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A DOMAIN-THEORETIC APPROACH TO INTEGRATION
IN HAUSDORFF SPACES.

J. D. HOWROYD

Abstract

In this paper we generalize the construction of a domain-theoretic
integral, introduced by Professor Abbas Edalat, in locally compact
separable Hausdorff spaces, to general Hausdorff spaces embedded
in a domain. Our main example of such spaces comprises general
metric spaces embedded in the rounded ideal completion of the par-
tially ordered set of formal balls. We go on to discuss analytic subsets
of a general Hausdorff space, and give a sufficient condition for a
measure supported on an analytic set to be approximated by a se-
quence of simple valuations. In particular, this condition is always
satisfied in a metric space embedded in the rounded ideal completion
of its formal ball space. We finish with a comments section, where we
highlight some potential areas for future research and discuss some
questions of computability.

1. Introduction

The aim of this paper is to provide a general domain-theoretic construction of an integral ak
to the classical Riemann integral on compact intervals of the real line. Such an integral w
first constructed in compact metric spacesireind generalized to locally compact separable
Hausdorff spaces inlR]. The constructions ir3] 12] begin by embedding the Hausdorff
space into an associated domain — the upper space ordered by reverse inclusion;
Subsectior2.2for a definition. Here we generalize this approach to an arbitrary Hausdorf
space (topologically) embedded into a domain; in particular, any metric space may |
embedded into the rounded ideal completion of its formal ball space. When this genel
framework has been set up, the definition of the integraB]rcarries over directly to our
setting; the main work is then to show that the properties of the integral carry over to ot
framework. We, therefore, propose the naRiemann—Edalat integrdbr the construction
that we give.

The integral is with respect tdlcontinuous probability Borel measure on the Hausdorff
space. This gives rise to a continuous valuation on the domain, which may be approxima
by simple valuations. Corresponding to each simple valuation are upper and lower Darbo
sums that bound the value of the integral. The integral is then defined by taking the ‘limi
of these Darboux sums over the directed family of approximating simple valuations. |
this way, it is the measure that is approximated by simple valuations, as opposed to t
construction of the Lebesgue integral where the function to be integrated is approximat
by simple functions.

Received 18 May 1999, revised 3 May 20@@blished 18 August 2000
2000 Mathematics Subject Classification 06B35, 06F30, 28A25, 28C05, 54H05, 60B05
© 2000, J. D. Howroyd

https://doi.org/10.1112/51461157000000292 RubiBhéd Caimppt Chieiid 3 (FOGRBROPEF3


http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/3
https://doi.org/10.1112/S1461157000000292

Domain-theoretic integration.

We go on to study the properties of the Riemann—Edalat integral, and compare it wi
the Lebesgue integral. Our results, in this respect, are analogous to the standard res
concerning the Riemann integral. Similar results were showr8,ji2]; however, new
proofs of our main results, Theorel? and Propositiod4, are required for our framework.
We also mention that if the underlying space is completely regular (and Hausdorff) then tl
Bourbaki extension of the Riemann—Edalat integral recaptures the Lebesgue integral.
then proceed with an investigation into integration over subsets of the underlying space
a certain form; namely>-Suslin sets. This leads to a construction of a sequence of simpls
valuations, approximating the measuyrewhich is sufficient to compute the integral with
respect to a measure supported on such a set. The notiaD-&uslin set is closely related
to the notion of an analytic set, and indeed in a metric space (embedded in its associa
domain) they are equivalent. We conclude with a comments section, where we remark
a number of alternatives and some topics for further attention.

1.1. Motivation

Domain theory, introduced by Dana Scott in 1970, has become a basic paradigm
theoretical computer science; in particular, as a mathematical foundation for denotatior
semantics. The success of this theory has been in using domains as a model for a c
putational process or as a model for a data type with incompletely specified elements.
new area of research has focused on using domain theory for computational models
spaces in classical mathematics. The survey pafjeiyes a comprehensive overview of
these developments. We give a selective overview in the next paragraph of some of the
developments, which are of particular interest in the context of this paper.

We begin with p], which presented a computational model (namely, the upper spac
ordered by reverse inclusion) for locally compact second countable Hausdorff spaces. T
gave a computational framework in which dynamical systems, iterated function systems a
measure theory could be discussed. This was set Gpamfl extended irf]]; also seef, 13]
for further applications to iterated function systems. The framework for measure theory wi
based on the foundational work concerning valuations on a domain givés,idg]; see
also [17]. This led on to the development B} pf a domain-theoretic integral on compact
metric spaces, which was generalized to locally compact second countable Hausdorff spa
in[12]. Applications of this framework have been given, for example, in stochastic process
(see[4]) and in statistical physics (s@[ Then in [L0O] a new computational model (hamely,
the ideal completion of the space of formal balls) was presented for metric spaces, givil
a framework for iterated function systems and measure theory in this settind;&der|
further developments concerning this model. Also, see 28} for a detailed discussion
of computational models for polish spaces. In a slightly different direction, we mentiol
the treatment of computability (of points, sequences and functions) in the real line give
in [14], using the interval domain (see Subsectibh) as a computational model for the
real line. This work was then extended itB] to a treatment of computability in Banach
spaces, using the model df(f]. We also mention the ripening theory of exact real number
arithmetic; in connection with integration theory, seel9].

By taking the model of 10] as our main example (of a Hausdorff space embedded in ¢
domain), we give, in this paper, a domain-theoretic integral in this setting. We also rema
that the spaces on which the domain-theoretic integral was constructadlig] [are by
hypothesis metrisable. Thus, if the metric of these spaces is known, then the computatio
model of [L0] may be used to construct the integral. On the other hand, in other circumstanc
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a new domain-theoretic model may better reflect the underlying structure of the Hausdo
space in question. In this respect we develop a general theory that is applicable whenewv:
Hausdorff space is embedded in a domain.

There are various theories of integration in mathematics. Perhaps the most element
is that of reverse differentiation, which dates back to the time of Newton. However, son
functions f: R — R, most notablyf (x) = e‘xz, could not be integrated by this method,
yet their integral seemed to make sense. The problem is to write down a fufidtiderms
of a list of standard functions which differentiates to gi#eThe introduction of Riemann
integration by mathematicians such as Cauchy, Riemann, Stielties and Darboux gave
first cohesive mathematical theory. These mathematicians could say’fﬁeia (Riemann)
integrable (on compact intervals) and that there is a functiomhose derivative g~
but it may be not possible to write it down in terms of the standard list of functions of thei
time; this was later shown to be the case. It was also possible to integrate some functic
where the indefinite integral is not differentiable (at every point). An important part of the
Riemann theory of integration is its constructive nature, which has led to the developme
of numerical methods to approximate the value of an integral.

A significant limitation to the theory of Riemann integration is that it lacks good conver-
gence properties. One way that this limitation was overcome was by extending the Riema
integral by defining the integral of a function which is the monotone limit of a sequence c
integrable functions. This is the basis upon which the Daniell theory of integration arose. /
about the same time Lebesgue, among others, developed a new theory of integration, wt
also had good convergence properties. It turns out that the Lebesgue integrable functi
(with respect to the standard Lebesgue measure) are precisely those that are Daniell i
grable. Similarly, those functions which are integrable with respect to the Daniell extensic
of the Riemann-Stieltjes integral are precisely those that are Lebesgue—Stieltjes integral
However, the Lebesgue integral could be defined in abstract spaces whenever a measu
given on the abstract space. With this advantage, the Lebesgue theory stands as a basi
modern integration theory and analysis.

Further developmentsinclude the McShane integral, which is equivalent to the Lebesgu
Stieltjes integral, and the theories of Denjoy, Perron and Henstock, which are all equivale
to each other, and numerous other variations on these themes, giving generalizations in v
ous ways. Developments in other directions include contour integration of complex analys
de Rahm cohomology, stochastic calculus (in particular Ito integrals and Stratonovich il
tegrals), Feinman integrals, and so on. However, much of the constructive nature of t
Riemann integral is lost from these general theories.

The theory of integration that we present here keeps the constructive nature of the R
mann integral, and indeed naturally leads to algorithms that can evaluate an integral (o
Riemann—Edalat integrable function) to any desired accuracy. In contrast to the Riema
integral, we are not limited to integration only in the Euclidean spaR&} pur construc-
tion being applicable in many abstract spaces. Every Riemann—Edalat integrable functi
is Lebesgue integrable, and the values of the integrals agree, see Subéetiarfact, a
Riemann—Edalat integrable function must be bounded and continuous almost everywh
which, in general, is a more restrictive condition than Lebesgue summability. However, |
the case when the underlying space is completely regular (and Hausdorff), the Bourb:s
extension of the Riemann—Edalat integral (from the space of continuous functions) rece
tures the Lebesgue integral, see Subsectidrior details. In Subsectionr.4, we discuss
another extension process which is appropriate when the underlying space is not complet
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regular, this time, the extension based on the integral of a continuous function on a dom:
with respect to a continuous valuation.

Thus our theory of Riemann—Edalat integration should not be seen as a more gene
integral than, say the Lebesgue integral, but as an extension of the Riemann integral
more abstract spaces — giving a computational framework to integration in this setting.
application, this gives a method, which may be encoded in a computer program, to evalu:
specific integrals of physical or theoretical interest where traditional numerical methods a
inappropriate. Secondly, our domain-theoretic integral should provide a means by which
answer theoretical questions of computability; for example, what is the class of functior
for which the integral with respect to a given measure is computable. Lastly, it is also hope
that there may be some feedback into the classical theory of integration and measure wh
may lead to new and interesting results.

