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Realizable Oriented Matroids

To adapt a phrase from Whitney (1935), the study of oriented matroids is the
study of “the abstract properties of linear dependence over ordered fields.” (For
our purposes, the field in question may be assumed to be R.) Briefly put, from
a finite subset S of Rn, one can extract a certain combinatorial structure, and
from that structure one can reconstruct various dependency relationships in S.
From properties of Rn we find properties satisfied by these structures, and we
call any structure with these properties – whether it arises from a subset of
Rn or not – an oriented matroid. Thus, oriented matroids are “combinatorial
abstractions of finite vector arrangements in Rn.”

As we will see in this chapter, oriented matroids could as well be described
as combinatorial abstractions of linear subspaces of Rn, or of hyperplane
arrangements in Rn. Each of these interpretations has led to beautiful interplay
between combinatorics, geometry, and topology. There are various other well-
known mathematical objects that can be abstracted to oriented matroids (most
notably, directed graphs), but we’ll focus on direct connections from oriented
matroids to linear algebra.

The first steps in learning about oriented matroids can be annoying, because
every really honest introduction puts off the definition of oriented matroid until
at least the second chapter. To justify this annoyance, here’s a short preview.

In Chapter 2 we will introduce several different axiom systems, writing
preliminary definitions of the form:

Definition 1.1 An object A is a Type 1 expression of an oriented matroid
if it satisfies the following axioms . . .

Definition 1.2 An object B is a Type 2 expression of an oriented matroid
if it satisfies the following axioms . . .

Et cetera. We will then show that these different types of expressions
are cryptomorphic, that is, there are nice bijections between the expressions
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2 Realizable Oriented Matroids

of different types, so that each expression of one type determines a unique
expression of each other type. Thus, each type encodes the same data in a
different form. We will then define an oriented matroid to be this data, however
expressed.

Why not stick with one type of expression? One answer is pragmatic –
different types of expressions are easier to work with in different settings.
A more interesting answer is that the different expressions reflect different
aspects of the relationship between oriented matroids and linear algebra. Radon
partitions, Grassmann–Plücker relations, orthogonality of vector spaces, and
the combinatorics of hyperplane arrangements are some of the geometric
notions that will have elegant combinatorial analogs in one or the other of
the oriented matroid axiom systems. This wealth of different routes from Rn

to oriented matroids is one indication that oriented matroids are the “right”
combinatorial model for this kind of geometry. (Two other strong indications
are the Topological Representation Theorem (Chapter 4) and the results in
Section 10.5 on the MacPhersonian).

In this chapter we’ll introduce our “Type X expressions” for oriented
matroids via their concrete manifestations in Rn. We’ll look at different ways
to extract combinatorial structures from a finite subset S of Rn, and we’ll
see that these structures encode geometric data interesting in several different
contexts. Finally, we’ll see that these different structures each encode the
same data about S. We call that data, however encoded, the oriented matroid
corresponding to S.

The combinatorial structures arising from finite subsets S of Rn are
called realizable oriented matroids. (S is then called a realization of that
oriented matroid.) They’re the examples that motivate the theory, but they’re
not the whole picture. In general, oriented matroids are defined in purely
combinatorial terms, with no reference to Rn, and not all oriented matroids are
realizable. The relationship between oriented matroids and their realizations is
a fraught topic, as Chapter 7 will show.

Despite the existence of nonrealizable oriented matroids, and the scan-
dalously non-realizable behavior in which oriented matroids occasionally
indulge, for the most part oriented matroids model real vector sets admirably.
In working with the abstract combinatorics of general oriented matroids, it’s
almost always a good idea to be guided by one’s intuition from Rn. The point
of this introductory chapter is to develop that intuition. The concepts and
proofs of this chapter are mostly rather simple. In Chapter 2 they’ll all be
combinatorialized into more abstract notions, which will be less daunting if
you keep the geometric inspirations in mind.
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1.1 Some Notation 3

1.1 Some Notation

• Mat(r,n) will denote the set of all r × n real matrices of rank r .

• row(M) denotes the row space of the matrix M , and null(M) denotes the
nullspace.

• A matrix will be viewed as a list of column vectors. Thus an element of
Mat(r,n) will often be written as (v1, . . . ,vn).

• If M = (v1, . . . ,vn) ∈ Mat(r,n) then Mi1,...,ir denotes the square matrix
(vi1, . . . ,vir ).

• For sets P and E, P E denotes the set of all functions E → P . An element
of P E will sometimes be written as (pe : e ∈ E).

• For a positive integer n, [n] denotes {1,2, . . . ,n}. For a set P and natural
number n, P [n] will be abbreviated P n.

• Depending on what’s convenient, we will write elements of P n as functions
or as n-component vectors with entries in P . In particular, we will refer to
the support of X ∈ {0, + ,−}n, which will mean the support as a function
(that is, {i ∈ [n] : X(i) � 0}).

• For a sign vector X, we will sometimes denote X−1(+) by X+, X−1(−) by
X−, and X−1(0) by X0. If A = X+, B = X−, and C = X0, we will
sometimes denote X by A+B− or A+B−C0. If A = ∅, then we may denote
X by B−, and if B = ∅, then we may denote X by A+. (Aside: Sign vectors
written in the A+B− notation are elsewhere sometimes called signed sets.)

• When the support of a sign vector has just a few elements, we may write it
as a string of symbols eX(e), with e in the support. For instance, the sign
vector {a,c}+{b}− may be denoted a+b−c+.

• For x = (x1, . . . ,xn) ∈ Rn, sign(x) denotes the sign vector

(sign(x1), . . . ,sign(xn)) ∈ {0, + ,−}n.

• 0 denotes a vector all of whose components are 0. Context will tell us the
number of components and whether the vector is a row or column vector.

• P(S) denotes the power set of S.

The set {0,+,−}will be partially ordered by+ > 0,− > 0,+ ≯ −,− ≯ +.
The set {0,+,−}E will be ordered componentwise: If X,Y ∈ {0,+,−}E , then
X ≥ Y if and only if X(e) ≥ Y (e) for every e ∈ E.

For X ∈ {0, + ,−}E , the orthant in RE corresponding to X is {x ∈ RE :
sign(x) = X}, and the closed orthant corresponding to X is {x ∈ RE :
sign(x) ≤ X}. Thus our partial order on sign vectors corresponds to the partial
order on closed orthants by inclusion.
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4 Realizable Oriented Matroids

1.2 Discrete Models for Matrices

It will be convenient to consider an ordered list of vectors spanning Rr as
the set of columns of a matrix M ∈ Mat(r,n). Such a list is called a vector
arrangement.

We begin by considering some “discrete models for matrices.” That is, for
every r,n ∈ N, we will consider some finite set O and function

Mat(r,n)→ O

that seem somehow natural from the point of view of linear algebra.
The five models we’ll look at are:

1. V : Mat(r,n)→ P({0, + ,−}n) defined by

V(M) = {sign(x) : x ∈ null(M)}.
V(M) is called the set of vectors1 corresponding to M . It has a partial order
as a subposet of {0, + ,−}n.

2. V∗ : Mat(r,n)→ P({0, + ,−}n) defined by

V∗(M) = {sign(x) : x ∈ row(M)} = {sign(yM) : y ∈ Rr}.
V∗(M) is called the set of covectors corresponding to M . Again, this is
partially ordered as a subposet of {0, + ,−}n.

3. C : Mat(r,n)→ P({0,+,−}n) takes each M to the set of minimal elements
of V(M)\{0}. Here, as always, minimality is with respect to the partial order
on sign vectors described in Section 1.1. C(M) is called the set of signed
circuits corresponding to M .

4. C∗ : Mat(r,n) → P({0, + ,−}n) takes each M to the set of minimal
elements of V∗(M)\{0}. C∗(M) is called the set of signed cocircuits
corresponding to M .

5. χ : Mat(r,n) → {0, + ,−}[n]r defined by: If M ∈ Mat(r,n), then
χ(M) : [n]r → {0, + ,−} is the function taking each (i1,i2, . . . ,ir )

to the sign of the determinant |Mi1,...,ir |. χ(M) is called the chirotope
corresponding to M .

Problem 1.3 Let

M =
⎛⎝ 1 0 2 0 0 0

0 1 0 −1 0 0
0 0 0 0 1 0

⎞⎠ .

Determine V(M), V∗(M), C(M), C∗(M), and χ(M).

1 The terminology is terrible but firmly established.
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1.2 Discrete Models for Matrices 5

Problem 1.4 For each of the sets C(N), C∗(N), and χ(N) associated to a
matrix N = (v1,v2, . . . ,vn), describe how to determine each of the following:

1. whether vi = 0,
2. whether vi is a positive multiple of vj ,
3. whether vi is a negative multiple of vj ,
4. whether a set of columns {vi : i ∈ I } is independent, and
5. whether vi is in the span of the remaining columns.

1.2.1 Invariance under Change of Coordinates

Problem 1.5 1. Prove that the set of vectors, set of covectors, set of signed
circuits, and set of signed cocircuits of a vector arrangement in Rr are
invariant under change of coordinates. That is, prove for each A ∈ GLr

that V(AM) = V(M), et cetera.
2. Prove that χ is invariant under orientation-preserving change of coordinates

(that is, under left multiplication by A ∈ GL+r ).
This shows one reason these models might be more interesting models for

vector arrangements than, say, {sign(x) : 
x a column of M}.
Problem 1.6 Prove that the set of vectors, set of covectors, set of signed
circuits, set of signed cocircuits, and chirotope of a vector arrangement in Rr

are invariant under scaling of columns by positive scalars. That is, prove for
each diagonal n×n matrix D with all diagonal entries positive that V(MD) =
V(M), et cetera.

So far we have only considered vector arrangements that are expressed
as the columns of r × n matrices of rank r . Thus we have assumed that our
vector space is Rr and that our arrangement spans the space. But Exercise 1.5
points out one way to associate vector sets, covector sets, and so on, to a finite
arrangement (vi : i ∈ S) in any real vector space. One can simply fix a vector
space isomorphism from the span 〈vi : i ∈ S〉 to Rr and then define V , V∗,
and so on in terms of the corresponding arrangement in Rr . This is actually
the cheesy way to do it: A better way is to keep reading this chapter and
see coordinate-free descriptions of each of our combinatorial structures. Either
way it makes sense to talk about the oriented matroid of a finite arrangement
of vectors in an arbitrary vector space over R.

We will see in Section 1.5 that V(M), V∗(M), C(M), and C∗(M) encode
the same data about M . (χ(M) encodes a bit more.) We will call this data,
however encoded, the oriented matroid corresponding to M . The oriented
matroids arising in this way are called realizable. The definition of general
oriented matroids will come in Chapter 2.
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6 Realizable Oriented Matroids

1.2.2 Support-Minimality and Reduced Row-Echelon Form

Definition 1.7 For every X,Y ∈ {0, + ,−}E , their separation set is

S(X,Y ) = {e : {X(e),Y (e)} = {+,−}}.
Remark 1.8 Observe that X ≥ Y if and only if supp(X) ⊇ supp(Y ) and
S(X,Y ) = ∅.

Proposition 1.9 Let V be a linear subspace of Rn, and let F = {sign(x) : x ∈
V \{0}}. Then min(F) is exactly the set of elements of F of minimal support.

By applying Proposition 1.9 to the null space and to the row space of a
matrix, we get the following.

Corollary 1.10 C(M) consists exactly of the elements of V(M)\{0} of minimal
support, and C∗(M) consists exactly of the elements of V∗(M)\{0} of minimal
support.

Proof of Proposition 1.9: Let X ∈ F . Clearly if supp(X) is minimal then
X ∈ min(F).

