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ABSTRACT. The texture of a material is closely connected to both its dev, t­
opment and its properties. Aided by fully automated image-processing techniques 
developed for a simple PC-based system , we extract textural information from 
sea-ice thin sections. As a quantifier of mean size and orientation of grains, the 
"contrast gradient" has been defined . The skewness of the chord-size distribution 
aptly describes the grain-size distribution. Through a combination of these two pa­
rameters, granular and columnar textures can be distinguished. Samples of mixed 
columnar/granular texture may be further specified through their fmctal proper­
ties. Fully au tomated techniques may be of use due to their objective scrutiny 
and their ability to draw information from large databases. In addition , t hey allow 
for highly specific descriptions of texture and may further the understanding of its 
development. 

A BASE FOR DETAILED COMPARATIVE 
STUDIES OF SEA-ICE TEXTURES 

this paper. Development and properti es of t he fioe that 
a sample originated from are clarified by assigning the 
sample to one of these classes (Table 1) . However , the 
subject ive character of the classification process does not 
necessarily permit intercomparison between large num­
bers of samples, nor does it guarantee a high degree of 
reproducibility. Automated textural classification of thin 
sect ions could b e of use in this context because it may (a) 
ensure reproducible results, (b) draw information from 
large data sets for comparison and (c) allow for quanti­
tative textural analysis with further differentiation bet­
ween samples of the same textural class. 

The development of a sea-ice sheet in the complex frame­
work of ice- ocean- atmosphere interaction expresses itself 
in the ice texture, i. e. the size, shape, and spatial dis­
tribution of the component phases. Texture, in turn, to 
a large extent controls sea-ice properties. Traditionally, 
textural information is extracted from ice core samples 
through visual examination of thin sections from differ­
ent stratigraphic units, augmented by inspection of vert i­
cal thick sections. Based on this qualitative assessment, 
samples are designated one of several textural classes (cf. 
WeeKS and Ackley, 1982; Eicken and Lange, 1989). Table 
1 indicates the three main textural classes considered in 

Technically, automated classification algorithms have 
to rely on a set of criteria capable of distinguishing b et­
ween different textural classes . Following the description 
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Table 1. Classification of sea-ice textures 

Textural class 

Granular 

Columnar 

Mixed 
columnar/granular 

Grains 

isometric; 
mm-size 

strong vertical, 
weak horizon tal 
elongation; cm­
size 

characteristic 
of columnar 
and granular 
texture 

Brine inclusions 

intergranular, 
spherical 

intragranular, 
layered 

inter- and 
intragranular, 
spherical and 
layered 

Mode of formation 

compaction of freely 
floating frazil crystals 

slow congelation 
growth at advancing 
ice-wa ter in terface 

mixing through 
deformation; dynamic 
congelation growth 
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of the hardware employed, we attempt to establish use­
ful classification criteria and outline the methodic path 
leading to a distinction between different textures. 

INSTRUMENTS AND SAMPLE 
PREPARATION 

Preparation of sea-ice thin sections 

Sea-ice thin sections were cut at -250 to -300 C from 
cores collected in Pram Strait and the central Arctic, 
as well as in the central, southeastern and northwestern 
Weddell Sea. To ensure that image analysis is not ham­
pered by artifacts such as surface grooves caused by the 
microtome blade, emphasis was placed on careful sam­
ple preparation. Horizontal thick sections were sawed, 
frozen onto a first glass plate, and the resulting surfaces 
microtomed. These surfaces were then fixed on a second 
glass slide by welding with water from the side. The first 
glass plate was then removed, and the thin sect ion mi­

crotomed to roughly 0.5 mm thickness and polished with 
a cloth. 

Hardware components of the image-analysis 
system, digitizing procedure 

Thin sections, placed on a Rigsby stage between 
crossed polarizers in a glaciological cold laboratory, were 
recorded with a Hamamatsu C2400 grey-tone video cam­
era (Fig. 1). A consistent magnification was chosen to 
exclude resolution-dependent effects. Video frames were 
digitized with a Matrox Pip-1024 image-analysis board 
installed on a Compaq 386 microcomputer clocked at 
20 MHz (cf. Perovich and Hirai, 1988). Digitized im­
ages consist of a 512 x 512 pixel array, each pixel with 
a designated grey value ranging between 0 (black) and 
255 (white). Colours or grey values of crystals change at 
different orientations with respect to the polarizers. In 
order to compensate for this effect and to improve recog­
nition of grains, each thin section was recorded at two 
different orientations, such that the median grey value 
of an ent ire image was at its minimum and maximum, 
respectively (see Fig. 2 for a flow-chart of the image­
analysis process). Due to internal diffraction, pores may 
appear as dark speckles within grains of high grey value. 
Through non-linear filtering (morphological opening, for 
details cf. Serra, 1982) pore signals up to a size of 4 