1.2. Outline of the paper

We now give a section-by-section outline of this paper. We follow the introduction
by outlining the basic set-up to be considered throughout the rest of the paper, and g
definitions of the notation and terminology used. We also give, in Subsétiopa number
of examples of constructions of a domain into which a particular type of Hausdorff spac
may be embedded; in particular, the rounded ideal completion of the partially ordered <
of formal balls of a general metric space, introduced and discussé®JnThis example
was the main driving force in the construction given in this paper of the domain-theoreti
integral, and thus may provide an intuitive insight into the proofs of the results that follow

Section3 gives the definition of the integral, with respect tG-@ontinuous probability
Borel measure, and shows its basic properties. In particular, Cor@lsgerts thaR(u),
the family of u-integrable functions, is a real vector space, and that integration, with respe
to u, is a positive linear functional. This section is based on the work presented in [3].

The next section goes on to explore the properties of this integral. We mention The
rem12, which characterizes the famiR(u) of all u-integrable functions, and the discussion
in Subsectiont.4 of the Bourbaki extension of our integral in the case when the underlying
spaceX is completely regular and Hausdorff. We also outline, in this case, how the Bourbal
integral recaptures the measyrend the Lebesgue integral with respecuto

In Sectiorbwe introduce a concept offa-Suslin subset. We then give, foFacontinuous
probability Borel measurg supported on #-Suslin subsef, a construction of a sequence
(v, of approximating simple valuations with = | _|*>;v,. In particular, the (upper
and lower) integrals of a functiofi: X — R may be evaluated from the (upper and lower)
Darboux sums corresponding to each of the simple valuationg Jff ;. Furthermore, if
is anyJ-continuous Borel measure on the underlying Hausdorff spatken this directly
leads to a definition of the integrgﬂA fdu of a functionf: X — R over anyD-Suslin
subsetA of X with 0 < u(A) < oo. Details of this may be found in the introductory
comments for the section.

Section6 gives a sufficient condition for an analytic subset of a general Hausdorff spac
X, embedded in the domain, to beD-Suslin. This is done using the notion of a countable
graded cover. Itis also shown that in the case wkiésia metric space anfil is the rounded
ideal completion of the space of formal balls then this condition is met, and hence eve
analytic subset i®-Suslin. We end this section with a discussion relating these ideas to th
support of &-continuous probability Borel measure on a complete metric space.

Finally, we comment, in Sectior, on a number of points. We start by mentioning a
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few drawbacks of the current theory. Next we remark that there is some latitude in ol
definition of the integral; specifically, the functiorfs and f* may be changed. However,
the functionsf, and f* are precisely the functions that make our definition of the integral
logically equivalent to the definition of the integral iB,[12] on compact and locally
compact separable Hausdorff spaces. Subsett®iists a number of questions concerning
topological measure theory that have arisen within this paper. In Subs@éctiva introduce

an extension process of the integral on a doniawith respect to continuous valuations,
giving a new integral on the underlying spa¢ewhich we suggest recaptures the Lebesgue
integral of a function with respect tdJacontinuous locally finite regular Borel measure on
X. If this integral could be placed in a computable framework then we feel that it would b
an excellent field for future research. We finish the section with some comments concerni
some of the many questions of computability with respect to the work described within thi

paper.
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are also given to the anonymous referees for their numerous comments and corrections

2. Preliminaries

In this section we set up the basic definitions, terminology and constructions that will b
used throughout the rest of this paper.

2.1. The underlying spaces

Throughout this papeX will be a space of points endowed with a Hausdorff topology
T, and D will be a domain with orderingc and a least element; by a domainve mean
a continuous directed complete partially ordered set. We use the standard terminology ¢
notations of domain theory, as for example 1, [and of topology, as for example ia1].
We also suppose that X — D is a topological embedding whe#® is given the Scott
topology. In many circumstances is embedded as (a subset of) the space of maximal
points of D. However, in this paper, we shall not assume this; an example of one of th
anonymous referees shows that some generality is gained by not making this assumpti

We recall that a non-empty subseic D isupwardly directedvhenever foralk, b € A
there existg € A with a, b T c. By saying thatD is directed completeve mean that every
upwardly directed set has a supremum, which we denote|byA. Forc, d € D, we say
thatc approximates! and writec <« d whenever for all upwardly directed subsdtsC D
with d E | | A there exists: € A with ¢ E a. We say that a subsét < D is abasis
of approximationof D whenever for every elemedte D the setB; = {b € B|b K d}
is an upwardly directed set withh = | | B;. A directed complete partially ordered set is
said to becontinuouswhen it has a basis of approximation. A sub8etc D is alower
setwhenever for ald € D with d C ¢ for somec € C we haved € C. Finally, theScott
topologyis defined by giving the closed sets as those 6ets D which are lower sets and
closed under the supremum of directed sets; that is, for all upwardly directed setS
we have |A € C.

The embedding allows us to define two set-valued maps]: D — P(X) by [d] =
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e~Yd1)and(-): D — T by (d) = e 1(d4), where
dt={ceD|dCc¢} and dt={ceD|d < c}.

We remark that an alternative, leading to a slightly different theory, would be to défine
as the topological closure (i) of e~1(d1); however, we shall not pursue this here.

Note 1. We observe the following simple consequences of these definitions.
1. If a C bthen[b] C [a] and(b) C (a).
2. Ifa < bthen[b] C (a), and[b] = [, (@).
3. [1]= (L) =X.
4. If B C Dis abasis of approximation, th¢c) | b € B} is a basis of the topolody.
5. It follows from the fact thaf is Hausdorff thate(x)] = {x} for all x € X.

We useR to denote theeal numbers, together with the usual operations of addition,
multiplication and ordek. Thepositive realgx € R with x > 0) will be denoted bR ™,
thenon-negative realbyRar, theextended real@R U{—o0, oo}) by R, and thenon-negative
extended real§R} U {co}) by R{, with the usual conventions concernitgo. We shall,
however, state explicitly each time that we require the convention

+00:-0=0=0-*o00.

For real-valued functions, with a common domain, the algebraic operations, partial o
dering<, and suprema and infima are defined pointwise. Wefusez for min{ f, ¢}, and
fvgformax{f, g}. Also, f* willdenote f 0, andf ~ will denote— ( f A0). A non-empty
family & of real-valued functions, with a common domain, is said tapeardly directed
whenever for eaclf, g € F there existd € Fwith f v g < h. We writeF 7 g whenTF is
upwardly directed angd = supy. f. Dually, we definelownwardly directecandd ™\ g.
For E C X we denote theharacteristic functiorof E by 1g; thatis, k:: X — R and is
defined by
1 ifxekE;

1) = {O otherwise.

2.2. Examples of such spaces

The first example that we consider is wh&ns a locally compact (Hausdorff) space.
We define thaupper spacéJ) | X to be the space

U, X ={K C X | K is non-empty and compact} (X},

ordered by reverse inclusiah = D, which is seen to be a domain with least elemgnt
The embedding: X — U, X is defined forx € X by e(x) = {x}. This construction was
discussed extensively iB], and a theory of integration was discussediii the case that
X is compact and metrisable (and hence also separable), ahd]im[the case thaX is
locally compact and separable. The theory of integration discuss8dl][is easily seen
to be entirely equivalent to the theory discussed here mite U X. Note, however, that
here we do not assume that the space is separable.
Another example is given by thieterval domainl ; R of R defined by

LR = {lo, Bl |, p € R anda < B} U (R},

and ordered by reverse inclusion. AgdinR is a domain, with least elemeR, and the
embeddinge:R — 1R is defined forx € R by e(x) = [x, x] = {x}. See [L4] for an
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approach applying this domain to computability on the real line. We also mer@ijon [
which develops integration in Real PCF; here it is the interval dorhginl] that is of
interest, defined by

1[0,1] = {[e, Bl |, B e Rand 0< @ < B < 1}

and ordered, as above, by reverse inclusion.

The main example of the paper is wh&nis a metric space with metrig and D is
the spacd(BX), to be defined in the next paragraph. Indeed the two (related) notions c
‘fine covering system’, see Subsectiér2, and of ‘graded covering’, see Subsectiod,
were generalizations of constructions using formal balls. The $paAcis the setX x Rg
with the orderingc, defined by(x, r) T (y, s) whenever (r> s and)p(x, y) < r —s.
Note that there is a natural topological embedding (with respect to the Scott topology ¢
BX) «: X — BX defined by:(x) = (x, 0). This construction was discussed extensively
in [10] and further discussed in§]. In the next paragraph we summarize the main results
from [10] that we shall use.