If supp(X) is not minimal then let Y ∈ F such that supp(Y ) ⊂ supp(X).
We show that X is not minimal in F by induction on |S(X,Y )|. If S(X,Y ) = ∅
then X is not minimal because Y < X. Otherwise, we will find a Y ′ ∈ F such
that supp(Y ′) ⊂ supp(X) and S(X,Y ′) ⊂ S(X,Y ).

Let x,y ∈ V such that X = sign(x) and Y = sign(y), and consider the set
C = {ax + by : a,b > 0} of all positive linear combinations of {x,y}. Notice
that C ⊂ V , that supp(v) ⊆ supp(X) for each v ∈ C, and that S(X,sign(v)) ⊆
S(X,Y ) for each v ∈ C. Let e ∈ S(X,Y ). Then sign(xe) = −sign(ye), and
so |ye|xe + |xe|ye = 0. Thus we see an element z = |ye|x + |xe|y of C with
ze = 0. Let Y ′ = sign(z). Then supp(Y ′) ⊆ supp(X)\{e} and S(X,Y ′) ⊆
S(X,Y )\{e}. �

We can see the idea of the preceding proof by way of an example we
can draw: This is also an opportunity to introduce a type of picture we’ll be
revisiting often. Consider a two-dimensional subspace V of R4. While we can’t
draw R4, we can draw V by itself, and in our drawing we can include the
intersection of V with each coordinate hyperplane. Unless V is very special,
each such intersection will be a line Li = {v ∈ V : vi = 0}, and the half-space
on one side of this line will be {v ∈ V : vi > 0}. In our picture we’ll label Li

by the number i, and we’ll draw a small arrow starting at Li and pointing into
the half-space {v ∈ V : vi > 0}. Figure 1.1 depicts such a V . This drawing
is enough to see the poset F arising from V . For each W in the associated set
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1.2 Discrete Models for Matrices 7

1

3

2
4

X = (+, − , + ,+)

Y = (0, + , + ,−)

x

y
0

z
Y ′ = (+, − , + ,0)

Figure 1.1 Illustration for the proof of Proposition 1.9.

F , {v ∈ V : sign(v) = W } is a cone: In Figure 1.1 some of these cones are
labeled with the corresponding elements of F . The figure also shows the cone
C and the vector z from the proof of Proposition 1.9, for a particular choice of
X, Y , x, and y, and with e = 4 ∈ S(X,Y ).

Lemma 1.11 Let M = (v1, . . . ,vn) ∈ Mat(r,n) and S ⊆ [n]. The space
VS := {x ∈ row(M) : supp(x) ∩ S = ∅} has dimension r − rank{vi : i ∈ S}.
Proof: Since the rows of M are linearly independent, the map from Rr to
row(M) taking each w to wM = (wv1, . . . ,wvn) has kernel {0}. The preimage
of VS is {vi : i ∈ S}⊥, and so the dimension of VS is r − rank{vi : i ∈ S}. �

Remark 1.12 Lemma 1.11 is our first example of a useful, quirky aspect
of oriented matroid theory: using information about the columns of M to
derive information about the row space, or vice versa. We’ll see the vice versa
aspect in Section 1.3.3, when we give an interpretation of covectors for vector
arrangements.

Definition 1.13 Let M = (v1, . . . ,vn) ∈ Mat(r,n) and B = {i1 < · · · <

ir} ⊆ [n]. If Mi1,...,ir is rank r , then the reduced row-echelon form of M with
respect to B is (Mi1,...,ir )

−1M .

This is familiar from linear algebra as the unique matrix N obtainable from
M by elementary row operations such that Ni1,...,ir = I .

Proposition 1.14 Let M = (v1, . . . ,vn) ∈ Mat(r,n). C∗(M) consists of all
±sign(x) such that x is a row in some reduced row-echelon form for M .

Equivalently, C∗(M) consists of all X ∈ V∗(M) such that {vi : i ∈ X0} has
rank r − 1.
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8 Realizable Oriented Matroids

Proof: By Corollary 1.10 C∗(M) consists of the sign vectors of elements x of
row(M)\{0} of minimal support. So consider such an x. Let S = [n]\supp(x),
and consider the space VS of Lemma 1.11. Notice that VS is the set of elements
of row(M) whose support is contained in supp(x), and so by our minimality
assumption, VS\{0} is the set of elements of row(M) with support equal to the
support of x.

Assume by way of contradiction that dim(VS) > 1. Let {y,z} be a linearly
independent subset of VS . As already observed, y and z have the same support
as x. Let j be an element of this support. Then zj y−yj z is a nonzero element of
row(M) with support contained in supp(x)\{j}, contradicting our minimality
assumption.

Since dim(VS) = 1, by Lemma 1.11, {vi : i ∈ S} has rank r − 1. Take
a maximal independent subset {vi1, . . . ,vir−1} of this set, and choose a ∈ [n]
so that B = {vi1, . . . ,vir−1,va} is a basis of Rr . Let M ′ be the reduced row-
echelon form of M with respect to B. Since xi1 = · · · = xir−1 = 0 and x is
a linear combination of the rows of M ′, we see that x is a scalar multiple of
the row corresponding to the column indexed by a. Thus sign(x) is indeed a
multiple of the sign of this row. �

1.3 Arrangements

In this section we’ll look at two types of geometric objects:

• vector arrangements – finite ordered lists of vectors in Rr . These vectors
will always be viewed as columns of a matrix.

• signed hyperplane arrangements – finite ordered lists of signed hyperplanes
in Rr .

Actually an arrangement is not necessarily a list (a collection indexed by
[n]) – see the definition of arrangement in Section 1.3.1.

We’ll note how the discrete models of Section 1.2 describe fundamental
notions associated to each of these objects.

1.3.1 Geometry Glossary

1. For us, a hyperplane is always a linear hyperplane in a vector space V

over Rr . We allow the degenerate hyperplane consisting of V itself. (In
terms of an inner product on V , a hyperplane is the normal {x : x · v = 0}
to some vector v, and the degenerate hyperplane is the normal to 0.)
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1.3 Arrangements 9

2. A signed hyperplane in V is a triple H = (H 0,H+,H−), where H 0 is a
hyperplane in V and H+ and H− are the two open half-spaces bounded by
H 0. By convention, we call (V ,∅,∅) the degenerate signed hyperplane.
H+ is the positive open half-space of H, and H+ ∪ H 0 is the positive
closed half-space of H. Likewise, H− and H− ∪ H 0 are the negative
open half-space and negative closed half-space of H.

3. For a vector v in Rr , we’ll use v⊥ to denote the signed hyperplane with

(v⊥)0 = {x ∈ Rr : x · v = 0},

(v⊥)+ = {x ∈ Rr : x · v > 0},

(v⊥)− = {x ∈ Rr : x · v < 0}.
The degenerate signed hyperplane is 0⊥.

4. For a signed hyperplane H = (H 0,H+,H−) in V and a subset W of V ,
let H∩W denote the triple (H 0 ∩W,H+ ∩W,H− ∩W). This will most
commonly arise with W a linear subspace of V , in which case H∩W is a
signed hyperplane in W .

5. An affine hyperplane in V is a set w+W , where W is a hyperplane in V

and w � 0. An affine space in Rr is an intersection of affine hyperplanes.
We will denote a d-dimensional affine space by Ad , or simply A. When
the particular ambient space V is not important, we will call elements of
A points.

6. The affine span of S ⊆ A is the intersection of A with the linear span
of S. The relative interior of S ⊆ A is the topological interior of S as a
subset of its span.

7. An affine subspace of an affine space Ar is a nonempty intersection of
a linear subspace with Ar . A signed affine hyperplane in Ar is a triple
H = (H 0∩Ar,H+∩Ar,H−∩Ar ), where H 0 is a hyperplane, H 0∩Ar �
∅, and H+ and H− are the two open half-spaces bounded by H 0.

8. Sd denotes the unit sphere in Rd+1.
9. Let S = {v1, . . . ,vk} ⊂ V .

1. The open cone on S is {∑k
i=1 aivi : ∀i ai > 0}.

2. The closed cone on S is {∑k
i=1 aivi : ∀i ai ≥ 0}.

3. The convex hull of S is {∑k
i=1 aivi : ∀i ai ≥ 0,

∑k
i=1 ai = 1}.

In particular, if S is contained in an affine space Ar , then the convex hull
of S is contained in Ar .

We also declare that 0 = ∑
v∈∅ v, so {0} is the open cone on ∅, the

closed cone on ∅, and the convex hull of ∅.
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10 Realizable Oriented Matroids

10. A convex polytope is the convex hull of a finite set of elements of Rr .
A subset Q of a convex polytope P is a face of P if there is a signed
hyperplane H such that Q = H 0 ∩ P and P ⊂ H 0 ∪ H+. A vertex of a
convex polytope P is a 0-dimensional face.

A nontrivial theorem (cf. chapter 1 of Ziegler 1995) says that a set is a
convex polytope if and only if it is a bounded intersection of closed half-
spaces. A convex polytope P is the convex hull of its vertex set, and each
face Q is the convex hull of the vertices of P in Q.

11. Let O be a set of geometric objects and E a finite set. An arrangement
of elements of O indexed by E is an element of OE . An arrangement
indexed by E is typically written as A = (Ae : e ∈ E). If E = [n] then
we may write an arrangement indexed by E as a list (A1, . . . ,An), as we
have been doing in the case O = Rr . We will continue to denote a rank
r arrangement of vectors in Rr indexed by [n] by M = (v1, . . . ,vn) ∈
Mat(r,n).

This definition has one exception that will become prominent near the
end of Chapter 2. We’ll introduce the set O of pseudospheres in a fixed
sphere and then define an arrangement of pseudospheres indexed byE to
be an element of OE satisfying certain additional properties.

1.3.2 Representing Arrangements

A signed hyperplane H in R2 will always be drawn with an arrow pointing
from H 0 into H+, as in Figure 1.1.

We’ll represent a signed hyperplane arrangement A in R3 in two ways.

• Let v∞ be a nonzero vector such that neither v⊥∞ nor −v⊥∞ is in A. We will
consider the affine plane A = {x ∈ R3 : x · v∞ = 1}. The set
{H ∩ A : H ∈ A} is a signed affine hyperplane arrangement. Again, we
draw an arrow from H 0 into H+ to indicate the orientation. (See Figure 1.2
for an example.)

Besides being easier to draw than an arrangement in R3, this kind of
representation is useful for applying results in affine planar geometry to
oriented matroids.

• We will draw the arrangement of equators {H 0 ∩ S2 : H ∈ A} in S2. We
draw arrows from each equator H 0 ∩ S2 into H+ ∩ S2. See Figure 1.3.

This representation is preferred for two reasons: It saves us from
worrying about the special plane v⊥∞, and, as we’ll see in Chapter 4, it’s the
best route to representing arbitrary oriented matroids (not just realizable
ones).
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1.3 Arrangements 11

1

2 3 4

Figure 1.2 An affine representation of a signed hyperplane arrangement in R3.

c

b

a

d

Figure 1.3 A spherical representation of a signed hyperplane arrangement in R3.

Consider a vector arrangement M = (v1, . . . ,vn) in Rr . If, for some
w ∈ Rr , we have that vi · w = 1 for all i, then M can be viewed as a point
arrangement in the affine space A := {x : x · w = 1}. We will use this both
to represent rank 3 vector arrangements in the plane and to imagine vector
arrangements in higher dimensions.