Optical disk I 
Hard disk Micro-
Image-processing board compute r 

I 
Yideo-
Monitor 

I 
Camera r--r---
control 

Z-l 

Sample r=l 
stage l.:!::!:!J 

Archiving 

Processing 

Recording 

Fig. 1. Sketch of hardware set-up for image 
processing of ice thin sections. 
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Automated image analysis 

I Recording of image I 
Preparation 
(linear and 
non-linear 
filtering) 

I I 
I Contrast analysis I I Segmentation I 

I 
I Lineal analysis I 

Fig. 2. Flow chart of image-processing steps 
carried out for textural classification. 

pixels in diameter were removed from the images. The 
resulting modification of image resolution along with a 
detailed error analysis will be discussed in a later publi­
cation by Eicken. 

CLASSIFIERS FOR THE DISTINCTION 
BETWEEN DIFFERENT TEXTURES 

Distribution of grey values: the contrast 
gradient 

One of the most obvious distinctions between granular 
and columnar ice is the difference in mean grain-size. 
Not as apparent from mere visual inspection of thin sec­
tions, yet of great importance when distinguishing bet­
ween samples of similar grain-size, is the distribution of 
crystallographic c axes of the grains. By defining a con­
trast gradient (CG) as a measure both for the degree 
of misalignment between grains and the density of grain 
boundaries within an image, we attempt to distinguish 
between samples of granular and columnar texture based 
on image contrast. 

For the determination of CG, the image exhibiting the 
maximum median grey value is convolved with a 3x3 ker­
nel h( u, v) with 'u identifying the row and v the column 
of each element. All pixcls of the original image S(x, y) 
with x and y specifying the pixel position within each row 
and column, respectively, are transformed to S'(x, y) by 
comparing them with their eight nearest neighbours ac­
cording to 

m-lm-l 

S'(x, y) = 1/m2.L.L S(x+k-u, y+k-v)h(u, v), (1) 
u=o v=o 

with m = 3 and k = (m - 1)/2 (Haberacker, 1985). In 
this case, regions of high contrast are marked through 
convolution with a Laplacian edge detection kernel 

-1 -1 -1 
h= -1 8 -1 (2) 

-1 - 1 -1. 
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Contrast gradient 

small 
Grey-value 
distribution 

GV~ r~(GV)L 

distance GY 

medium 

distance 

large 

GV~ 

distance 

r~(GV)~ 

GY 

Fig. 3. Sketch clarifying computation of con­
tmst gmdient (CG) for samples of differ­
ent !J/"lLin-size and c-axis orientation. Centre 
gTaphs show grey value (CV) variations along 
profile specified at left; gTaphs at right show 
contTast curves (grey vCLlue histogTam) from 
which CG is de7·i·ued. 

By comparing each pixel with its eight nearest neigh­

bours in such a way, regions of high contrast, such as 
grain boundaries with a high degree of crystallographic 
misalignment between adjacent pixels, are marked in the 
transformed image as bright zones of high grey value 
(Fig. 3, middle). The grey-value distribution of the 
Laplacian-filtered image thus contains information about 

the grain-boundary density and the degree of misalign­
ment between grains. High frequencies of low grey val­
ues correspond to little overall contrast in the image, and 
vice versa (Fig. 3, right). This information may be ex­
tracted from the Laplacian-filtered image by computing 
the slope (g) of the grey-value frequency histogram bet­
ween grey values 20 and 128 with a least-squares method. 
Small-scale contrast (grey values <20) at the low end 
of the histogram and large-scale contrast (grey values 
> 128) at the high end are not considered because they 
are prone to error and contain little useful information. 
The contrast gradient is defined as 

CG = -1000g. (3) 

Fine-grained granular specimens, which typically exhibit 
a random distribution of c axes, exhibit large CG values, 
whereas coarse-grained columnar specimens with c axes 
aligned near parallel exhibit small CG values (Fig. 3). 

Table 2 shows mean CG values, standard deviation, 
extrema, and number of samples analyzed for the three 
main textural classes. The samples considered in this 
study represent a wide scope of different textures from 
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Table 2. Mean values, standard deviations and range of 
contrast gradients (CC) for different classes (N samples 
analyzed) 

Textural Class 

Cranular 
Mixed c/g 
Columnar 

CG 

8.6 
5.9 
3.4 

S.D. 