The spac®X is adomain if and only i is complete. In the case thitis not complete,
BX is a partially ordered set on which, although it is not directed complete, a ‘way below
relation<« can be defined in the usual way« b whenever for all directed sefs C BX
with least upper bound greater thysome element oB is greater thaa. This definition
amounts tdx, r) < (y, s) whenever (r > sand)p(x, y) < r —s. The spac®8X with the
relation« is an abstract basis, and hence, as in [1], we can ‘construct’ the rounded ide
completion. A subset C BX is arounded idealor «-ideal) whenever is a (non-empty)
upwardly directed, lower set with respect to the relatonThe spacé(BX) is the family
of all rounded ideald € BX ordered by set inclusion. By adjoining a bottom element
L, which we can take to b@, we obtain the spacg§BX),. By [1, Proposition 2.2.22],
J(BX), is a domain, with,: BX — J(BX)_, a natural (continuous) embedding. We note
thate = | ot: X — J(BX), is a topological embedding such that

e(X) ={ouX)={(x,00{|xeX}

is contained in the space of maximal points (which is homeomorphic to the topologic:
completion ofX). We also note that in the case thais a complete metric space we have

D=9BX), =B, X =BXU{L}.

We remark that ifX is a second countable locally compact space, ari§ a complete
separable metric space (and thus second countable), then in the above constructions
resulting domairD has a countable basis of approximation a(x) is the space of maximal
points of D. Also, in these cases, for all € D we see tha{d] is closed inX, and
consequently that o#(X) the inherited Scott topology and the inherited Lawson topology
coincide. Itfollows by [24, Corollary 2.5] tha(X) isaGs subset oD in the Scott topology
(thatis,e(X) is a countable intersection of Scott open sets), andddy Corollary 2.6] that
e(X) is polish; in particulaX is metrisable. A number of useful consequences of this setuy
are given in 8] and in R5]. We mention [25, Theorem 8.7], which asserts that the map
w — [ (to be defined in Subsectidh4) is a homeomorphism between the spiddex of
probability Borel measures aXi with the weak topology and the space of maximal points
Max (P!D) of the normalised probabilistic power domaih® with the inherited Scott
topology. This result follows on from the work presented8ih iwhere it is shown, in §,
Proposition 4.2 and Corollary 4.1], that wheneweis a separable metric space embedded
as aG; subset ofD, and consequently a subset of the space of maximal points, then th
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mapu — /1 is an embedding df11X into a subset of the space of maximal points of the
probabilistic power domaiR D.

2.3. Measures orX

Throughout this paper we will be concerned with measures X, which in our nomen-
clature will be termed-continuous probability Borel measuresll measureg: on X will
be assumed to be outer measures; that i (X) — Rg is a function satisfying the
following conditions:

1. u@ =0
2. if E, F € X with E C F thenu(E) < u(F);
3. for any sequenceE;)?°, of subsets o we haveu (|2, Ei) < D ioq n(E)).

If w(X) < oo thenp is said to bdinite, and ifu(X) = 1 thenyu is said to be grobability
measure. The advantage of the outer measure theory is that we do not have to worry akt
whether the measure of a given set is defined; however, we will need to know which sets
‘measurable’. We recall Carathéodory’s criterion; aMefC X is said to beu-measurable

if forall E € X we have

u(E) = p(ENM)+ p(E\M).

We denote byM,, the family of all x-measurable sets which, as is well known (see, for
example, [27, Theorem 2]), ise-algebrg that is,M,, is closed under the set operations
of complement and countable union.

We let B denote the family of alBorel subset®f X which is the smallest-algebra
that contains the familg” of all open subsets of; equivalently,B is the smallest family
of subsets ofX that contains the family of all open sets and the family of all closed sets
and is closed under countable unions and (hon-empty) countable intersections. A meas
w is aBorel measuravheneverB € M, andu is B-regular (which is often referred to as
Borel regulan; namely, for allE € X we have

p(E) =inf{u(B) | E < B € B}.

The more conventional notion of a Borel measure is of a countably additive set functic
v:B — R. We may define the (outer) measure extengiaf v by

w(E) =inf{v(B) | E C B € B}

forall E C X. Thenpu is a Borel (outer) measure, in particularcC M,,, that agrees with
v on B; see [27, Section 2.4] or 2B, exercises 12-3 through to 12-11]. Moreover, the
restriction ofu to M, (considered as a measure defined enralgebra) is the completion
and then saturation (in that order)waf

We shall also be interested in two other topological properties of measures; name
T-regular andr-continuous, wher@ denotes the family of all open subsets¥ofA measure
wu is T-regular whenever for alt € X we have

p(E) =inf{u(T) |E ST €T},

and isT-continuous whenever for all subfamiligisof T, which are (upwardly) directed by
C, we have

n(Ju) = suptu)i v e uy.
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All the measures in the discussion that follows will be assumed B-bentinuous, as we
wish to relate them to continuous valuations. The conditionghag T-regular will only be
required in Subsectiors4and7.4. We note that, although all Borel measures are uniquely
determined by their restriction {6, the condition ofF-regularity gives a simple method by
which to reconstruct the original measure from this restrictidf.to

The following lemma will be of use to guarantee that a fifiiteontinuous Borel measure
is T-regular. We recall that a topological spacés said to beegularwhenever for all points
x € X and closed subsefs of X with x ¢ F there exist disjoint open subséfsandV of
X such thatc € U andF C V.

Lemma 1. Let X be regular and lejx be a finiteT-continuous Borel measure df. Then
w is T-regular.
Proof. We consider the familyl of all Borel subsets ok for which T-regularity holds;
that is

A={BeB | w(B)=inf{u(T)| BT eT}}.
Sinceu is B-regular, it suffices to show that = B. We note thaf” € A sinceT C B. One
readily verifies, using the measurability of all the sets concerned,Ahatclosed under
finite unions and intersections, and hence also under countable unions and intersectic
Thus the result will follow on showing that contains the family of all closed subsets of
X.

Let F be a closed subset &f. For eachx € X \ F we may, by the regularity oX,
choose disjoint open subsdts and V, of X such thatt € U, andF C V,. LettingU
denote the family of all finite unions of the sdtg, we see thak \ F = [ JU. Thus for
¢ > 0 we may choose a finite collection of pointgl), ..., x(n) in X \ F such that

n (U Ux@) > w(X\ F) —¢.

i=1
Letting T = (i_; Vx(). it follows thatF € T, and that

pn(F) < uw(T) < w(X) — (WX \ F) — ) = u(F) + &,
as required. O

2.4. Normalised continuous valuations @h

To ‘construct’ the Riemann—Edalat integral &nwe will work with the space £D of
normalised continuous valuations & which we now define. We defiri@to be the family
of all Scott open subsets db. A functionv: 0 — Rg will be called avaluationon D
whenever the following conditions are satisfied:

1. v(®) =0;
2. ifU,V e OwithU C V thenv(U) < v(V);
3. vismodular, namely for allU, V € O,
VWU UV)4+vUNV)=vlU)~+v(V).

A continuous valuatiom satisfies the extra condition that for all subfamiliesf O, which
are (upwardly) directed bg, we have

v (U u) — sup{v(U)| U € U}.
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If, in addition,v(D) = 1 thenv is said to be aormalised continuous valuation. We denote
the space of all normalised continuous valuation®dsy PL D, and define the partial order
c1on PD by v1 =1 vy wheneven1(0) < vo(0) for all Scott open set®. As is well
known, the partial ordeE! induces a way below relation, which we shall denoted,
see for example [317].

Of special interest are thmint valuations),; defined for eacld € D by

1 ifdeO;
”d(o)z{o ifd ¢ 0.

A normalised simple valuatiois a finite linear combination of point valuations which
belongs to PD; for example

Zrana whereA C D is finite, andz rq = 1.
acA acA

The embedding allows us to transfer a Borel measwreon X to a valuationz on D by
defining

1(0) = n(e 1(0))

for all Scott open subset8; giving a mapu +— 4 from the family of all T-continuous
probability Borel measures a%i into PLD. We shall use the notatio$( ) for the directed
set

{v € PD | v simple andb < i}.

In this way we may think of (&) as the set of simple valuations approximating
The following two lemmas, taken from [3], will be of use; see al&6, pages 84 and 87].

Lemma 2. For two normalised simple valuations
vy = Z Fala and Vo = Zsbnb,
acA beB

whereA, B € D, we havev; C1 vy if and only if, for alla € A andb € B, there exists a
non-negative numbey, 5 such that

Z tap =rs  and Ztuyb =5

beB acA
andr, , # 0implies thatu C b, foralla € A andb € B.

Lemma 3. For two normalised simple valuations
vy = Z Fala and Vo = Zsbnb,
acA beB

whereA, B € D, we haver; <! vy ifand only if Le A withr; # Oand, foralla € A
andb € B, there exists a non-negative numbgy, withz, , # O, such that

Z tap =rs  and Ztayb =5

beB acA
andz, , # 0impliesthatu « b, foralla € A andb € B.

We also give a result for’® corresponding to [3, Proposition 2.4]; see al8pLlemma
3.4] and [22, page 46].
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Lemma 4. LetA be a normalised continuous valuation andilet ), ra1, be asimple
normalised valuation. Them «* 1 if and only if Le A withr; > 0and for all non-empty
B C A\ {1} we have

> rp < A(BY).

beB
whereB 4 denotes the s¢t), . b1.
Proof. We will use the notation and methods 8f[For the ‘if’ part, note that the conditions
above imply by [3, Proposition 2.4] that” <« A, and hence = (v™)* <« 1, by [3,
Proposition 3.2(ii)]. For the ‘only if” part, first note that by3,[Lemma 3.4] we must have

Le Awithry > 0. Therefore, by [3, Proposition 3.2(iii)] we have « A, and the result
follows directly from [3, Proposition 2.4]. O

3. Definition of the integral

We first define the integral and then show that it is well defined and linear. Our definitio
is a straightforward generalization to our framework of that given in [3, Section 4].