Recall from Problem 1.6 that V(M), V∗(M), C(M), C∗(M), and χ(M)

are all invariant under scaling the columns by positive scalars. Thus, if we
have an arrangement (v1, . . . ,vn) with all vi in an open half-space {x :
x · w > 0}, then we can scale each vi to get an arrangement in the affine
space {x : x · w = 1}, and this new arrangement can replace the original
arrangement for our purposes. We call such an affine point arrangement an
affine representation of M .
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12 Realizable Oriented Matroids

Figure 1.4 A point arrangement in an affine plane.

1.3.3 Vector Arrangements

Each of our models V , V∗, C, C∗ has a nice geometric interpretation for vector
arrangements. We’ll discuss each in turn.

Vectors and Circuits
Let M = (v1, . . . ,vn) be a matrix. The set V(M) of vectors corresponding
to M is useful in studying convexity relationships between vi . For instance, a
sign vector A+B− is in V(M) if and only if there are positive constants ai,bj

for all i ∈ A,j ∈ B such that∑
i∈A

aivi +
∑
j∈B

(−bj )vj = 0,

∑
i∈A

aivi =
∑
j∈B

bj vj .

Thus, A+B− ∈ V(M) if and only if the open cones spanned by {vi : i ∈ A}
and by {vi : i ∈ B} intersect. (Recall that {0} is the open cone spanned by the
empty set.)

If the columns of V lie in an affine spaceA, then for nonempty sets A and B,
A+B− ∈ V(M) if and only if the convex hulls of the point sets corresponding
to A and B intersect in their relative interiors. The following proposition tells
us a bit more about C(M).

Proposition 1.15 Let {vi : i ∈ A} and {vi : i ∈ B} be the vectors
corresponding to independent nonempty subsets of an affine space A. If
A+B− ∈ C(M) then the convex hulls of these two point sets intersect in a
single point.

(The converse is false: Consider the affine arrangement in Figure 1.5.)
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1.3 Arrangements 13

a1

a2

a3

b1 b2

Figure 1.5 The convex hulls intersect in a single point, but this is not a minimal
dependency.

Proof: By our preceding observations the intersection of the two convex hulls
is nonempty. Assume by way of contradiction that it has two different elements∑

i∈A aivi =
∑

i∈B bivi and
∑

i∈A âivi =
∑

i∈B b̂ivi . (Here all coefficients
are nonnegative, and the sum of coefficients in each sum is 1.) Then for every ε∑

i∈A

(ai − εâi)vi =
∑
i∈B

(bi − εb̂i)vi .

Take ε > 0 minimal such that some coefficient in this equation is 0. Then the
other coefficients are all nonnegative, so this linear combination gives a smaller
element of V(M). �

Here are further geometric insights about M that can be gleaned from V(M)

and C(M):

• A subset S of {v1, . . . ,vn} is linearly independent if and only if there is no
X ∈ V(M) whose support is a subset of {i : vi ∈ S}. In particular, from
V(M) (or just C(M)) we see the rank of the arrangement. The rank of
V(M) is defined to be the rank of M .

• From V(M), we can tell if M has an affine representation, as follows. The
set {v1, . . . ,vn} is contained in some open half-space {x : x · w > 0} of Rn

if and only if 0 is not in any of the relatively open cones spanned by
nonempty subsets of {v1, . . . ,vm}.2 0 is in the open cone spanned by a
subset S of {v1, . . . ,vn} if and only if {i : i ∈ S}+ ∈ V(M). Thus, M has an
affine representation if and only if there is no nonempty S with
S+ ∈ V(M). In this case we say V(M) is acyclic. (A formal definition of
acyclic is coming in Definition 3.7.)

2 One direction of this assertion depends on the Farkas Lemma. See Section 1.5.2.
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14 Realizable Oriented Matroids

• If M does have an affine representation (p1, . . . ,pn) with all pi distinct,
then {p1, . . . ,pn} is the vertex set of a convex polytope if and only if no
element of V(M) has the form A+{b}−. In this case, a subset {pi : i ∈ S} of
the vertex set is the set of vertices of a face of the polytope if and only if no
element of V(M) has the form A+B− with B ⊆ S. (Proving this requires
some work.)

Covectors and Cocircuits
V∗(M) and C∗(M) also have good geometric interpretations in terms of the
columns of M . This is another example of the oriented matroid trick brought
up in Remark 1.12: V∗(M) is about the row space of M , but we can use it to
talk about geometric properties of the set of columns.

Let x ∈ row(M), and so x = yM for some y ∈ Rr . Thus sign(x) =
(sign(y · vi ) : i ∈ [n]). Writing this in terms of the signed hyperplane H = y⊥

and the sign vector X = sign(x),

X(i) =

⎧⎪⎪⎨⎪⎪⎩
+ if vi ∈ H+,

− if vi ∈ H−,

0 if vi ∈ H 0.

This proves the following.

Proposition 1.16 A+B−C0 ∈ V∗(M) if and only if there is a signed
hyperplane H with {vi : i ∈ A} ⊂ H+,{vi : i ∈ B} ⊂ H−, and
{vi : i ∈ C} ⊂ H 0.

Proposition 1.17 A+B−C0 ∈ C∗(M) if and only if there is an oriented
hyperplane H with A = {i : vi ∈ H+}, B = {i : vi ∈ H−}, and H 0 the
span of {vi : i ∈ C}.
Proof: Let A+B−C0 ∈ V∗(M)− {0}, and let H be a signed hyperplane with
{vi : i ∈ A} ⊂ H+,{vi : i ∈ B} ⊂ H−, and {vi : i ∈ C} ⊂ H 0. Then certainly
the span of {vi : i ∈ C} is contained in H 0. Further, this span is exactly H 0 if
and only if rank(vi : i ∈ C) = r − 1. Proposition 1.14 says this holds if and
only if A+B−C0 ∈ C∗(M). �

Let’s go back to some of the geometric ideas previously discussed for V
and C:

• A set {vi : i ∈ S} contains a maximal independent set if and only if it is not
contained in any hyperplane in Rr , hence if and only if there is no element
of V ∗(M) whose support is contained in the complement of S.
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1.3 Arrangements 15

• The columns of M all lie in one open half-space (and hence M has an affine
representation) if and only if [n]+ ∈ V ∗(M).

• If M does have an affine representation, then the convex hull of the
elements of an affine representation is a convex polytope P . A set
{vi : i ∈ A} is the set of elements in a face of P if and only if there is a
signed hyperplane H with {vi : i ∈ A} ⊂ H 0 and P ∩H− = ∅, hence if
and only if ([n] \ A)+ ∈ V ∗(M).

Chirotopes
Definition 1.18 An arrangement (v1, . . . ,vr ) in Rr is a positively oriented
basis of Rr if sign(det(v1, . . . ,vr )) = + and is a negatively oriented basis of
Rr if sign(det(v1, . . . ,vr )) = −.

For M ∈ Mat(r,n), the chirotope χ(M) encodes for each ordered r-tuple of
columns of M , whether that r-tuple is a positively oriented basis, a negatively
oriented basis, or not an ordered basis at all.

To review the geometric meaning of this: The determinant function from
GLr to R − {0} is continuous and surjective, so GLr has at least two
connected components. With a little work one can see that GLr has exactly
two path components, namely GL+r = {A ∈ GLr : det(A) > 0} and
GL−r = {A ∈ GLr : det(A) < 0}, and these components are homeomorphic.
Thus an ordered basis (vi1, . . . ,vir ) is positively oriented if and only if we
can continuously deform the matrix (vi1, . . . ,vir ) to the identity matrix while
maintaining linear independence of columns, and similarly we can describe
negatively oriented bases.

Another geometric way to think of this: Let {w1, . . . ,wr−1} be a linearly
independent set in Rr , and let H be the span 〈w1, . . . ,wr−1〉. Then H is the
zero locus of the continuous function v → det(w1, . . . ,wr−1,v) from Rr to R,
and so the two connected components of Rr −H are the sets

{v : sign(det(w1, . . . ,wr−1,v)) = +}
and

{v : sign(det(w1, . . . ,wr−1,v)) = −}.
Now consider a vector arrangement M = (v1, . . . ,vn), the associated

chirotope χ , and i1, . . . ,ir−1 such that {vi1, . . . ,vir−1} is linearly independent.
Let H = 〈vi1, . . . ,vir−1〉. For each j ∈ [n], we have that χ(i1, . . . ,inr1,j) = 0
if and only if vj ∈ H , and for each j,k ∈ [n], we have that χ(i1, . . . ,ir−1,j) =
−χ(i1, . . . ,ir−1,k) � 0 if and only if vj and vk are on opposite sides of H .

Notice a difference between our geometric interpretation of chirotopes for
vector arrangements and our geometric interpretations of V , V∗, C, and C∗.
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16 Realizable Oriented Matroids

Each of our earlier interpretations was coordinate-independent – given a vector
arrangement in an arbitrary finite-dimensional real vector space (not necessar-
ily Rr ), we could associate sets V , V∗, C, and C∗ by way of the interpretations
we’ve described. By contrast, our interpretation of the chirotope references a
preferred ordered basis for Rr (the list of columns of the identity matrix).

Given a general rank r vector space W over R, we get an equivalence rela-
tion on the set of ordered bases of W , by saying (v1, . . . ,vr ) ∼ (w1, . . . ,wr )

if, for some (and therefore all) isomorphisms f : W → Rr , the matrices
(f (v1), . . . ,f (vr )) and (f (w1), . . . ,f (wr )) are in the same connected com-
ponent of GLr . An orientation of W is a choice of one of these equivalence
classes to be considered the set of positively oriented bases. So, given a rank
r vector arrangement (v1, . . . ,vn) in W and a choice of orientation of W , we
get an associated chirotope χ : [n]r → {0, + ,−}. The opposite choice of
orientation for W gives the chirotope −χ .

We’ll see in Section 1.5 that the same information about a vector
arrangement M is encoded by each of V(M), V∗(M), C(M), C∗(M), or
{χ(M), − χ(M)}.

1.3.4 Signed Hyperplane Arrangements

For a matrix M = (v1 · · · vn), consider the associated signed hyperplane
arrangement A = (v⊥1 , . . . ,v⊥n ). Each triple ((v⊥i )0,(v⊥i )+,(v⊥i )−) with vi � 0
is a partition of Rr into three parts. The common refinement of these partitions
is a decomposition of Rr into convex cones. Each cone can be specified by
its relationship to each hyperplane: A+B−C0 represents the cone {y ∈ Rr :
y · vi > 0 for all i ∈ A; y · vi < 0 for all i ∈ B; y · vi = 0 for all i ∈ C}. (See
Figure 1.6 for an example.) Thus we see a bijection from V∗(M) to cones of
this partition, taking each X to {y ∈ Rr : sign(y�M) = X}. The cones that are
rays correspond to C∗(M) under this bijection.

Often it’s more convenient to work with the arrangement of oriented
equators v⊥i ∩ Sr−1 in Sr−1. This arrangement defines a decomposition of
Sr−1 into spherically convex cells that are in bijection with V∗(M)\{0}.

The interpretations of V , C, and χ for signed hyperplane arrangements are
not as illuminating and won’t be discussed here. See Section 4.8 for some
development of these interpretations.

1.4 Subspaces

Every rank r subspace W of Rn is the row space of some M ∈ Mat(r,n), and
by definition V(M)={sign(x) : x ∈ W⊥} and V∗(M)={sign(x) : x ∈W }.
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1.4 Subspaces 17

1

3

2

0

1+2−3+
1+2−3−1+2+3+

Figure 1.6 An arrangement of signed hyperplanes in R2 and some of the resulting
sign vectors.

So our “discrete models for real matrices” could as well be thought of as
“discrete models for real subspaces of Rn,” and these models nicely reflect
orthogonality of vector spaces.