2.0 
1.2 
1.6 

Range N 

4.6/12.0 17 
2.7/8.0 22 
0.6/7.2 73 

the Arctic and the Wedqell Sea. Although mean val­
ues diverge between textural classes, there is still consid­
,., itble overlap between granular and columnar ice with 
respect to individual data points. For further differenti­
ation, in addition to considering mean values, we take 
into account the distribution of grain sizes as well. 

Lineal analysis: the distribution of chord sizes 

Lineal analysis (i.e. the collection of data along sets 
of lines) is aimed at determining the lengths of chords 
that are cut off from grains by intersecting pixel rows or 
columns (Fig. 4). The chord-size distribution contains 
information about shapes and sizes of the analyzed par­
ticles. Prerequisite for this method is the segmentation 
of the thin-section image into grains and grain bound­
aries with the aid of the Sobel operator. This operator 
computes grey-value gradients in x- and v-direction with 
masks hx and hy (Haberacke[, 1985) 

1 0-1 
hx = 2 o -2 

1 0-1 

1 2 1 

hy = 0 0 0 
-1 -2 -I, 

(4) 

thereby accentuating grain boundaries as regions of high 
contrast. For every sample, two images exhibiting 
maximum- and minimum-median grey values were con­
volved with a 3 x 3 Sobel operator. The filtered images 
were combined and binarized about a threshold value of 
128, with grey values 0 and 255 designated to grains and 
grain boundaries, respectively. Finally, the distribution 
of chord lengths was determined. 

Figures 5a and 5b show representative chord-size dis­
tributions for samples of granular and columnar ice, re-

512 Rows Chord-size 
512 
Columns 

.d~ 
distribution 

~ ~ Chords 

Fig. 4. Sketch of lineal analysis perfonned on 
exemplary gTain. 
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Fig. 5. Chord-size distr-ibution for (a) a repr-e­
sentative sample of granular- ice; mean clwrd 
size S.~I = 1. 2 mm, skewness of the distribu­
tion f = 9.9; and (v) a TepTesentative sam-
1)le of columnar ice; mean chord size SAl = 

G.8 mm, skewness of the dish'ibution f = 1. 5. 

spectively. Whereas granular ice generally exhibits a nar­
row range of chord sizes with maximum values below 
10 mm, columnar ice tends towards much higher values. 
A X2 test (Lloyd, 1984) suggests that chords of granular 
samples follow a different distribution than most colum­
nar samples. In this context, the skewness (J) of the 
chord-size distribution appears as a useful parameter for 
the distinction b etween granular and columnar ice (Fig. 
S). It represents a measure of the degree of asymmetry 
with respect to a normal distribution (for which f = 0) 
and is defined as 

N 

f = 11N L ( Xi - xM )l a)3, (5) 
i=1 

for N samples Xi with mean value XM and standard de-
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Table 3. Mean values, standard deviations and range of 
chord-size skewness (f) for different textural classes (N 
samples analyzed) 

Textural Class f S.D. Range N 

Granular 7.9 5.1 3.8/22.2 17 

Mixed clg 3.7 0.7 3.1/6.1 22 
Columnar 2.6 0.6 1.2 /3.7 73 

viation a (Lloyd, 1984). Table 3 lists mean skewness, 
standard deviation, extrema, and number of samples an­
alyzed for different textural classes. 

C nmbinin g information for classification 

As a step towards classification, the contrast gradient 
CG is plotted versus the skewness f of the chord-size 
distribution (Fig. 6). Figure 6 demonstrates that joint 
specification of CC and f allows for dist inct separation 
between columnar and granular samples. In addition, 
further specification of a sample with regard to its exact 
position in the CG- f parameter plane may be of use for 
detailed textural characterization. 

There is a problem concerning mixed colum­
nar/granular (mixed c/g) samples that overlap with the 
domains of granular and columnar texture. One has 
to consider that any differentiation between textures is 
based on arbi trary dividing lines. Vvhereas the distinc­
tion between columnar ice, forming through congclation 
of sea water at t he advancing ice- water interface, and 
granular ice, resulting from compaction of frazil crys­
tals formed in the water column, does in fact represent 
a natural disparity between different growth processes, 
the distinction between mixed cl g and other textures 
may not. 
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Fig . 6. Contrast gradient (CG) plotted versus 
skewness (f ) of the chord-size distribution fo r 
11 2 samples from the Antic and Antarctic . 
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Mixed c/g Intermediate c/g 

D >= 1.30 
D l.37 
N=6 

D <= l.29 
D 1.23 
N 13 

Fig. 7. Schema,tic drawing of sampl.es of mixed 
cl 9 and intermediate cl 9 t exture. 