3.1. The construction

We now define the integral, with respect t@aontinuous probability Borel measure
u, for a bounded functiorf: X — [«, 8], where[a, ] is a (hon-empty) interval dR. We
define functionsf,: D — [«, Bl and f*: D — [«, B] by

feld) = inf f(x) and f*(d)= sup f(x),
x€ld] xeld]

with the convention that inf = 8 and su = «. For eachy € S(j1) we can express as
Y acaTalla; WhereA € D and)_,_, 7o = 1, and define th®arboux lower suniby

/f* dv =" rafula),

acA

and theDarboux upper sunby

/f* dv=">"raf*(a.
acA
The Riemann—Edalat lower integras then defined as
/fdﬂ = sup | fidv,
* veS(it)
and similarly theRiemann—Edalat upper integrab

/*fd,uz inf [ d.

veS()

Finally, when/, fdu = f* f du we write [ f du for the common value, and say thats
Riemann—Edalat integrable, which we will denote pye R(w); thatis,R(u) is the family
of all bounded functiong: X — R such that/" f du exists.

Note 2. We remark that the above construction does not extend directly to unbounde
functions (except the special case thigt du = +o0). Forifv =3, ,rana € S(1), by
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Lemma4, we see that.€ A with r; > 0. Thus for unbounded either [ f*dv = oo or
J f«dv = —oo (or both).

3.2. Theintegral is well defined

We will now show that these definitions are sensible. In doing so we will closely follow
the steps in3]; in particular, compare our Lemntaand Corollaries/ and 9 with [3,
Proposition 4.2, Corollary 4.3 and Proposition 4.1, respectively]. The proofs of our result
listed above, mimic those given i3]} and are only given for completeness. It may also
be advantageous to consider 8] as an order structutfer, 8]., ordered by the usual real
ordering<, and the dual spade, 8]*, ordered by the opposite orderiegd” = >. Thus
f«: D — [a, Bl and f*: D — [«, B]* are both order-preserving, but in general may not
be continuous.

Lemmab. Letv € S(@). Thenf fidv < [ f*dv.
Proof. We can express as

Zr“”a whereA C D is finite, andZ ra = 1.

acA acA

The result follows by noting that for eaeghe A we havef,(a) < f*(a). O

Lemma 6. Letvi, v2 € S(i). Suppose; = vo. Then

/f*dvlgff*dvz and /f*dv1>/f*dvz.

Proof. Expressi1 as) ", 4 rafla andvz as) . spnp, WhereA, B C D are finite, and the
coefficients sum to one. Then by Lemrghere exist, , > 0 such that for each € A

andb € B
ra=Y tap and s, =Y fap
beB acA
and
ta,b * O0=— aChbh.
Thus

[ran=3% (Z ra,b) L@ <Y (Z w) 7:0) = [ f.e

acA \beB beB \a€A
since
lap #0= aC b= [a] 2 [b] = fi(a) < fu(D).
A dual argument holds fof*. O

Corollary 7. Letvy, vz € S(2). Then/[ fidvi < [ f*dvs.

Proof. SinceS(j1) is directed, we can takey € S(/1) with v1, v» C v3. Then

/f*dv1</f*dv3</f*dv3</f*dv2-
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Lemma 8. Let f, g: X — R be bounded; € Ry andv € S(2). Then

/(f+8)*dv>/f*dv+/g*dv,
/(f+g)*dv<ff*dv+/g*dv,
f(—f)*dv=—ff*dv and f(—f)*dv=—/f*dv,
/(Cf)*dvchf*dv and /(cf)*dv:c[f*dv,

and if f < g then

/f*dvgfg*dv and /f*dvgfg*dv.

Proof. The result follows easily by noting that for alle D we have

(f + 8)«(a) = ful@) + g(@), (—fl=—f" and (cf)«(a) = cfi(a)

and if f < g then f,.(a) < g«(a), and similarly for f*, ¢* with a dual inequality holding
for (f + @)™ O

Corollary 9. The setR(u) of functions, with addition and scalar multiplication defined
pointwise, is a real vector space, and integration with respeqt s a positive linear
functional.

Proof. It follows directly from Lemma$ and8 that

ffdu«Jr/ gdu>/(f+g)du>/(f+g)du>/fdu«+/gdu, (3.1)

and hence forf, g € R(u) we havef + g € R(u) and

/(f+g)dM=/fdM+/ng,

since in this case the left- and right-hand side&0of) must be equal. Similarly,f € R(u)
and [c¢fdu = ¢ [ fdu, wheneverc € R and f € R(u), and [ fdu > 0 whenever
f e R(w) with £ > 0. O

4. Properties of the integral

The aim of this section is to draw parallels with the classical Riemann integral on compa
intervals ofR. In particular, we classify all functiong € R(x) and show that the Lebesgue
integral is recaptured by the Bourbaki extension/of du on the lattice of continuous
functions on a completely regular, Hausdorff space

4.1. A condition for integrability

Our first result is a restatement o8, [Proposition 4.6], which will prove useful in the
remainder of this section.
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Lemma 10 (TheR-Condition). Let f: X — R be bounded. Theri € R(w) if and only
if for all £ > 0, there exist® € (1) such that

/f*dv—/f*dv<8.

Proof. Let f € R(un), sothatf, fdu = [* fdu = [ fdu. Lete > 0 and choose
v1, v2 € S() with

/fdu—/f*dv1<g and /f*dvz—/fd,u<g.

SinceS () is directed we may choosg € S(j1) with v1, v2 C v3, so that

[f*dV3—/f*dV3<£.

Conversely, forf ¢ R(u) we may set

8:/*fdu—/*fd,u>0.

Then, for allv € S(1) we have

/ﬁw—/ﬂ®>/3mhfjw:a

thus completing the proof. O

4.2. Characterization of integrable functions

Here we show (see Theoretfl) that an analogue holds for the Riemann—Edalat integral
of the well-known Lebesgue criterion which characterizes the Riemann integrable functiol
on a compact interval d&. Our first task is to find the set of continuity points of a function
f: X —> R

We define a sef C D to be acovering ofX from D whenever

xcJwo
ceC

and for allc € C we have(c) # (. We letC denote the family of all coverings of from
D and define the relatiog onC by A < B if and only if wheneverx € X anda € A with
a K e(x)thereisa € Bwitha C b « e(x); that s,

VYae A,Vx € X, (a KLe(x)y=—>3beB:a Eb<<e(x)).
Observe thatifA € D is such thatX < [ J,.4(a) then
{aeAl(a) #0}

is a covering ofX from D. For B C @, a family of coverings ofX, we say thafB is afine
covering systeraf X wheneverB is directed with respect to the orderirg defined above,
and

{®) | 3BeB:beBeB

is a basis of the topology oki. An example of such a fine covering systentigHowever,
in the arguments that follow, it may be useful to consider a smaller family. ViBhenD is
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a basis of approximation i then we can take
B ={A C B| Aisacovering ofX from D}.

Another example is provided whexi is a metric space) = J(BX), ande = | o, as
discussed in Subsectidh2. Here it suffices to take any dense Bet X, or E = X, and
then let

B={{x,2"){|x€E} | neN}L
Throughout the rest of this subsection we suppose that a fine covering sBstér¥ is
given.
Let f: X — [«, B]. We defineQs: D — [0, B — «] by

Qr(d) =sup{f(x)— f(y) [x,y € (d)}
For B € B ande > 0, we define

G5(f) = Jl®) | b e BandQs(b) < e}
Notice thatifA < B thenG% (f) € G%(f). Hence

G (H=JG6xw!
BeB

is a directed union of open sets. We also note thatf D is such thatd) N X \ G*(f) # ¢,
thenQs(d) > ¢, sinceB is fine onX. Finally,

G(f) = ﬂ G°(f) = {x € X | f is continuous at}.

>0
Lemma 11. Let F C X be closed and let = ), 4 rana € S(2). Then

Z{ra la € Aand(a) N F # B} > u(F).

Proof. Let
B={aeA|(a)NF =0},
so that
Z{ralaeAand(a)ﬂF;é@}z Z ra.
acA\B

If B = ¢ then the conclusion holds sin®€,,., 7, = 1 > w(F). By Lemma4, L€ A. If
Lle BthenF = (1) N F = ¢, which implies thatB = A, and the conclusion holds by
convention; namely} " ¥ = 0 = (). Thus we may assume thBt fandB C A\ {1},
and hence by Lemméawe have

D < A(BY) = ple N (B,
beB
whereB+ denotes the sét), ., b4. The result follows on noting that for eadhe B we
have(b) C X \ F, so thate"1(B}) = Upep(®) € X\ F, and consequently
D ra> 1= (e (BY) > 1— w(X\F) = u(F)
acA\B

as required. O
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We can now show our main theorem, which exten@s Theorem 6.5] andlR, Theo-
rem 5.12] to the framework of this paper.

Theorem 12. Letf: X — [«, B] be bounded. Thefi € R(w) ifand only if f is continuous
at u-almost allx € X.