To recast things in these terms: The real Grassmannian G(r,Rn) is the set
of all rank r subspaces of Rn. Thus each element of G(r,Rn) is the row space
of a matrix M ∈ Mat(r,n). Notice that two matrices M,M ′ ∈ Mat(r,n) have
the same row space if and only if each row of M is a linear combination of
rows of M ′, that is, M = AM ′ for some invertible matrix A. Thus G(r,Rn)

can be identified with the quotient of Mat(r,n) by the left action of GLr . Our
maps V : Mat(r,n) → P({0, + ,−}n) and V∗ : Mat(r,n) → P({0, + ,−}n)
quotient to maps

V : G(r,Rn) → P({0, + ,−}n)
W → {sign(x) : x ∈ W⊥}

V∗ : G(r,Rn) → P({0, + ,−}n)
W → {sign(x) : x ∈ W },

and we can define functions C and C∗ on G(r,Rn) either as quotients of our
maps C, C∗ on Mat(r,n), or in terms of V and V∗ as before.

The view of vector and covector sets as simply the sets of sign vectors
arising from subspaces of Rn is fundamental. We’ll frequently bring up the
idea of oriented matroids as combinatorial analogs to subspaces of Rn. One
useful point to notice is that the set of nonzero elements of {sign(x) : x ∈ W }
is just the set {sign(x) : x ∈ W,‖x‖ = 1} of sign vectors arising from the unit
sphere in W . Loosely put, an oriented matroid M is a combinatorial analog
to a vector space, and V∗(M)\{0} is a combinatorial analog to the unit sphere
in that vector space. This idea is central to Chapter 4.
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18 Realizable Oriented Matroids

Note that orthogonality of vector spaces is reflected nicely in oriented
matroids: V(W) = V∗(W⊥) and V∗(W) = V(W⊥). In general, we will say
two oriented matroids are dual if the vector set of one is the covector set of
the other. As we shall see in Chapter 2, every oriented matroid has a dual,
and these dual pairs behave like pairs of orthogonally complementary vector
spaces. Duality is an idea of central importance in oriented matroid theory and
applications. For instance, in convex polytopes it arises in the form of Gale
diagrams – see Section 1.6 for details.

1.4.1 Representing Subspaces by Vector Arrangements

Let’s tie the current discussion of subspaces together with our earlier discus-
sion on vector arrangements. Given a subspace W of Rn, choose a basis of
W and make it the set of rows of a matrix M . Then the set of columns of M

is a vector arrangement, and the vectors, covectors, and so on associated to
W coincide with the vectors, covectors, and so on of this vector arrangement.
Thus studying oriented matroid properties associated to subspaces of Rn is the
same as studying oriented matroid properties of vector arrangements. This is
often a useful way to address subspace issues – see, for instance, Exercise 1.6.

This transition from rows to columns may seem mysterious, but the follow-
ing proposition shows that the arrangement of column vectors is essentially
just the vector arrangement in W obtained by projecting the unit coordinate
vectors in Rn onto W .

Proposition 1.19 Let M = (v1, . . . ,vn) ∈ Mat(r,n) and let W = row(M).
Let πW : Rn → Rn denote the orthogonal projection onto W . Then there is an
isomorphism Rr → W sending each vi to πW(ei ).

Proof: There is an automorphism of W sending the rows of M to an
orthonormal basis for W , that is, there is an A ∈ GLr such that AM has
orthonormal rows. The vector arrangement given by the columns of AM is
the image under an isomorphism of the vector arrangement given by the
columns of M . So without loss of generality we assume the rows of M to
be orthonormal.

Let B be the vector arrangement in W consisting of the orthogonal
projections πW(ei ) of the unit coordinate vectors {e1, . . . ,en} onto W . We can
think of B as the columns of the n × n matrix CW representing orthogonal
projection of Rn onto W , but in contrast to our usual identification of vector
arrangements with matrices, the rank of CW is typically less than the number
of rows. Since the set of rows of M is an orthonormal basis for W , the columns
of MCW represent B in terms of this basis.
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1.4 Subspaces 19

But, letting CW⊥ be the n× n matrix representing orthogonal projection of
Rn onto W⊥, we have

MCW = M(CW + CW⊥) since MCW⊥ = 0

= MI

= M,

and so the map Rr → W sending the standard basis to the rows of M sends
each vi to πW(ei ). �

1.4.2 Representing Subspaces by Signed Hyperplane
Arrangements

Given a subspace W of Rn, let A be the signed hyperplane arrangement
{e⊥i ∩W : i ∈ [n]} in W . Then from the definition of V∗(W) and our earlier
discussion of hyperplane arrangements, we see that the oriented matroid of A
is the oriented matroid of W .

In fact, since w · ei = w · πW(ei ) for each w ∈ W , we see that A is
the signed hyperplane arrangement corresponding to the vector arrangement
B = {πW(ei ) : i ∈ [n]} of Section 1.4.1.

Problem 1.20 Consider the map G(1,Rn) → P({0, + ,−}n) sending each
W to V∗(W). Describe the partition of RPn−1 = G(1,Rn) by preimages under
this map.

1.4.3 Representing Subspaces by Points in Projective Space:
The Plücker Embedding

Our discussion so far has put chirotopes in a different realm from the other
oriented matroid characterizations. Each of those was given as the sign of a
collection of vectors in Rn, with each of these vectors having a nice geometric
interpretation. In this section we’ll see how to view the pair ±χ(M) as giving
the sign pair of a point in projective space, again with useful geometric
meaning.

The key result is the following:

Proposition 1.21 Let M,M ′ ∈ Mat(r,n). Then row(M) = row(M ′) if and
only if there is a nonzero scalar c such that |Mi1,...,ir | = c|M ′

i1,...,ir
| for each

i1, . . . ,ir ∈ [n].

We can prove Proposition 1.21 in a naive way, or we can use the machinery
of exterior algebras. The exterior algebra perspective has found powerful
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20 Realizable Oriented Matroids

application (cf. Bokowski and Sturmfels 1989), but little of that has made it
into this book. Here we’ll give both the naive and fancier approaches: The
reader may choose which to follow.

Naive proof: (⇒) If row(M)= row(M ′) then M =AM ′ for some A∈GLr .
For each i1 < · · · < ir in [n], the submatrix (AM ′)i1,...,ir is just A(M ′

i1,...,ir
).

Thus our scalar c is |A|.
(⇐) Choose a {a1, . . . ,ar }⊆ [n] with a1 < · · · < ar such that |Ma1,...,ar |� 0.

Thus M̂ := (Ma1,...,ar )
−1M is in reduced row-echelon form with respect to

{a1, . . . ,ar}, and we can read off the entries of M̂ as follows.
Let vj denote the j th column of M , v̂j the j th column of M̂ , and m̂ij denote

individual entries of M̂ . Then

m̂ij = |e1, . . . ,ei−1,v̂j,ei+1, . . . ,er |
= |v̂a1, . . . ,v̂ai−1,v̂j,v̂ai+1, . . . ,v̂ar |
= |M̂a1,...,ai−1,j,ai+1,...,ar |
= |(Ma1,...,ar )

−1||Ma1,...,ai−1,j,ai+1,...,ar |.
Our hypothesis tells us that

|(Ma1,...,ar )
−1||Ma1,...,ai−1,j,ai+1,...,ar | = |(M ′

a1,...,ar
)−1||M ′

a1,...,ai−1,j,ai+1,...,ar
|.

Thus M̂ = (M ′
a1,...,ar

)−1M ′ as well, and so M = Ma1,...,ar (M
′
a1,...,ar

)−1M ′.
Since Ma1,...,ar (M

′
a1,...,ar

)−1 ∈ GLr , we have row(M) = row(M ′). �

To give the exterior algebra perspective, we start with a quick review of
tensor products.

Definition 1.22 Let A1, . . . ,Ar , and V be vector spaces over a field K. A
function f : A1×· · ·×Ar → V is multilinear if it is linear in each coordinate.

One example of a multilinear map is the determinant, viewed as a function
taking a sequence of row vectors to a field element. A generalization of this
example: Let r ≤ n, and for every {v1, . . . ,vr} ⊆ Kn, let R(v1, . . . ,vr ) be
the matrix with rows v1, . . . ,vr . We get a multilinear map (Kn)r → (K)(

n
r) by

sending each (v1, . . . ,vr ) to the vector (|R(v1, . . . ,vr )i1,...,ir | : 1 ≤ i1 < · · · <
ir ≤ n).

The tensor product A⊗B of vector spaces A and B overK is the essentially
unique vector space with the following universal property: There is a map
A×B → A ⊗ B such that for each vector space V , each multilinear map

m : A × B → V factors uniquely as A × B → A ⊗ B
l→ V , where l is

linear. Thus the tensor product is a gadget we use to move from multilinear
maps to linear maps. The tensor product is constructed as a quotient of
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1.4 Subspaces 21

the free vector space on A × B: We simply quotient out by what we need
to in order to get our universal property. That is, we identify formal sums∑

a∈A
b∈B

ca,b(a,b) and
∑

a∈A
b∈B

da,b(a,b) if, for every vector space V and mul-

tilinear map f : A×B→V , we have
∑

a∈A
b∈B

ca,bf (a,b) =∑
a∈A
b∈B

da,bf (a,b).

For each a ∈ A and b ∈ B, let a ⊗ b denote the equivalence class of
(a,b) under this equivalence. Hence every element of A⊗B can be expressed
(usually not uniquely) as the equivalence class of a sum of terms of the form
k(a⊗b) with k ∈ K, a ∈ A, and b ∈ B. The map A×B → A⊗B sends (a,b)

to a⊗b. It is easy to check that if {a1, . . . ,aα} is a basis for A and {b1, . . . ,bβ}
is a basis for B then A⊗ B has basis {ai ⊗ bj : i ∈ [α],j ∈ [β]}.

For a vector space A, the exterior product
∧r

A is the quotient of the ten-
sor product⊗rA by 〈v1⊗· · ·⊗vr−sign(σ )vσ(1)⊗· · ·⊗vσ(r) : vi ∈ A,σ ∈ Sr 〉.
It follows from the universal property for tensor products that the composition
Ar → ⊗rA → ∧r

A is universal for alternating multilinear maps. That is,
each alternating multilinear map Ar → V factors through this map.

The image of v1⊗· · ·⊗vr under the quotient map⊗rA→∧r
A is denoted

v1 ∧ · · · ∧ vr . Since
∧r

A is the quotient of a vector space by a subspace, it
inherits a vector space structure. If {a1, . . . ,an} is a basis for A then {ai1∧· · ·∧
air : ii < · · · < ir} is a basis for

∧r
A. Additionally,

⊕
r

∧r
A has a product

operation, sending a pair (x1 ∧ · · · ∧ xr,xr+1 ∧ · · · ∧ xr+s) to x1 ∧ · · · ∧ xr+s .
Now let’s focus on the vector space Rn. The vector space

∧r
Rn has basis

{ei1 ∧ ei2 ∧ · · · ∧ eir : 1 ≤ i1 < i2 < · · · < ir ≤ n}, hence is isomorphic as a
vector space to R(n

r).

Proposition 1.23 Let v1,v2, . . . ,vr be the rows of a r × n matrix M . Then

v1 ∧ · · · ∧ vr =
∑

i1<···<ir

|Mi1,...,ir |ei1 ∧ · · · ∧ eir .

To see this, write each vi as
∑

j mi,j ej and expand out v1∧· · ·∧vr , remem-
bering the formula for the determinant |A| =∑

σ∈Sr
sign(σ )a1,σ1 · · · ar,σr .

Corollary 1.24 Let v1,v2, . . . ,vr ∈ Rn. Then v1 ∧ · · · ∧ vr = 0 if and only if
{v1,v2, . . . ,vr } has rank less than r .

