the
n-gen problem for n a composite integer. Here very little seems to be known at present.
One might expect that similar results to those in [14] hold in the prime power case,
while we conjecture that there are only finitely many exceptions when n is divisible by
two distinct primes. It would also be interesting to consider the proportion of bijections
of prime order p which generate M0(G), and study related problems concerning the
random generation of such near-rings.
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