Proof. Suppose thaf is not continuous at-almost allx € X; thatisu(G(f)) < 1. Then
for somes > 0 we haveu(G?(f)) < 1, and hence the closed sét\ G°(f) has positive
measure. Thus forall = )", _, ran. € S(t) we have

f v - f fedv="ra sup (f) = f()) > eu(X \ G*(f)) > O,

acA XYelal

since ifa € A is such thata) N (X \ G4(f)) # @ then
sup (f(x) — f() > e

x,y€lal

Therefore, théR-condition fails.

The converse will be shown by checking that fReondition holds. Suppose thitis
continuousu-almost everywhere, and let> 0. Thenw(G?(f)) = 1. Hence we may take
B € B with u(G%(f)) > 1—e. We define

0 = Jibt | b € BandQ(b) < ¢}

so thate 1(0) = G3(f). Thusi(0) = u(G%(f)) > 1 — ¢, and hence we may take
V=73 ,calalla € S(L) Withv(0) > 1 —¢. ThusZaeA\O r, < ¢ and hence

> ralfH@ = fu@) < (B — .
acA\O
For eachu € A N O there exist$ € B such that
bka and Qr(b) < e.
Thus
sup f(x) — inf f(y) = f*(a) — fi(a) <e,
yelal

x€la)l

and henc . sno ra(f*(@) — fi(a)) < &. Therefore,

/f*dv—/ﬁdv:Zra(f*(a)—f*(a))<5+(ﬂ—a)s:(l+/3—oz)s,

acA

and the result follows. O

4.3. A connection with Lebesgue integration

In this subsection we show that if a function is Riemann—Edalat integrable then it i
Lebesgue summable, and the values of the integrals agree. This exdefidleqrem 7.2] and
[12, Theorem 5.13] to our setting; our proof is similar to that d2,[Theorem 5.13]. There
are a number of (equivalent) definitions of the Lebesgue integral of a fungtidh— R
with respect to a measune, which we shall denote here hy(f). We give one such
definition which will suit our purposes; see, for example, [16, Section 2.4].
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We letM denote the family of alj.-measurable subsets &f, and letu: X — R. We
recall thatu is said to be au-measurable functiowhenever

xeX|ukx)>t}eM
forallt € R. We say that: X — Ris au-step functionf and only if u is au-measurable
function with countable image(X) < R such that
Do)=Y tu@ @) = Y0 o) € R
teu(X) teut(X) teu=(X)

that is, the right-hand side of the equality is not of the fexm- co. The usual convention
of £oo-0=0=0- +o0 is employed here.

Let f: X — R be any function. Thepper Lebesgue integraf f with respect tqu is
defined by

w*(f) =inf [ Z tu(u_l(t)) \ f < uis au-step functiory ,
teu(X)

and similarly thdower Lebesgue integras defined by

we(f) = sup{ Z ti™t(0) | f > uis ap-step functiory .
reu(X)

We say thaff isLebesgug-integrablewheneverf is au-measurable function and (f) =
us(f), and we defing.(f) to be the common value. Bylaabesgue:.-summabldunction
f we mean a Lebesgue-integrable functionf such thatu(f) # doco. The family of
all Lebesgugu-summable functiong: X — R will be denoted by (x). We note that if
wW*(f) = us(f) # oo then f is u-measurable, and hengee L(u). We also note that
if u is ap-step function them is Lebesguec-integrable and

pay =Y D).

teu(X)

Theorem 13. Let f € R(w). Thenf € L(w) and [ f du = w(f).

Proof. Choose a sequence of simple valuationse S(j1))72,; with

ff*dvi—>/fdu and ff*dvi—>/fd,u asi — oo.
We writev; = ZaeA,- ra.ing @nd define
ui(x) = min{f*(a) |a € A; andx € (a)},
vi(x) = maxX fix(a) | a € A; andx € (a)},

so thatu; > f > v;. We work withv; for the time being.
We order the values of, (a) fora € A; asco < --- < ¢, and defineforj =0, ...,n

Bi()=lacAilfil@)>¢} and U(h=eB(HH= ] B
beB;(j)

https://doi.org/10.1112/51461157000000292 Published online by Ca¥Hnidge University Press


https://doi.org/10.1112/S1461157000000292

Domain-theoretic integration.

Note by Lemmal that L€ A; and henceg = f.(L) andB;(0) = A;. We also note that
forj =1,...,nwe haved # B;(j) C A; \ {L}andB;(j) C B;(j — 1). Next we write
co=cpand¢; =c¢j —cj_1for j=1,...,n Thus

n
vi =Y &y,
j=0

and hence; is au-step function. Also

EOESICAED ST 1D ST ED WATACE AT
j=0

j=0 beB;(j) acA;

Dually, ordering the values of*(a) fora € A; asdp > - - - > d,,, we may represent
m
wi =y dily,
j=0

whered; < 0for j = 1,...,mand show that

p(i) <Y raif*@) =/f* dvi.

ach;

Thus fori = 1,2, ... we see that; andv; areu-step functions and

/f* dvi = pui) = w*(f) = ne(f) = n(v) > /f* d;.

Lettingi — oo we see that

W) = ) = / Fdu # 400,

and the result follows. O

4.4. Bourbaki extensions of the integral

We begin this subsection by defining the notion of a Bourbaki integral on a Stonia
lattice of functions. Our treatment (and terminology) is in the spirit &6, [Section 2.5],
except that we use Bourbaki extensions instead of Daniell extensions. Th2aggijes
an excellent account of both the Bourbaki and Daniell extensions of an integral defined «
a vector lattice of functions (defined iR, 2.1], and called fundamental systemHere
our first extension of the integral is from the Stonian latSce® the vector lattice&s — 8,
see below. All subsequent steps are a2i],[and thus our treatment here is essentially
equivalent to that of [26].

A family 8 of functions f: X — R is aStonian latticef and only if whenever € Rg
andf, g € S then

f+e cof fAg [fArc

are alling, and if f < gtheng — f € 8.
Observethaf* = f — fAOQ, f~ = fT— fand|f| = fT+ f~ areinS. Also, if §
is a Stonian lattice, then so is

$ST={fe8|f>0}
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Finally, the main example that we wish to consider is the case whisréhe family of all
bounded continuous functions X — R.

A function I: § — R is apositive Bourbaki integra{on the Stonian lattic€) means
that wheneverf, g € 8, ¢ € Ra‘ andJ C 8 is downwardly directed witlF N\ 0, that is
infreq f(x) =0forallx € X, we have

I(f+8)=1(f)+1(). I(cf) = cI(f). Jil’elgl(f)=0,

andif f < gthenI(f) <I(g).

We note that the following proposition and Corollé&ymply that/(f) = [ fduisa
positive Bourbaki integral on the Stonian latti&®f bounded continuous functions o
and so also o8™.

Proposition 14. Let ¥ be a downwardly directed family of bounded, continuous, non-
negative functions with N\, 0. Then

inf du =0.

feS"/ fdu

Proof. Without loss of generality we may suppose tfganay be chosen so thgt X —
[0, B]lforall f € . If there were no such, then replacing by the (downwardly directed)
subfamilyG = {f € F | f < g} in the following argument, for some chosgre J (which
by definition is bounded), shows that

infu[Mfdp,z:O
fe€$
The result then follows on noting that

0< inf /fdug inf /fdu,
feF fe§
sincedF must be non-empty and evefye ¥ is non-negative.
Lete > 0 and define for eacli €

G*(f) = X0, &),
so thatX = Ufeg G*(f) is a directed union of open sets. Thus there exfsts F such
thatu(G*(f)) > 1 — ¢, sinceu(X) = 1. Define
0= U{a% | d € Dand(d) € G°(f)}
so thate=1(0) = G*(f) and hencgi(0) > 1 —&. Choosey = Y, 4 Falla € S(1) with
v(0) > 1—¢.Then
Y raf*(@) < s,

acA\0

dooraff@< Y ree<e,

acANO acANO

sinceifa € O thenthereisd € Dwithd <« aand[a] C (d) C G*(f),sothatf*(a) < &.
Therefore,

and

O</f*dv</f*dv<s+8,3=(l+/3)8,
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and hence
o< [rdu<as+pe
Sincee was arbitrary, the result follows. O

We recall that the topological spageis said to becompletely regulawhenever for all
pointsx € X andU C X openwithxy € U there exists a continuous functigh X — [0, 1]
such thatf(x) = 1andf(y) = Oforally € X \ U. We also note that iK is completely
regular then it is also regular. In this case, the following theorem allows us to recapture tl
measureu from the Bourbaki integral (f) = [ f du defined on the lattice of bounded
continuous functions oX. For an interesting example of what can go wrong if we were to
use the Daniell theory, see [16, 2.5.15].

We use the notatio,, whereg is a family of subsets ok, to denote the closure &f
under directed unions; that is,

G, = {US" F C G and7 is directed undeg} )
We shall also use the following terminology. A measgren X is aG,-measuravhenever
G: € My (thatis, each setifi; is p-measurable) anlis G.-regular; thatis, forallE € X
¢(E) =inf{¢(G) | E C G € G},

with the convention that inf = co. We will say thaty is acontinuousS,-measuref ¢
is a §;-measure ana is G.-continuous that is, for all subfamiliesH of G,, which are
(upwardly) directed byc, we have

¢ (LJ%0) = suplg ()| H e 31).