This happens when either the sequence v1,v2, . . . ,vr has repeated elements
or the set {v1,v2, . . . ,vr } is dependent.

Proof: Let M be a matrix with rows v1, . . . ,vr . Then

v1 ∧ · · · ∧ vr = 0 ⇔ |Mi1,...,ir | = 0 for all i1, . . . ,ir

⇔ rank(Mi1,...,ir ) < r for all i1, . . . ,ir

⇔ rank(M) < r .

�
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22 Realizable Oriented Matroids

Exterior Algebra Proof of Proposition 1.21: The proof of (⇒) is the same as
that for the naive proof. To see (⇐), let v1, . . . ,vr be the rows of M and
w1, . . . ,wr be the rows of M ′. Thus

v1 ∧ · · · ∧ vr =
∑

i1<···<ir
|Mi1,...,ir |ei1 ∧ · · · ∧ eir

=
∑

i1<···<ir
|cM ′

i1,...,ir
|ei1 ∧ · · · ∧ eir

= cw1 ∧ · · · ∧ wr .

Then for each i we have (v1 ∧ · · · ∧ vr )∧wi = c(w1 ∧ · · · ∧wr )∧wi , which
is 0 by Corollary 1.24. Thus each wi is in 〈v1, . . . ,vr 〉. Similarly, for each i we
have vi ∈ 〈w1, . . . ,wr 〉. �

Notation 1.25 For a set S and an r < n, let S(n
r) denote the set of all vectors

(si1,...,ir : 1 ≤ i1 < · · · < ir ≤ n) with each component in S.
RP(n

r)−1 denotes the real projective space consisting of all one-dimensional
subspaces of R(n

r).

Proposition 1.21 gives us the Plücker embedding

P : G(r,Rn)→ RP(n
r)−1

P(row(M)) = R
⎛⎝ ∑

i1<···<ir

|Mi1,...,ir | : 1 ≤ i1 < · · · < ir ≤ n

⎞⎠ ,

or, in terms of the exterior algebra,

P : G(r,Rn)→ P(
r∧
Rn) � RP(n

r)−1

〈v1, . . . ,vr 〉 → Rv1 ∧ · · · ∧ vr = R
⎛⎝ ∑

i1<···<ir

|Mi1,...,ir |ei1 ∧ · · · ∧ eir

⎞⎠ .

This gives us a geometric interpretation of the chirotope as the sign of a vector:
If χ is one of the two chirotopes arising from a space W and i1 < · · · < ir ,
then χ(i1, . . . ,ir ) is just the sign of the (i1, . . . ,ir ) coordinate of the Plücker
embedding of W .

Remark 1.26 The naive proof of Proposition 1.21 pointed out how to find the
entries of a matrix in reduced row-echelon form given just the maximal minors.
Using this, we see how to recover the signs of entries of the matrix given only
the chirotope. Let χ be the chirotope of a matrix M = (mij ) ∈ Mat(r,n)
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1.4 Subspaces 23

that is in reduced row-echelon form with respect to {a1, . . . ,ar}. Then for
each i,j ,

sign(mij ) = χ(a1, . . . ,ai−1,j,ai+1, . . . ,ar ).

With this observation we have a small window into a thorny problem: Given
an oriented matroid, find the space of all matrices with this oriented matroid.
This is essentially the question of determining the realization space of an
oriented matroid, the subject of Chapter 7.

1.4.4 Aside: Topology of the Grassmannian

We defined the Grassmannian G(r,Rn) as a set to be the quotient of Mat(r,n)

by the left action of GLr . Mat(r,n) has a topology as a subspace of Rr×n, and
so G(r,Rn) has a topology as a quotient of Mat(r,n). The Plücker embedding
P : G(r,Rn) → P(

∧r
Rn) is a homeomorphism, so this topology on the

Grassmannian coincides with the subspace topology in P(
∧r
Rn). It also

coincides with the intuitive topology on the Grassmannian: If V ∈ G(r,Rn)

then the set of r-dimensional subspaces of Rn that we get by wiggling V

around just a bit is an open neighborhood of V .
The topology of the real Grassmannian is important for many reasons, for

example in the theory of characteristic classes, and it will play a prominent
role in later parts of this book. So we’ll explore this topology briefly here. See,
for instance, Milnor and Stasheff (1974) for more.

We’ll show that G(r,Rn) is a manifold of dimension r(n−r). First consider

U1,...,r = {row(I |A) : (I |A) ∈ Mat(r,n)}
= {row(M) : M ∈ Rr×n and M1,...,r ∈ GLr}.

This is an open subset of G(r,Rn), and the correspondence

U1,...,r ↔ Rr×(n−r)

row(I |A)↔ A

is a homeomorphism. This homeomorphism is a coordinate chart for all
V ∈G(r,Rn) such that the (1, . . . ,r)-coordinate of P(V ) is nonzero.

Generalizing this, for each {i1, . . . ,ir} ∈ [n] we define Ui1,...,ir =
{row(M) : Mi1,...,ir ∈ GLr}, and we see that Ui1,...,ir is homeomorphic
to Rr×(n−r). The collection of all such Ui1,...,ir is an open cover of the
Grassmannian.
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24 Realizable Oriented Matroids

1.5 Cryptomorphisms for Realizable Oriented Matroids

The previous sections showed that the various sets V(M), C(M), V∗(M), and
C∗(M) are geometrically interesting things to look at. As we are about to
see, these sets encode exactly the same information about M , and χ encodes
slightly more. Specifically,

1. There are bijections

V(Mat(r,n) V∗(Mat(r,n))

C(Mat(r,n)) C∗(Mat(r,n))

commuting with the maps V , C, V∗, and C∗. That is, the diagram

V(Mat(r,n)) V∗(Mat(r,n))

Mat(r,n)

C(Mat(r,n)) C∗(Mat(r,n))

V V∗

C C∗

commutes.
2. For every M ∈ Mat(r,n), let χ̃(M) = {χ(M), − χ(M)}. Then there is a

bijection χ̃(Mat(r,n))↔ C(Mat(r,n)) so that

Mat(r,n) χ(Mat(r,n))

χ̃(Mat(r,n))

C(Mat(r,n))

χ

commutes.

The following sections will establish these two points. The phrase we’ll use
for these results is to say the models V , V∗, C, C∗, and χ̃ are cryptomorphic –
they encode the same data in different ways.

To phrase this in terms of the Grassmannian: Recall G(r,Rn) is essentially
the quotient of Mat(r,n) by the left action of GLr , and that V , V∗, C, and C∗
are all invariant under the action of GLr on Mat(r,n). Additionally, define the
oriented Grassmannian OG(r,Rn) to be the quotient of Mat(r,n) by the left
action of the group GL+r of matrices with positive determinant. An element
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1.5 Cryptomorphisms for Realizable Oriented Matroids 25

of OG(r,Rn) can be thought of as an r-dimensional subspace of Rn equipped
with a distinguished orientation. Thus the previous diagrams induce diagrams

V(Mat(r,n)) V∗(Mat(r,n))

G(r,Rn)

C(Mat(r,n)) C∗(Mat(r,n))

V V∗

C C∗

and

OG(r,Rn) χ(Mat(r,n))

G(r,Rn) χ̃(Mat(r,n))

C(Mat(r,n))

where the top two vertical maps OG(r,Rn) → G(r,Rn) and χ̃(Mat(r,n)) →
χ(Mat(r,n)) are double covers.

All of these results will be subsumed by results of Chapter 2, which will
establish cryptomorphisms for general oriented matroids. We’re doing the
more limited results here to geometrically motivate our Chapter 2 results.

1.5.1 The Bijections V(Mat(r,n))↔ C(Mat(r,n)) and
V∗(Mat(r,n))↔ C∗(Mat(r,n))

We’ll get both of these bijections by a single argument. The forward maps
V(Mat(r,n)) → C(Mat(r,n)) and V∗(Mat(r,n)) → C∗(Mat(r,n)) are
obvious: Just take each set to its set of minimal nonzero elements. It remains
to be seen how we can reconstruct elements of V(M) resp. V∗(M) from the
minimal nonzero elements of these sets.

Definition 1.27 For two sign vectors X,Y ∈ {0, + ,−}n, define their
composition X ◦ Y ∈ {0, + ,−}n by

X ◦ Y (e) =
{

X(e) if X(e) � 0,

Y (e) otherwise.

We take the zero vector to be the composition of the empty sequence of
elements of C.
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26 Realizable Oriented Matroids

Problem 1.28 In Figure 1.6, in how many ways can the covector (+, + ,+)

be expressed as a composition of two covectors?

The following proposition tells us how to reconstruct V from C.

Proposition 1.29 Let W be a subspace of Rn. Let V = {sign(x) : x ∈ W⊥},
and let C be the set of minimal nonzero elements of V . Then V is the set of all
compositions of elements of C.

In fact, every nonzero element X of V is the composition of signed circuits
that are less than or equal to X.

Lemma 1.30 For every subspace V of Rn and x,y ∈ V , there exists z ∈ V

such that sign(x) ◦ sign(y) = sign(z).

Proof: Let z = x+ εy, where ε is a sufficiently small positive real number. �

Definition 1.31 X,Y ∈ {0, + ,−}E are conformal if their separation set
S(X,Y ) is empty.

A set of sign vectors is conformal if each pair of elements is conformal.

In particular, if Y ≤ X and Y ′ ≤ X then Y and Y ′ are conformal. A set
{Y1, . . . ,Yk} ⊆ {0, + ,−}E is conformal if and only if, for each e, max(Yi(e) :
i ∈ [k]) exists. In this case Y1 ◦ · · · ◦ Yk(e) = max(Yi(e) : i ∈ [k]).

Proof of Proposition 1.29: Lemma 1.30 shows that every composition of ele-
ments of C is in V . Conversely, let X � 0 be an element of V . Let Y1, . . . ,Yk

be the elements of C that are less than or equal to X, and let Y = Y1 ◦ · · · ◦ Yk .
Notice that Y does not depend on the order of Yi and that Y ≤ X. We’ll induct
on the height of X in the poset V to see that Y = X. The minimal case is when
X ∈ C, so that X = Y1 = Y .

Above this, assume by way of contradiction that supp(X)\supp(Y ) � ∅.
Let x,y ∈ W⊥ with X = sign(x) and Y = sign(y). Consider the ray {x− λy :
λ ≥ 0} in W⊥. All points on this ray have the same eth coordinate for each
e ∈ supp(X)\supp(Y ). If f ∈ supp(Y ) then sign(xf − λyf ) = sign(xf ) for
small values of λ, and sign(xf − λyf ) = −sign(xf ) for large values of λ.
Thus the ray leaves the orthant {x̂ : sign(x̂) = X} containing x at a point z with
ze = xe for each e ∈ supp(X)\supp(Y ), and zf = 0 for some f ∈ supp(Y ).
Let Z = sign(z). Then 0 � Z < X, so by our induction hypothesis Z is a
composition of circuits that are less than or equal to Z, and hence are less than
or equal to X. But Z � Y , a contradiction. �

For another perspective on (co)vectors as compositions of signed
(co)circuits, let V∗ and C∗ be the covector and signed cocircuit sets of a
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1.5 Cryptomorphisms for Realizable Oriented Matroids 27

signed hyperplane arrangement. Consider a picture of the arrangement in an
affine space A. Then X ∈ V∗ indexes a convex set cX in the partition of A
given by the arrangement, and a signed cocircuit Y ≤ X indexes a point pY in
the closure of cX. For covectors Y and Y ′ and points pY ∈ cY and pY ′ ∈ cY ′ ,
the set cY◦Y ′ is the part of our partition containing a point obtained by starting
at pY and moving a tiny step toward pY ′ . Here “tiny,” means the step moves us
off of every hyperplane of the arrangement that contains pY but not pY ′ , but is
not so big that we cross any hyperplane of the arrangement. Proposition 1.29
says that if we start at some vertex of the closure of cX and successively take
tiny steps toward each remaining vertex, we will end in cX.