Distinguishing between mixed and intermediate 
textures 

Two different modes of mixed columnar/granular tex­
tures may be recognized: 

(1) grains occurring in two different size and shape 
spectra, that of granular and that of columnar ice, 

(2) grains occurring in one size and shape spectrum 
characteristic of both granular and columnar ice. 

Case (1) will be referred to as mixed columnar/granular 
(c/g) ice proper, case (2) as intermediate colum­
nar/granular ice (Fig. 7, cf. Eicken and Lange, 1989). 
The former mainly results from mechanical mixing of 
columnar ice with granular fragments during deforma­
tion. As a working hypothesis, we consider the latter 
as congelation ice formed under dynamic hydrographic 
conditions and high growth rates. 

Differentiation between these two textural classes 
is possible through utilization of the concept of self­
similarity. Mixed c/ g ice appears rather self-similar when 
viewed at different scales, since large columnar grains 
are suspended in a finer-grained granular matrix (Fig. 
7). The opposite is true for ice of intermediate c/g 
texture which exhibits a rather narrow size spectrum. 
This is expressed in the concept of the fractal dimension 
D. In an equation relating a linear measure of size, e.g. 
mean grain perimeter P, with image resolution expressed 
through the size of the picture elements L and a constant 
k, D appears as an exponent (Mandelbrot, 1983; Fig. 8) 

(6) 

nn$ed on the concept of morphological openings (Serra, 
I ~)1'\2), we achieved decreasing effective resolution by in­
creasing the size of the morphological mask. The fractal 
dimension appears as the gradient of a logarithmic curve 
relating mean chord size 8M mask size m 

(7) 

The sketch of a mixed c/g sample in Figure 7 serves well 
to illustrate the principle. Viewing the image from an 
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increasing distance (i.e. larger m in Equation 7), one 
resolves fewer and fewer small grains; finally only the 
largest grains will be recognized. This corresponds to an 
increase in 8M in Equation 7, since more and more small 
grains will be excluded from the chord-size distribution 
with increasing m. The larger the fractal dimension D, 
the larger the degree of self-similarity of the sample in­
vestigated. Distinction between mixed and intermediate 
c/g samples seems possible with the aid of D values, since 
these do not overlap between the two textural classes 
(Fig. 7). In fact, with the exception of two samples of 
granular ice, mixed c/g samples exceed all others with 
respect to D. These dividing lines are of course blurred 
by errors due to image processing and acquisition. Al­
though validation requires analysis of additional data, 
we regard the fractal dimension as a useful parameter to 
separate mixed c/g ice from other forms. 

It seems impossible to draw a boundary line separat­
ing columnar and intermediate c/g ice due to their sim­
ilar mode of formation. However, distinction between 
intermediate c/g and granular ice may be possible by 
taking into account maximum grain sizes occurring in 
a sample, as well as the occurrence of inclusions within 
grains typical of intermediate c/g textures. 

CONCLUSIONS 

The development of image-processing techniques and al­
gorithms for textural quantification of sea-ice thin sec­
tions may serve as a base for detailed texture analyses. 
The combination of parameters that specify mean size 
and orientation of grains as well as their size distribution 
enables us to distinguish between granular and colum­
nar ice for a representative data set. Although this task 
may appear trivial, it involves overcoming of a number 
of difficulties, including standardized image acquisition 
and identification of grain boundaries. Further differ­
entiation between varieties of mixed columnar/granular 
textures has been shown possible on a small, yet repre­
sentative data set. Here, the degree of self-similarity of 
thin sections, as described by the fractal dimension D 
serves as a classifier. Further work is of more general 
interest with regard to the development of different tex­
tures in anisotropic granular media, such as metals or 
iJ;!:nC'ous and metamorphic rocks. 

One of the advantages of textural quantification 
through image-processing is the high reproducibility 
achieved, especially when distinguishing between appar­
ently similar samples. The method, however, allows for 
more than simple classification. Through specification of 
a sample's location in the CG- f parameter plane, accu­
rate discrimination between samples of the same texture 
becomes possible. Thus one may be able to determine 
and quantify regional textural differences, such as dis­
parities between thin sections of columnar ice from the 
Arctic and Antarctic. 
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