Theorem 15. LetS be a Stonian lattice of functions df, and let/ be a positive Bourbaki
integral on8. Define

9={{xeX|f(x)>t} | feS*andt>0}.
Then there exists a unique continugiysmeasurep on X such that for allf € § we have

1(f)=¢(f),
where¢ (f) denotes the Lebesgue integral ofvith respect tap.

Proof. The proof of this is similar to the proof of the Daniell-Stone Theorem adng.5.2

and 2.5.3], except that we need to replace increasing sequences of functions by upwal
directed familiesf. The measurg is defined as follows. FaE € X, let us say thaf € §*
suits E if and only if F is upwardly directed and sup > 1g; that is, supg f(x) > 1
whenever € E. Then we define

¢(E) =inf {supcs5 I(f) | F < 8" andF suitsE} .

Notice that ifF < § is upwardly directed and sup > 1z then{f™ | f € F} € §*
suits E and supy I (f*) = sup.5 I(f), since by the continuity of on § we have

inf req 1(f7) = 0.
The proofs that

1. ¢ isameasure oK,
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2. if E C X andg € 8" with g < 1 thenI(g) < ¢(E),
3. every membey < ST is ag-measurable function,

may be transcribed from the proof dff, Theorem 2.5.2] by replacing increasing sequences
of functions by the appropriate directed subfamilie§ ofAlso, the proofthal (f) = ¢ (f)
forall f € §Sis precisely as in [16, Theorem 2.5.2].

Then, as noted in [16, 2.5.3],

(f ANt+r)—fA t)/r S ]l{xeX | f(x)>1) asr \(0 (4.1)

wheneverf € 8§t and: > 0. It follows thatH e G, if and only if there exists a directed
family H < 8* such that = \/H. We need to show that each member%fis
¢-measurable, andl is §;-regular andj,-continuous.

LetH € G, andH < 8* be suchthat# = \/ #. Then, in order to prove measurability,
we show that folE € X we have

$(E) =2 ¢(ENH)+¢(E\ H), (4.2)

as the reverse inequality follows by the definition t#ha$ a measure. Thus we may assume
that¢(E) < co. LetF < 8T suit E and suppose that SHRr I (f) < oo. We define
K={fAh|f eFandh € H}andforeacth € HwedefineF(h) = {f — fAh| f € F}.
ThenX suitst N H, and hence for ak > 0 we can choosg € F andh € H such that

I(g Ah) > supl(k) —¢
keX
since sup.y I (k) < SUPres 1 (), which is finite. It follows thatF (k) suitsE \ H, since
f Ah <1y and that

P(ENH)+P(E\NH)<I(gAh)+e4+ sup I(f) <supl(f)+e.
feFh) feF
The inequality4.2)follows on lettings tend to zero and taking the infimum over all families
JF that SuitE.

The fact thatp is §;-continuous follows easily by standard techniques from equation
(4.1)and the fact that is continuous o1 ™. To prove G-regularity, we letE C X be such
that¢(E) < oo, and lete > 0. Then we may choosg € $* such thatF suits E and
SUpres 1 (f) < ¢(E) +e. Then

G=Jtxex|f)>1/1+e)
feF

satisfiest € G and

$(G) < A+e)supl(f) < (L+&)(@(E) +¢).
fex
Regularity follows on letting ~\ 0.
Finally, for a measuré such that all functiong’ € §* aref-measurable ané(f) =
I(f), we see by equatiotd.1) thatd must agree or§ with ¢. It follows that if 6 is a
continuousG.-measure thef = ¢. O

Notice that whenX is completely regular an8l is the Stonian lattice of bounded con-
tinuous functions orX, theng, above, is a family of open subsetsXfwhich is a basis of
the topology onX and is closed under finite unions. Herfggis the family T of all open
subsets o. Thus the uniqgue measugeis precisely the original measure by Lemmal
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and Theoremd 2 and 13. Furthermore, it is then the case thathe Bourbaki extension
of I(f) = [ fdu, recaptures the Lebesgue integral with respegt te ¢; that is, for all
f:X — R we havel (f) = u(f) whenever either side is defined. This is provedd8,|
Theorem 12.18 and Corollary 12.22]; see also [26, Remark 10.2].

We briefly sketch the steps in tBourbaki extensioh of a general Bourbaki integrdl
defined on a Stonian lattice We let S— S denote the family of functions

{(f—glfigeSi={f—glfigesth

Notice that ifS is a vector lattice thef — § = S. We extend (if necessary)to 8§ — 8 by
definingl (f — g) = I(f) — I(g) which uniquely determines the value bff — g) by the
linearity of I and the order properties 8f

Next we let(S — 8)* denote the family of all functiong such that there is an upwardly
directed familyF € 8 — 8 with ¥ ¢ and defind*: (8§ — 8)* — R by setting

I*(g) = supI(f)
feg
whereJ andg are as above. The value bf(g) is uniquely determined by the continuity of
1 ong. Dually, we defings — 8), andl, by replacing ‘upwardly directed’ by ‘downwardly
directed’. For all functionsg’: X — R we define the upper integraf by

1*(f) = inf{I*(g) | g € (8 — §)* andg > f}
and similarly the lower integrals by

Iy(f) = sup{L(g) | g € (8 — 8). andg < f}

with the convention that inff = co and su) = —oo. In the case whef — § = § we
simply write 8* for (8 — §)* andS, for (S — 8), in the above definitions.

A function f: X — R is said to be/-summablavhenever’#( f) = Is(f) # +oo, and
in this case we denote the common valud @g). The family of all7-summable functions
is denoted by (7). For the last extension, we I&t, (1) denote the family of all functions
f:X — Rsuchthatf ng € L(I)forallg € $—8, and duallyC_ () contains all functions
such thatf v g € L(I) for all g € 8 — 8. Finally, we letl(l) = Ly(HUuL_(I)and
extendl tol: L(I) — R by settingl (f) = I*(f) wheneverf ¢ Lo (I andl(f) = Is(f)
wheneverf € L_(I). This is well defined sinc€& (1) = L. (I) NL_(I); see for example
[26, Remark 6.6]. The functions () are said to bd-integrable.

A full account of this procedure is given i2¢]. We also remark that the measyre
in Theorem15, may simply be defined faE € X by ¢(E) = I*(1g), and thatE is
¢-measurable if and only if d € L (1).

5. Integration onD-Suslin subsets

In this section we suppose thatis a non-empty subset &f of a certain form; namely,
a D-Suslin set. AT-continuous probability Borel measugeis said to besupportedon A
wheneverw (X \ A) = 0. In this case thé-Suslin structure ofd, together with enough
knowledge ofu, directly leads to a construction of a sequeqgg;? , of simple valuations
that approximateg with i = | |72, v, and hence the integral of a function ahmay
be approximated by evaluating the Darboux sums for this sequence. The next section v
deal with identifying which sets arB-Suslin. We also note that for the weakly hyperbolic
iterated function systems with probabilities, as discussed in [6], the attractor of the IFS
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D-Suslin and the invariant measure i§-&ontinuous probability Borel measure supported
on the attractor; see also [5, Section 6] and [10, Section 6].

Another motivation for this section is to define the integral ovebeSuslin) setA with
respect to &-continuous Borel measuge on X for which 0 < u(A) < oo; we do not
assume that is supported om. This may be achieved in the following way. We define the
measurgs/A by

H(ENA)

A)E) = ———— 5.1
(n/A)(E) A (5.1)

forall E € X. Then for anyf: X — R we may define

/ Fdu = u(A) / £ d(u/A) (5.2)
A

whenever the right-hand side exists. We show in Subsebtiihat../ A is aT-continuous
probability Borel measure whenevgris a D-Suslin set, and consequently the right-hand
side of this definition may be evaluated by a sequence of simple valuations.

5.1. The Suslin operation

We start with the usual notations to define 8wslin operation. For € N, as usuaN”
consists of all sequences of natural numhets («1, . . . , k), interpretingN® by {()}; the
setofthe empty sequence ThenN*° denotes the disjoint union of th&' overalln € N. At
last, NN is defined to consist of all sequenges (i, € N){2 ;. Fork = (k1, ..., k) € N
andm € N with m < n we writex|m = (k1, ..., k) € N, we do not define|m for
m > n. Similarly, wheni € NN we writeijn = (i1, ...,i,) € N for all n € N. Finally,
again whenc = (k1, ..., k,) € N*andi ¢ Nwewillwrite k -i = (k1, ..., &, i) € N*H1,
for the concatenation of (the finite sequencddllowed by the sequenag).

Next, letF be any class of subsets &f then theSuslin-Fsetsare the sets of the form

s= N\ F=J ) Fimn

KeN>® ieNN n=0

where(F (k) € F),ene IS asubfamily off, or equivalentlyr: N*° — . Of special interest
(see Sectiol) is the case wheffi is the family of all closed subsets &f. We may refer to
S as the set resulting from the Suslin operation applief 1B — F. Alternatively, we

will simply say thatF generatess.

As is well known, see for exampléel§, 20, 23, 27], the family of all SuslinF sets,
whered is any family of sets, contair and is closed under countable unions, countable
intersections and the Suslin operation; that$$s (5)) = &(9), whereS(F) denotes
the family of all Susling sets. Also, leiw be any measure and 1&t be the class of all
u-measurable sets. Then all Sushfisets arq.-measurable, that (M) = M; see R7,
Theorem 26]. In particular, i is a family of u-measurable sets th&wF) < M.