1.5.2 V(Mat(r,n))↔ V∗(Mat(r,n)): Duality

Recall (Section 1.4) that for any linear subspace W of Rn we have V∗(W) =
V(W⊥). Here we introduce a notion of orthogonality for sign vectors under
which V(W) and V∗(W) are “orthogonal complements” to each other.

Algebra and Dot Product for Signs
Define an operation · on {0, + ,−} by

+ · + = − · − = +

+ · − = − · + = −

i · 0 = 0 · i = 0

for each i. (Often we’ll suppress the “·.”) Thus for s1,s2,s3 ∈ {0,+,−}we have
s1 ·s2 = s3 if and only if there are elements r1,r2,r3 ∈ R such that sign(ri) = si

for each i and r1r2 = r3.
A hyperoperation on a set S is a function S× S → P(S)−{∅}. We define

a hyperoperation on {0, + ,−}, called the hypersum and denoted �, by

+ �+ = {+}

− �− = {−}

x � 0 = 0 � x = {x} for all x

+ �− = − �+ = {0, + ,−}.
Thus for s1,s2,s3 ∈ {0, + ,−} we have s3 ∈ s1 � s2 if and only if there are

elements r1,r2,r3 ∈ R such that sign(ri) = si for each i and r1+r2 = r3. When
a set has a single element we will frequently omit the braces, for example, by
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28 Realizable Oriented Matroids

denoting x�0 by x. For every S,T ⊆ {0,+,−}we define S�T to be
⋃s∈S

t∈T s�t ,
and for S ⊆ {0, + ,−} and x ∈ {0, + ,−} we let S � x = x � S := S � {x}.
With these definitions, � is commutative and associative: In fact,

�
s∈S

s =
{

max(S) if {+,−} � S

{0, + ,−} otherwise.

Also, a · (b � c) = (a · b) � (a · c).
Define the inner product of X,Y ∈ {0, + ,−}m to be

X · Y =
m

�
i=1

X(i) · Y (i).

Define two sign vectors X and Y in {0, + ,−}n to be orthogonal, written
X ⊥ Y , if 0 ∈ X · Y . Thus X ⊥ Y if {X(i) · Y (i) : i ∈ [n]} either is
{0} or contains both + and −. For any set F of sign vectors, let F⊥ denote
{Y : Y ⊥ X ∀X ∈ F}.

Duality
If x ⊥ y are elements of Rn, then

∑
i xiyi = 0, and so either the terms in this

sum are all zero or some terms are positive and some negative. Thus, sign(x) ⊥
sign(y). Of course, from the hypothesis sign(x) ⊥ sign(y) we can’t conclude
x ⊥ y. But kind of amazingly, orthogonality of sign vectors corresponds to
orthogonality of vector spaces exactly as it should:

Proposition 1.32 If W is a subspace of Rn, then {sign(y) : y ∈ W⊥}⊥ =
{sign(x) : x ∈ W }.

In other words, V(W)⊥ = V(W⊥) = V∗(W).

We’ll prove this in a moment.
This result generalizes to arbitrary oriented matroids (Section 2.3), giving

a natural notion of “orthogonal pairs of oriented matroids.” (The actual term
used is dual pairs of oriented matroids.)

Proposition 1.32 follows from a result, important in linear programming,
that does not initially look inspiring. We first state it in one form it is commonly
seen:

Farkas Lemma 13 Let A ∈ Rr×n and b ∈ Rr . Then exactly one of the
following holds:

3 Hungarian tutorial: The a’s in “Farkas” are pronounced like the English long o, and the s is
pronounced like the English sh. Farkas’s name will be coming up a lot.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009494076.002
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 18:09:41, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009494076.002
https://www.cambridge.org/core


1.5 Cryptomorphisms for Realizable Oriented Matroids 29

1. There exists x ∈ Rn such that Ax = b and x ≥ 0.
2. There exists z ∈ Rr such that zA ≥ 0 and zb < 0.

Geometrically, this is easy to believe: The first alternative says that b is in
the closed cone, cone(A), consisting of nonnegative linear combinations of the
columns of A, while the second alternative says that there is a hyperplane z⊥
separating cone(A) and b.

Part of the proof is clear as well: Both alternatives can’t be true simultane-
ously, because if b ∈ cone(A) and z · a ≥ 0 for every column a of A then
z · b ≥ 0. The remainder of the proof – showing that at least one of the two
alternatives hold – is substantially trickier. See, for instance, Ziegler (1995) for
a proof.

To interpret the Farkas Lemma in terms of subspaces, let W be the nullspace
of the matrix (A| − b). Then the two alternatives of the Farkas Lemma can be
stated in terms of W : Either

1. there exists x ∈ W such that x ≥ 0 and xn+1 > 0, or
2. there exists y ∈ W⊥ such that y ≥ 0 and yn+1 > 0.

(Here y = z(A| − b) ∈ row(A| − b).) So, the Farkas Lemma says that for
any subspace W of Rn+1, exactly one of W , W⊥ intersects the positive closed
orthant {z : ∀i sign(zi) ∈ {0,+}} in a point whose last coordinate is positive.

Let’s adapt Farkas to consider more general orthants. Notice that the form
of the second alternative changes when we consider nonmaximal orthants.

Farkas Lemma 2 For every linear subspace W of Rn+1 and every Z =
A+B−C0 ∈ {0, + ,−}n+1 with Z(n + 1) � 0, exactly one of the following
holds:

1. There exists x ∈ W such that sign(x) ≤ Z and sign(xn+1) = Z(n+ 1).
2. There exists y ∈ W⊥ such that sign(yi) ≤ Z(i) for every i ∈ A ∪ B and

sign(yn+1) = Z(n+ 1).

Proof: Both alternatives can’t hold simultaneously because if sign(x) ≤ Z and
sign(yi) ≤ Z(i) for every i ∈ A ∪ B and sign(xn+1) = sign(yn+1) � 0 then
xiyi ≥ 0 for all i and xn+1yn+1 > 0, so x ·y > 0. Thus if x ∈ W then y � W⊥.

Now, say M = (v1, . . . ,vn+1) is a matrix such that W = null(M). Let D

denote the diagonal matrix with

Dii =

⎧⎪⎪⎨⎪⎪⎩
1 if Z(i) = +,

0 if Z(i) = 0,

−1 if Z(i) = −.
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30 Realizable Oriented Matroids

and let W ′ = null(MD). Applying our previous version of Farkas to W ′, we
have that exactly one of the following is true:

1. There exists x′ ∈ W ′ such that x′ ≥ 0 and x′n+1 > 0.
2. There exists y′ ∈ (W ′)⊥ such that y′ ≥ 0 and y′n+1 > 0.

If Alternative (1) holds then x := Dx′ satisfies Alternative (1) in the
statement of the proposition.

If Alternative (2) holds then y′ = zMD for some z ∈ Rr . Now consider
y := zM ∈ W⊥. For each i we have yi = z · vi and y′i = Diiz · vi . Thus

y′i =

⎧⎪⎪⎨⎪⎪⎩
yi if Z(i) = +,

−yi if Z(i) = −,

0 if Z(i) = 0.

Since y′i ≥ 0 for each i, we see y is an element of W⊥ satisfying Alternative
(2) of the proposition. �

Of course, there is nothing special about the final coordinate: We have the
following mild generalization.

Farkas Lemma 3 For every linear subspace W of Rn+1, every Z =
A+B−C0 ∈ {0, + ,−}n+1, and every j ∈ [n + 1] with Z(j) � 0, exactly
one of the following holds:

1. There exists x ∈ W such that sign(xi) ≤ Z(i) for every i and sign(xj ) =
Z(j).

2. There exists y ∈ W⊥ such that sign(yi) ≤ Z(i) for every i ∈ A ∪ B and
sign(yj ) = Z(j).

From this version of the Farkas Lemma we can prove Proposition 1.32.

Proof of Proposition 1.32: The discussion on orthogonality earlier in this
section shows that {sign(x) : x ∈ W } ⊆ {X : X ⊥ Y for every Y ∈
sign(W⊥)}. Conversely, say X ⊥ Y for every Y ∈ sign(W⊥). Consider a j

such that X(j) � 0. Applying our final version of Farkas to X and j , we
see that Alternative {2} can’t hold, and so there exists x(j) ∈ W such that
sign(x(j)) ≤ X and sign(x

(j)
j ) = X(j). Choose such an x(j) for each j , and

let x =∑
j x(j). Then this x is the element of W we want. �

See Exercise 1.7 for a fourth version of the Farkas Lemma that removes the
asymmetry between the two alternatives.

In Section 2.3.3 we will give a combinatorial version of the Farkas Lemma
for families of sign vectors, rather than subspaces. As we shall see, the families
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1.5 Cryptomorphisms for Realizable Oriented Matroids 31

that are vector sets of oriented matroids can be characterized as those which
satisfy this combinatorial Farkas Lemma and a few other conditions. This will
lead to a simple proof of cryptomorphism between vector sets and covector
sets for general oriented matroids.

1.5.3 C(Mat(r,n))↔ χ̃(Mat(r,n))

This discussion will introduce some ideas that are useful in a lot of contexts:

• the Pivoting Property,

• the Dual Pivoting Property, and

• the Basis Exchange Principle.

The Dual Pivoting Property, which will be introduced in Problem 1.36,
actually leads to a cryptomorphism C∗(Mat(r,n))↔ χ̃ (Mat(r,n)) by a shorter
argument than the one we’ll give. We’ll do the longer argument to highlight
some geometric ideas.

Definition 1.33 An arrangement (v1, . . . ,vn) is linearly independent if vi �
vj whenever i � j and {v1, . . . ,vn} is linearly independent. An arrangement is
linearly dependent if it is not linearly independent.

Let M = (v1, . . . ,vn) ∈ Mat(r,n). Our first step in showing that C(M)

determines ±χ(M) and vice versa is to show that {supp(X) : X ∈ C(M)}
determines supp(χ(M)) and vice versa.

Since C(M) is the set of elements of V(M) of minimal support, we see that
a set S is supp(X) for some X ∈ C(M) if and only if (vs : s ∈ S) is a minimal
dependent subarrangement of M . But the minimal dependent subarrangements
of M determine the maximal independent subarrangements of M and vice
versa, and (vi : i ∈ S) is a maximal independent subarrangement of M if
and only if |S| = r and χ(M)(s1, . . . ,sr ) � 0 for all orderings (s1, . . . ,sr )

of S.
Our next step begins by noting that to determine a pair X, −X of sign

vectors it’s enough to determine supp(X) and the values X(e)X(f ) for each
e,f ∈ supp(X). We will show that C(M) determines the product

χ(M)(e,x2, . . . ,xr )χ(M)(f,x2, . . . ,xr )

for each e,f ,x2, . . . ,xr , and vice versa.
If X ∈ C(M) and supp(X) = {e} then ve = 0, {X, −X} = {e+,e−}, and

χ(M)(e,x2, . . . ,xr ) = 0 for all x2, . . . ,xr .
Now consider X ∈ C(M) with larger support, say supp(X) =

{e,f ,i2, . . . ,ik}. Since {ve,vi2, . . . ,vik } is linearly independent, it is contained

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009494076.002
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 18:09:41, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009494076.002
https://www.cambridge.org/core


32 Realizable Oriented Matroids

in a basis {ve,vi2, . . . ,vir }. Also, since {ve,vi2, . . . ,vik } and {vf ,vi2, . . . ,vik }
span the same subspace of Rn, {vf ,vi2, . . . ,vir } is also a basis.