We define a metrie onNY by

o)) = { o (5.3)

wherex is the least positive integer such thiat~ j;,. We note that with this metriy is a
complete separable (ultra-)metric space; the resulting topological space is often called |
Baire space.
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In what follows it will be useful to denote H the set of point&i>™ U NN together with
the partial orde=, and the resulting Scott topology, wherez « whenever eithek = «
orx € N” (for somen € N) and = «|n; thatis,k € NN orx € N with m > n. Notice
thatN is a domain, withN* a countable basis of approximation (of algebraic elements),
and with () (the empty sequence) bottom. Furthermore, the inherited topology (from th
Scott topology) orNY (the space of maximal points) is precisely the topology generatec
by the metrico. We also note that for € N°° we have

(K):KTDNN:KTHNN:[K].

5.2. D-Suslin subsets

For the remainder of this section we will be concerned with the Suslin operation using tf
structure ofD — the domain in which the space of poirisis embedded. We definela-
Suslin schemt be a functioni: N*° — D such that for alk € N*° and alli € N we have
d(x) < d(k - i) and for alli ¢ NN we have| |2 o d(i|n) € e(X). In this way the function
d can be extended to a unique continuous functioN — D such thad(NY) C e(X).
Without loss of generality we shall also impose the conditiondtia)) =_L.

A subsetA C X will be said to be aD-Suslin setif there exists aD-Suslin scheme
d:N* — D such that

A= N ldwl=J dim).
KN ieNN n=0

Note that for each € NN we have

|| = (idim1 = [ @(iln)).
n=0 n=0 n=0

Consequentlyd = d(NY) and

A= N @)= [@in.

k€N ieNN n=0

It follows that the set is u-measurable for any Borel measwr®n X, since eaclid(i|n))
is u-measurable.

Given aD-Suslin setd and correspondingp-Suslin schemé, we may decomposg
into a collection of smaller and smaller séigc) wherex ranges inrN*°. We suppose that
x € N/, wherej e N. We define the-cylinder of A to be the set of points

A(K):U (ldGlm)] | i e NN andi|j =«

n=j

Writing « - i|n, wherei € NN andn e N, for the concatenation of (the finite sequence)
followed by (the finite sequencé):, we have

Aw = |J e -iim1= [ (@il

ieNN n=0 ieNN n=0
and hence, fon a Borel measure oK, the setA («) is u-measurable.
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We see that

At = At -n) S 1d@0)]

n=0
for all k € N°°. However this is not a disjoint union. Fere N/, we set

j I(,'—l

J
E() = A\ |J | Akl -1 -n),

i=1n=0

where the interpretation fgr = 0 is thatE(()) = A(()) = A. It now follows that for all
Kk € N,

E(k) = U E(x - n)
n=0

where the union is disjoint. Consequently, by induction, we havg toiN

A= U E(x),
keNJ
again the union being disjoint.
Alternatively, it is sufficient to define< on N/ as thelexicographical ordering, where

A < k wheneven. # « and for the least with A; # «; we haver; < «;. Then fork € N/
we have

E@) = A\ [ J A0,

A=<k

wherea ranges ilN/. The disadvantage is that the union is infinite.

5.3. The construction of a sequence of approximating valuations

We suppose thatl is a D-Suslin subset of(, with D-Suslin schemel: N>*° — D
such that/(()) =.L. We also suppose thatis aT-continuous probability Borel measure
supported oM (that is,;u (X \ A) = 0) such that the quantities

m(x) = u(E(k))

are known for each € N*°. Note thatu(A) = 1 and hence:(()) = 1. Using theD-Suslin
scheme/: N> — D and the functionn: N> — R, we construct a sequenceg,);? , of
simple valuations approximating.

We start withvg = 1, which in our notation may be representediag)). Our goal
will be to choose a sequen¢e(n) € N*)°° ,, with k (n) = (k(n, 1), ..., k(n, n)) say, and
a sequence of ‘coefficient’ functioris, )>° ;. To aid with notation we will order for € N
eachN” by thepointwise order<,,, wherex <,, k wheneven,; < «; fori =1,...,n;and
of course() <o (). Then fork € N" we will write

[0, k] = {} € N"|A <, K}
At the nth stager,;,: [0, k(n)] U {()} — R is chosen and, will be defined as

v= Y mnae) + ra(Oacy.
L€[0,x(n)]
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wherer, (()) is defined by

rn(o):(l— > rn(m).

2€[0,k(n)]
Our construction will be based on the simple fact thatifet 1,2, ... we have
(1-2m2=1-2t"n4o2n 51 2ol
We choosea (1) = (k(1,1)) so that

k(1,1) k(1,1) 1

A) = -i) = j 2 A

> m) Z m(() - i) Z m@i) > 3
1€[0,k(1)] i=0 i=0

(where we omit the redundant parenthesis in ‘m((i))"). Then sekfer (i) € [0, x(1)]

no) _ mi

ri(A) = 5 5

Observe that
2> Y e <}>2 > 0.
2 1€[0,k(1)] 2
Next, we choose (2) = (k(2, 1), k(2, 2)) with (1) <1 «(2)|1 such that

k(2,1) k(2,1) 7
1) = ) > —
Zm(() i) Z’"(’)/s’
i=0 i=0
and then for each = (i) <1 «(2)|1
k(2,2) k(2,2)
. . Im()
L) = > .
Z m( - j) Z m(, j) = 3
j=0 j=0

Then set for = (i, j) € [0, k(2)]

_3m() _ 3m@.j)
ro(A) = 7= 7 .
Observe that

bl

3 3/7\% 1

-2 E Mn=-|= -

4 ra(t) = 7 (8) 72
1€[0,k(2)]

and that fora € [0, x(1)] we have

k(2,2)
3 /Tm(\ A
Y 20z (%) )

j=0

We continue in this way, so that at thth stage we choosan) = (k(n, 1), ..., k(n, n))
withk(n — 1) <,,_1 k(n)|(n — 1), such that

k(n,1) k(n,1) o2n—1_ q
Z m(()-i) = Z m(i) = W:l—zlfzn’
i=0 i=0
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andthen forj = 1,...,n — 1 (in that order) and for each <; «(n)|j we have
k(n, j+1) 2n—
22— —1 ,
dYoomi) > T——m0) = (1 -2 m@).
i=0 2

Then set fon. € [0, k(n)]
() =A-2"m).

Again, observe that

n—1
1> ) mayz@a-2""[Ja-27>a-27),
1[0,k ()] j=1

and hence that
1-27"> Z:,um>1—f*.

L€[0,x(n)]
Also, observe that fok € [0, x(n — 1)] we have
k(n,n)
Yol > (A-2"A-2""m3) > L—-2"mO) = r-a().
i=0

5.4. Properties of the sequence of valuations
Here we show that the sequen@g);? , is such that

vty <ttt

forn=0,1,...,and thati = | |;Z,v,. It follows that

/fdu = lim /f*dvn and f fdu = lim /f*dvn,
* n— 00 n—o0
and, consequently, that € R(w) if and only if
lim /f* dv, = lim /f* dv,.
n—oo n— o0
Lemma 16. Letn € N. Thenv, <« v,,1.
Proof. By Lemmas3it is sufficient to definey ; for 6 € [0, k(n)] anda € [0, x (n + 1)] by

0 if 0 # Aln;
O ZN @ raa 00/ (LI ra@ D) iF0 =,

and

R RR=100) if Aln & [0, k(m)];
Or =] rys1) — tanr if Aln € [0, k()]

and
to,) =0 and 1)) = rpg2(0).
It is now a simple matter to show that fére [0, « (n)] U {()},

Yot =ra0),

A€[0,k (n+1)]U{()}
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and forx € [0,k (n + 1)TU {()},

i), #0  and Y ta=rana),
0€[0,x (m)]U{O}

and thaty , # 0 impliesd(0) < d(}). O

Lemma 17. Letn € N. Thenv, < [i.

Proof. It is sufficient to prove that, 1 E* . Let O be an open subset @. If Le O
thenO = D and consequently

vi+1(0) = 1= 2(0) = (e (0)).
Thus we may suppose thatz O, and define
I={Me[0,k(n+1)]|dR) € O}.
We note that for each € I we have
E(Q) S A S [d(W)] S e H(0).
Hence

Vi41(0) =Y ra1() < Y m() =p (U E(A)) < ue(0)) = (0),

rel rel rel

as required. O

Theorem 18. We havel = | [7° v, in PLD.

Proof. Let O be an open subset &f. It suffices to show that
Jim v,(0) = (0) = (e (0)).
We consider the sets
A(m) ={reN"|d() € O}.

Thenfor each € e=1(0)N A there exist$ € NV such that(x) = LI o d(i|n) and hence
d(iln) € A(n) for all sufficiently largen € N. Thus

ctoynacl) U Ew. (5.4)

n=0ieA(n)

Conversely, fom € N andi € A(n) we haveE(L) € [d(A)]N A C e 1(0) N A, and
hence equality holds in equati@h.4). Also, for alln € N we have

U Emec J Ew.

reA(n) reA(n+1)

since ifA € A(n) theni -i € A(n + 1) foralli € N. It follows that
A(0) = peH(0) = ue™(0)N A) = lIm > {m@G) | 1 e Am)}.
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Letting (x (n) € N")™ , denote the sequence used in the constructiam,0f° , to define
(ra: 10, k (m)] — R)>° 1, we note that

Jim > {m@) | & e N"\[0.k(m)]} =0.