Proposition 1.34 Let {ve,vi2, . . . ,vir } and {vf ,vi2, . . . ,vir } be distinct inde-
pendent sets of columns of M . Let X ∈ C(M) such that the support of X is
contained in {e,f ,i2, . . . ,ir}. Then

χ(M)(e,i2, . . . ,ir ) · χ(M)(f,i2, . . . ,ir ) = −X(e) ·X(f ).

This relationship between chirotopes and signed circuits will reappear for
general oriented matroids in Theorem 2.54 as the Pivoting Property.

Proof: This just expresses a simple geometric idea: {vi2, . . . ,vir } spans a
hyperplane H not containing ve or vf , and the independence of the two
sets tells us that neither ve nor vf lie on H . From our discussion of the
chirotope in Section 1.3.3 we know that ve and vf lie on the same side
of H if and only if χ(M)(e,i2, . . . ,ir ) = χ(M)(f,i2, . . . ,ir ), that is, if
χ(M)(e,i2, . . . ,ir ) · χ(M)(f,i2, . . . ,ir ) = +. Also, they lie on the same side
of H if and only if there is no positive linear combination of ve and vf lying
on H , that is, there are no scalars ae,af ,b2,br with ae > 0, af > 0, and

aeve + af vf =
r∑

j=2

bj vij ,

aeve + af vf +
r∑

j=2

bj vij = 0.

Thus the signed circuit X with supp(X) ⊆ {e,f ,i2, . . . ,ir} must satisfy
X(e) = −X(f ). To summarize, if ve and vf lie on the same side of H then

χ(M)(e,i2, . . . ,ir ) · χ(M)(f,i2, . . . ,ir ) = +
and X(e)X(f ) = −. Likewise if ve and vf lie on opposite sides of H then

χ(M)(e,i2, . . . ,ir ) · χ(M)(f,i2, . . . ,ir ) = −
and X(e)X(f ) = +. �

Thus for each X ∈ C(M) for which we know supp(X), the pair {X, −X}
is determined by values χ(M)(e,i2, . . . ,ir ) · χ(M)(f,i2, . . . ,ir ). Conversely,
if we know C(M) and we have (e,i2, . . . ,ir ),(f ,i2, . . . ,ir ) ∈ supp(χ(M))

with e � f , the arrangement (ve,vf ,vi2, . . . ,vir ) is dependent, and a minimal
dependent subarrangement contains ve and vf . A corresponding signed circuit
X satisfies the hypothesis of Proposition 1.34, so from X(e)X(f ) we can find
χ(M)(e,i2, . . . ,ir ) · χ(M)(f,i2, . . . ,ir ).
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1.5 Cryptomorphisms for Realizable Oriented Matroids 33

The last step of the cryptomorphism is to show that from the values of
products of the form

χ(M)(e,i2, . . . ,ir )χ(M)(f,i2, . . . ,ir ),

we can determine χ(M)(b1, . . . ,br )χ(M)(b′1, . . . ,b
′
r ) for all pairs of bases

B = {vb1, . . . ,vbr }, B ′ = {vb′1, . . . ,vb′r }.
This follows from a linear algebra observation that’s also a fundamental

principle in the theory of ordinary matroids:

Proposition 1.35 (Basis Exchange Principle – realizable case) If B and B ′

are bases for a vector space W and x ∈ B\B ′ then there is a y ∈ B ′ such that
(B ∪ {y})\{x} and (B ′ ∪ {x})\{y} are bases for W .

Proof: B\{x} spans a hyperplane H . Let S = B ′ ∪ {x} and T = (B ′ ∩ H) ∪
{x}. S spans W , and T is an independent subset of S, so T extends to a basis
(B ′ ∪ {x})\{y} for W . Since y � H , we also have that (B\{x}) ∪ {y} is a basis
for W . �

Using this, we can induct on |B\B ′|. Given B and B ′ with |B\B ′| ≥ 2, we
do a basis exchange to get a basis {vc : c ∈ (B ∪ {b′})\{b}} with b′ ∈ B ′.
Without loss of generality assume b = b1 and b′ = b′1. Then by our induction
hypothesis we know the values of

χ(M)(b1, . . . ,br )χ(M)(b′1,b2, . . . ,br )

and

χ(M)(b′1,b2, . . . ,br )χ(M)(b′1, . . . ,b
′
r ).

Since + · + = − · − is the multiplicative identity in {0, + ,−} and the
factor χ(M)(b′1,b2, . . . ,br ) is in {+,−}, the product of these two values is
χ(M)(b1, . . . ,br )χ(M)(b′1, . . . ,b

′
r ).

Finally, there’s a similar connection between χ and C∗, whose abstract
combinatorial analog will come up in Chapter 2.

Problem 1.36 If {ve,vi2, . . . ,vir } and {vf ,vi2, . . . ,vir } are bases with e �
f and Y is a signed cocircuit with support contained in the complement of
{i2, . . . ,ir}, show that

χ(M)(e,i2, . . . ,ir )χ(M)(f,i2, . . . ,ir ) = Y (e) · Y (f ).

This relationship between chirotopes and signed cocircuits will reappear for
general oriented matroids in Theorem 2.54 as the Dual Pivoting Property.
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34 Realizable Oriented Matroids

1.5.4 Conclusions on Cryptomorphism

To summarize: The functions C, V , C∗, and V∗ all encode the same data
about matrices (while χ encodes this data plus an orientation of Rr ). This
data about a matrix M is called the oriented matroid corresponding to M .
We’ll also refer to oriented matroids of vector or hyperplane arrangements, or
of subspaces of Rn. C(M) is called the set of signed circuits of the oriented
matroid corresponding to M . C∗(M) is called the set of signed cocircuits of
the oriented matroid corresponding to M . V(M) is called the set of vectors
of the oriented matroid corresponding to M , and V∗(M) is called the set of
covectors of the oriented matroid corresponding to M . (Ordinary (unoriented)
matroid theory has (unsigned) circuits and cocircuits. See Section 1.8 for
details.) χ(M) and −χ(M) are called the two chirotopes of the oriented
matroid corresponding to M . We will use M(M) to denote the oriented
matroid corresponding to M . The dual of M(M), denoted M∗(M), is the
oriented matroid with vector set V∗(M) and covector set V(M).

This is not yet the definition of oriented matroids – it’s only the special
case of oriented matroids arising from matrices (these are called realizable
oriented matroids). In Chapter 2 we will define oriented matroids in general,
by first defining sets of signed circuits, sets of vectors, and so on. All of these
objects will have purely combinatorial definitions inspired by the realizable
case. We will see that in general signed circuits, vectors, and so on are
cryptomorphic.

Every property we have described in terms of one of C(M), V(M), C∗(M),
V∗(M), or ±χ(M) can be thought of as a property of M(M). For instance, in
Section 1.3.3 we defined the rank of V(M); henceforward we will call this the
rank of M(M).

For ease of linear algebra, so far we have dealt with arrangements whose
objects are indexed by [n], resulting in oriented matroids defined in terms of
{0, + ,−}n and {0, + ,−}(n

r). Going forward, this convention is unnecessary
and occasionally inconvenient, so we will typically index the elements of
an arrangement by a finite set E. Thus instead of working with a vector
arrangement M ∈ Mat(r,n), we will work with an arrangement A = (ve :
e ∈ E). The resulting C(A), V(A), C∗(A), V∗(A) are subsets of {0, + ,−}E .
We say E is the set of elements of M(A).

1.6 Convex Polytopes

Let’s take a brief digression to see the usefulness of oriented matroids as a tool
for studying convex polytopes. We’ll examine the interaction between convex
polytopes and oriented matroids in more depth in Chapter 8.
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1.6 Convex Polytopes 35

Recall the definition of convex polytope from Section 1.3.1. It’s not hard
to see that a convex polytope P is the convex hull of its vertex set. The set of
faces of P is a partially ordered set, ordered by inclusion. The combinatorial
type of a convex polytope is the isomorphism class of its face poset.

Consider a convex polytope P in affine space with vertex set V = {pe : e ∈
E}. As noted in Section 1.3.3, from the oriented matroid M of V we can read
off the faces of P . For a subset F of V , F is the set of vertices of a face of V if
and only if there is a signed hyperplane H with H 0∩V = F and H−∩V = ∅.
Further, this face is the convex hull of F . Thus we have a bijection between the
covectors of M of the form A+ and the faces of P , sending a covector A+ to
conv(pe : e ∈ E − A). This suggests realizable oriented matroids as a natural
tool for studying face posets of convex polytopes.

Oriented matroid duality allows us to study high-dimensional convex
polytopes with relatively few vertices using low-dimensional arrangements
of points. Consider a d-dimensional convex polytope P in Ad ⊂ Rd+1 with
vertex set V = {pe : e ∈ E}, where |V | ≤ d + 4. The oriented matroid
M associated to V is rank d + 1 with |V | elements, and so M∗ is rank
|V | − (d + 1) ≤ 3. We can realize M∗ in R3, but strictly speaking we can’t
realize it in A2: Since E+ ∈ V∗(M) = V(M∗), the elements of a realization
can’t all lie in a common plane not through the origin. We can get around
this by introducing the notion of a signed affine point arrangement: This is
an arrangement ((pe,se) : e ∈ E), where each pe is a point in A and each
se is either + or −. Given a realization (we : e ∈ E) of M∗ in R3 and an
affine plane A ⊂ R3 that is not parallel to any we, for each e ∈ E there is
a unique multiple λewe of we in A: We let (pe,se) = (λewe,sign(λe)). The
resulting signed affine point arrangement encodes our realization of M∗, up to
positive scaling: We call this arrangement an affine Gale Diagram for P . (This
is actually weaker than the usual definition, which predates oriented matroids.
Normally “Gale diagram” refers to a dual vector arrangement to V , obtained
by treating V as the columns of a matrix M and finding a matrix N such that
row(N) = row(M)⊥.)

Problem 1.37 Find necessary and sufficient conditions on a realizable
oriented matroid M for M to be the oriented matroid of a polytope.

Note that this also gives necessary and sufficient conditions for an oriented
matroid to be the oriented matroid of the Gale diagram of a polytope.

Problem 1.38 Use your solution to Problem 1.37 to count the number of
combinatorial types of four-dimensional convex polytopes on seven vertices.

To give a charming application, due to Perles, we consider the following
question (cf. Ziegler 1995).
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36 Realizable Oriented Matroids

Figure 1.7 The “Betsy Ross” arrangement.

Given a convex polytope P in Rn, is there some convex polytope P ′ in Qn with
the same face poset as P ? That is, is every combinatorial type of real convex
polytope realizable over Q?

It’s not hard to see that any combinatorial type of convex polytope of dimen-
sion less than or equal to three is realizable overQ, as is any combinatorial type
of convex polytope whose proper faces are all simplices. However, in general
the answer to the question is No, and we’ll give an example here.

Consider the affine point arrangement known as the Betsy Ross arrange-
ment, shown in Figure 1.7. Make a signed affine point arrangement S with
two elements (p,+) and (p,−) for each point p shown. Thus this arrangement
describes 22 elements of R3 that come in pairs v,−v. Let M(S) be the oriented
matroid of this arrangement.

Problem 1.39 Use the results of Problem 1.37 to verify that S is the Gale
diagram of a convex polytope P in affine space. Determine the dimension of
P . Show that any convex polytope in affine space of the same combinatorial
type as P has oriented matroid isomorphic to M∗(S).

At the center of the argument are two observations.

• The face poset of P can be read off from the positive circuits of M(S).

• Any set T of vectors in R3 such that M(T ) has the same positive circuits as
M(S) (up to relabeling the elements of the oriented matroid) consists of
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1.7 Deletion and Contraction 37

pairs {xe, −xe} , where, up to scaling, T ′ := {xe : e ∈ E} is an affine point
arrangement, and the set of positive circuits of M(T ) determines the set of
all circuits of M(T ′).

Note the many dependent triples among elements of S. Whenever a set
{x,y,z} in R3 is dependent, the determinant |x,y,z| = 0, and this equality is
a polynomial equation in the coordinates for x, y, and z. In the case of Betsy
Ross, from the system of equations we can deduce that the only fields over
which this collection of dependencies is realizable are fields containing

√
5. In

particular, no vector arrangement in Q3 has oriented matroid M(S) – that is,
M(S) is not realizable over Q.

Problem 1.40 Show that an oriented matroid is realizable over Q if and only
if its dual is as well.

Thus, P is not realizable over Q!

Remark 1.41 The operation of replacing each element of our oriented
matroid with two antiparallel copies is closely related to the Lawrence
construction, which we will discuss more in Section 8.4. (The Lawrence
construction performs this operation on M∗ rather than on M.)

Remark 1.42 For examples of nonrational combinatorial types of convex
polytopes of dimension 4, see Richter-Gebert (1996a) and Dobbins (2011).

For much more on Gale diagrams, see chapter 6 of Ziegler (1995).

1.7 Deletion and Contraction

This section will discuss two operations on oriented matroids that are the basis
for many inductive arguments.

From here on it will be convenient to index the columns of a matrix by an
arbitrary finite set E, not necessarily [n].

Given a matrix M with columns indexed by E and given e ∈ E, let M\e
denote the matrix obtained from M by deleting the column indexed by e. For
X ∈ {0, + ,−}E , let X\e ∈ {0, + ,−}E\e be the restriction of X. Then from
the definition of V∗ it’s clear that

V∗(M\e) = {X\e : X ∈ V ∗(M)}.
It would be easy to jump to the conclusion that

C∗(M\e) = {X\e : X ∈ C∗(M)},
but this isn’t quite true, for two reasons:
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38 Realizable Oriented Matroids

X

e

eX

Y

Figure 1.8 Deletions of circuits are not necessarily circuits of deletion.

1. If X = {e}+ ∈ V∗(M) (i.e., row(M) has an element x whose only nonzero
entry is xe), then X\e = 0 � C∗.

2. If there are X,Y ∈ C∗(M) so that Y (e) � 0, X(e) = 0, Y (f ) ≤ X(f ) for
all f � e, and Y (g) < X(g) for some g, then 0 � Y\e < X\e, and thus
X\e � C∗.

Illustrations of both issues are given in Figure 1.8. The figure on the left
shows a representation of rank 3 oriented matroid by equators in S2, and the
figure on the right shows a representation of a rank 3 oriented matroid by
hyperplanes in A2.

The correct description of the signed cocircuit set of the deletion is

C∗(M\e) = min{X\e : X ∈ C∗(M),X\e � 0}.

Problem 1.43 Describe V(M\e) and C(M\e) in terms of V(M) and C(M).

M(M\e) is called the deletion of e from M(M), denoted M(M)\e. In
Chapter 2 we’ll define deletion for arbitrary oriented matroids in the way
suggested by realizable oriented matroids.

In terms of vector and signed hyperplane arrangements, deletion of e

corresponds to removing the vector resp. signed hyperplane corresponding to
e from the arrangement.

The second operation to look at is contraction. The contraction of e from
M(M), written M(M)/e, is defined as ((M∗(M))\e)∗. That is, M(M)/e is
obtained from M(M) by deleting e in the dual. This operation has a direct
interpretation in M as well, given in the following exercise.

Problem 1.44 (i) Let {Hf : f ∈ E} be an arrangement of signed hyperplanes
with oriented matroid M and let e ∈ E. Show that the arrangement {(H 0

f ∩
H 0

e ,H+
f ∩H 0

e ,H−
f ∩H 0

e ) : f ∈ E\e} has oriented matroid M/e.
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1.8 A Few Words about Unoriented Matroids 39

(ii) Let {vf : f ∈ E} be an arrangement of vectors in Rn with oriented matroid
M, and let e ∈ E. Let πe be the orthogonal projection map from Rn to (e⊥)0.
Show that the arrangement {πe(vf ) : f ∈ E\e} has oriented matroid M/e.

This is an important idea to get used to: For oriented matroid purposes,

• deleting an element He in a signed hyperplane arrangement is equivalent to
restricting to the subspace He in the dual, and

• deleting an element e in a vector arrangement is equivalent to projecting to
the subspace (e⊥)0 in the dual.

1.8 A Few Words about Unoriented Matroids

For the reader who has never encountered (unoriented) matroids, here is a very,
very brief introduction. Indeed, we won’t get as far as a definition. For any real
understanding, see, for instance, Oxley (1992). This section exists purely to
satisfy a reader’s mild curiosity – we will not use it elsewhere.

We have already seen that oriented matroids are modeling vector or
hyperplane arrangements over ordered fields – fields with a natural partition
into positive elements, negative elements, and 0. If we forget the data in an
oriented matroid that arises from this order – by replacing each “+” and “−”
by the word “nonzero” – we get a matroid. For instance:

• Instead of recording the signed circuit set of a finite arrangement A of
vectors in Rr , we look only at the supports of these signed circuits. This set
of supports is called the set of (unsigned) circuits of the matroid of A.

• Instead of recording the entire chirotope of A, we record only which sets of
elements are bases for Rr .

This is a very oriented-matroid-chauvinist way to present the situation. In
actuality, matroid theory (developed in Whitney 1935) much predates oriented
theory (formalized independently in Folkman and Lawrence 1978 and Bland
and Las Vergnas 1978, Bland and Las Vergnas 19794), and was conceived of
as a combinatorial abstraction of linear dependence over arbitrary fields. A
matroid may be realizable as a vector arrangement over, for instance, a finite
field without being realizable over R.

Every oriented matroid has an underlying matroid, as described above, but
not every matroid arises in this way – that is, not every matroid is orientable.

4 See section 3.9 in Björner et al. (1999) and section 5.12 in Bachem and Kern (1992) for a more
complete sketch of the origins of oriented matroid theory.
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40 Realizable Oriented Matroids

Examples can be found via vector arrangements over finite fields. See Ziegler
(1991) for more discussion.

Exercises

1.1 Use the results of Section 1.2.1 to write (in a systematic way) a list
of 2 × 4 rank 2 matrices giving each possible C(M) for this rank and
size subject to the condition that the first two columns of the matrix are
independent. Verify that these are also giving each possible χ(M), up to
global change of sign.

1.2 (i) Let C = {{1,3}+{2,4}−,{1,3}−{2,4}+,{1,3}+{5}−,{1,3}−{5}+,

{1,2,4}+{5}−,{1,2,4}−{5}+,{2,4}+{3,5}−,{2,4}−{3,5}+}. Find a
vector arrangement whose circuit set is C. Then find another vector
arrangement whose cocircuit set is C.

(ii) Do the same for C = {{1,2,3}+{4,5}−,{1,2,3}−{4,5}+}.

1.3 Let p1, . . . ,pn be distinct points on an affine line, and let M be the rank
2 oriented matroid determined by these points. Prove that M depends
only on the order of pi along the line, and that M determines this order
(up to global reversal).

1.4 Consider the vertex set of a regular pentagon in the plane. (There is
nothing special about pentagons: We just want a concrete example.) By
choosing a coordinate system for the plane, we can view these vertices
as five vectors in R2 and get a rank 2 oriented matroid M2. On the other
hand, by viewing our plane as an affine subspace of R3 we can view
these vertices as five vectors in R3 and get a rank 3 oriented matroid M3.
What can you say about the relationship between the oriented matroids
M2 and M3 arising this way? For instance, what is the relationship
between V(M2) and V(M3)? What is the relationship between V∗(M2)

and V∗(M3)?

1.5 This is a generalization of Exercise 1.4. Let M = (v1, . . . ,vn) ∈
Mat(r,n), and let A ∈ Mat(k,r) for some k ≤ r ≤ n. What can you
say about the relationship between the oriented matroid associated to M

and the oriented matroid associated to AM?

1.6 (i) Consider a convex hexagon in the affine plane with vertices labeled
1,2, . . . ,6 in cyclical order. The vertex set gives a rank 3 oriented
matroid on elements [6]. Show that this oriented matroid Mhex is
the same for all convex hexagons.
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(Mhex illustrates an important issue: The oriented matroid of an
affine set of points tells you which pairs of subsets have
intersecting convex hulls, but not which triples of subsets have
intersecting convex hulls. For instance, a regular convex hexagon
has three diagonals that intersect at a point, while a generic
hexagon does not.)

(ii) If W ⊆ V are subspaces of Rn then by definition V∗(W) ⊆ V∗(V ).
Show that the converse fails by finding a rank 2 realizable oriented
matroid N such that V∗(N ) ⊆ V∗(Mhex) and a subspace V of R6

such that V∗(V ) = V∗(Mhex) but there is no subspace W of V

such that V∗(W) = V∗(N ).

1.7 Prove the following version of the Farkas Lemma from the previous
versions. (Here ∪̇ denotes disjoint union.)

Farkas Lemma 4 For every subspace W of Rn, every Z =
A+B−(C∪̇D)0 ∈ {0, + ,−}n, and every j ∈ A ∪ B, exactly one of
the following holds.

1. There exists x ∈ W such that sign(xi) ≤ Z(i) for each i ∈ A∪B ∪C

and xj � 0.
2. There exists y ∈ W⊥ such that sign(yi) ≤ Z(i) for each i ∈ A∪B∪D

and yj � 0.

1.8 Let t1 < t2 < · · · < tn be real numbers. For each i ∈ [n] let
vi = (1,ti,t2

i , . . . ,t
r−1
i ). The oriented matroid of (vi : i ∈ [n]) is

called the alternating oriented matroid Mn,r
alt . This oriented matroid

is independent of the choice of tj , as the first part of this exercise will
show.

1. Show that Mn,r
alt has a chirotope χ such that χ(i1,i2, . . . ,ir ) = +

whenever i1 < · · · < ir . Once you’ve shown this, you know that
Mn,r

alt is uniform, i.e., every r-tuple of elements is a basis, so you
know the sizes of the supports of signed circuits and signed cocircuits.
The following parts of the exercise fill out our knowledge.

2. Let {i0, . . . ,ir} ⊆ [n] with i0 < · · · < ir . Let X be the signed circuit
of Mn,r

alt with support {i0, . . . ,ir} and with X(i0) = +. Prove that
X(ij ) = (−1)j for each j .

3. Let {i0, . . . ,in−r} ⊆ [n] with i0 < · · · < in−r . Let Y be the signed
cocircuit with support {i0, . . . ,in−r} and with Y (i0) = +. For each
j ∈ {0, . . . ,n − r}, let η(j) = |{k : i0 < k < ij and k �
{i0, . . . ,in−r}}|. Prove that Y (ij ) = (−1)η(j).
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Remark 1.45 Some sources use the term “alternating oriented
matroid” for any oriented matroid on [n] with a chirotope χ such that
χ(i1, . . . ir ) ∈ {0,+} for all i1 < · · · < ir . More recently, these have
been called positively oriented matroids, or positroids. See Section 7.7
for more about these.

1.9 Use results from this chapter to prove Carathéodory’s Theorem: If P is
a set of points in a d-dimensional space and q is in the convex hull of P

then q is in the convex hull of some subset of P of size at most d + 1.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009494076.002
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 25 Jul 2025 at 18:09:41, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009494076.002
https://www.cambridge.org/core