Thus
nleOOZ{r,,(x) | % e A@m) N[0, k(m)]}
= lim @—27)% {m@G) | + e Am) N0, xm)]]
= lim > {mG) [ A e A N[O km]} = A(0),
and the result follows. O

Corollary 19. Let f: X — [a, 8] be bounded. Then

ffdu: lim /f*dvn and / fdu = lim /f*dvn.
% n—o0 n— o0

Proof. Forn =0, 1, ...we havey, € S(1), and hence

/ﬁm<ﬂfw<f}m<fﬁmm

Conversely, for each € S(11), sinceft = | |72 vn, We have A= v, for all sufficiently
largen € N. Thus, by Lemm&®, we have

/f*dkg lim /f*dv,, and Iim/f*dv,,gff*dk,
n—0o0 n— 00

and the result follows. O

5.5. Quotient measures

Here we suppose thatis aT-continuous Borel measure 6fy and thatA is a D-Suslin
subset ofX with 0 < ©(A) < oo. We show that our definition ofA f du, in equation
(5.2), is well defined.

Proposition 20. Let « and A be as above. Then the measurgA, as defined in equation
(5.1), is a Fcontinuous probability Borel measure supported4an

Proof. It is clear thatu/A is a probability measure supported anThus the result will
follow on showing that all Borel sets atg/A)-measurabley/A is B-regular, ande/A is
J-continuous.

Let M be au-measurable set. Then for &l C X we have

H(ENA) =p(ENA)NM) +p(ENA\M) =pn(ENM)NA) + pn((E\M)NA).

Thus(u/A)(E) = (u/A(E N M)+ (u/A)(E \ M), and hencé/ is (u/A)-measurable.
ConsequentlyB € M, € M, 4.

We use theB-regularity of x and the fact thaB is ao-algebra to show that/A is
B-regular. We recall, from Subsectidn2, thatA is u-measurable since it i®-Suslin.
Since3B is closed under countable intersections we may ch@gse B such thatA C B;
andu(B1) = n(A). Similarly, we may choos®, € B such thatB1 \ A € By and

n(B2) = u(B1\ A) = n(By) — u(A) =0.

https://doi.org/10.1112/51461157000000292 Published online by Cafbfidge University Press


https://doi.org/10.1112/S1461157000000292

Domain-theoretic integration.

DefiningC = B1 \ B2, we see thaC € A andu(A \ C) = 0. SinceB is closed under
complements, we also hatee B andX \ C € B. Thus for allE € X andB3 € B with
ENAC BzwehaveE C B3U (X \ C) and
H((BsNA)UANC)) _ pu(BsNA) _ u(Bs)
1(A) nA oA’
The B-regularity ofiu/A follows on taking the infimum over all such sefs.
Finally, we letU be a family of open subsets &f, which is (upwardly) directed by,

and letU = [ JU. Lettingd: N*° — D be aD-Suslin scheme that generateswve consider
the set

(u/A)(B3U (X \ C)) =

K={xkeN°|3Vel:Ek) C V).

It is clear that J,.x E(x) € U N A. Conversely, for allk € U N A we may choose

V e Usuch thak € V. Then, as in the proof of Theoreh8, there exists € NI such that
e(x) = |2, d(iln) and hence (i|n) < [d(i|n)] < V forall sufficiently large: € N. Thus
UNA = J,cx Ek). Sincek is countable andl is directed we may choose a sequence
(V)22 of sets inll such thatV,, € V,y1forn =1,2,...andU N A = ;21 Vs, N A.

It follows from the fact thafu is a Borel measure that(U N A) = lim,_. o u(V, N A).
Therefore,

(u/DU) = Jim 1/ A) (V) < SURG/ V) < 4/ D).
Ve

as required. O

Note 3. The above proof thaf/A is T-continuous is based on the separability (in the
inherited topology) of theéd-Suslin setA. An alternative, say ifA were an arbitrary mea-
surable subset of, would be to assume thatis T-regular. We may then be interested in
whetheru/ A is T-regular. The proof of this can be set out in a similar fashion to the proof
of B-regularity, provided thadl is u-measurable and

w(A) = sup{u(C)| C € A andC is closed inX}. (5.5)

In the case whep is finite, equation(5.5) follows easily from the assumptions thatis
J-regular andl’ € M,,; that is, all open sets age-measurable. If is not finite then this
result is more problematic. However, under the assumptionsitieD-Suslin andu is a
T-regular Borel measure, we may by standard methods 1€ed heorem 2.2.12], choose
compactC € A with «(C) as close as we wish t@(A), and hence equatiof®.5) holds
sinceX is Hausdorff.

6. Analytic sets

The aim of this section is to discuss sufficient conditions under which an analytic subs
A of X is aD-Suslin subset ok . In particular, ifX is a metric space anB = J(BX), as
described in Subsectich2then every non-empty analytic subsefisSuslin. We define a
set to beanalyticwhenever itis the continuous image of a polish space; this is slightly more
general than the definition given i@(, 14.5]. Note that everfp-Suslin subse of X is
analytic, sinced = d(NV) whered is the extension of anp-Suslin schemd: N®° — D
that generated.

We begin by recalling some of the standard results concerning analytic sets and poli
spaces. We then introduce the notion of a countable graded covefrom D, and show
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that if X is a metric space an®d = J(BX), then every non-empty analytic subsét
has a countable graded cover. The next subsection shows that every non-empty anal
subset with a countable graded covering fronis D-Suslin. We finish this section with a
discussion of the support ofcontinuous probability Borel measure.

Note, however, that without some condition on the spdege cannot expect that every
analytic set isD-Suslin. For example, in the case wh&ncontains a poink such that
A = {x} is not a countable intersection of open sets, clearlg the continuous image of
the one-point space, and hence analytic. But if® — D is a D-Suslin scheme, such
that A is the set resulting from the Suslin operation applied tthen for each € NN we
must haved = {x} = ();2,(d(i|n)), contradicting our initial hypothesis.

6.1. Preliminary results

Throughout this section we will suppose thais a non-empty analytic subset B As
is well known, every non-empty polish space is the continuous image of the Baira§pace
and hence we may assume thais the image of a continuous functiegnNY — X. We
recall that a topological spaceéis polishwhenever itis metrisable by a complete separable
metric.

In what follows we will make frequent use of the product spitex X endowed with
the product topology. We will denote by the projection map froi™ x X ontoX; which
is continuous by definition. Note thAY x X is Hausdorff since bothi™ and X are. Also,
in the case thax has a metrip thenNY x X may be metrised by the product meisick p
which is defined by

(@ x p)((i,x), G, y)) =max{o (i, )), px, y) },

whereo is as in equationi.3). The metrier x p is complete wheneveris complete (since
o is complete) and consequeniiy)’ x X is polish whenevek is polish (sincéY! is also
separable). We may also (topologically) embed the spAte X into the product domain
N x D where the ordeE is defined by(A, ¢) C («x, d) wheneven. C « andc C d. The
embedding is simply given by the product map e of the inclusion map: NV — N and
the embedding: X — D; thatis(i, x) — (i, e(x)).

In the case whe#f is the family of all closed subsets of (the Hausdorff spaceye are
able to characterize the Sustinsets as the projections of closed subsef§®dfx X onto
X. To see this, we lef be a Suslin-J&et of the form

o0
s= N\ Fo=J ) Fm:
KkeN>® ieNN n=0
thenS = px(S) where
S={G,y | ieNVandy e Xy Filn)},

which is closed in the product topology oA’ x X. Conversely, ifS is a closed subset of
NN x X thenpx (S) has the form

px®= N\ Fe=J () Filn

KkeN>® ieNN n=0
where fork € N we takeF (k) to be the closure (iX) of the set
Sw)={yeX | 3ieN:k=inand(,y) eS}.
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Observe that in the case whéhis polish thenS is a closed subset of the polish space
NN x X. ThusS is polish, and henc# is analytic.

On the other hand, every analytic subdetf (the Hausdorff spacey is a Susling set,
whereJ denotes the family of all closed subsets¥ofTo see this we may suppose thais
the image of the continuous functignN¥ — X. Then, lettingA be the graph of, that is

A=1Gi,x | ieNYandg() = x}, (6.1)

we see, sinc# is Hausdorff, thaf! is a closed subset 8fY x X. It follows thatA is a Suslin-
JF set by the above characterization. We deduce the following (well-known) characterizatic
of the analytic subsets of a polish space.

Theorem 21. LetJ be the family of all closed subsets of a polish spsc&hen the analytic
subsets ok are precisely the Suslin-Sets.

In particular, the family of all analytic subsets of a complete separable metric Space
contains all closed subsets ¥f and hence all Borel subsets ¥f since it is closed under
all countable unions and intersections, and every open set is a countable union of clos
sets. However, in general this family is not ealgebra of sets, and consequently is a much
larger class of subsets a&f than the Borel family.

6.2. Graded coverings

We now extend the notion of a covering ¥ffrom D, which we met in Subsectioh?2.
Recall that ‘Cis a covering ofX from D’ means that

x<Jo
ceC

and for allc € C we have(c) # . Here we wish to consider coverings of our analytic set
A C X. We say that is acovering ofA from D to mean that

AcJw©
ceC
and for allc € C we have(c) N A # (. By agraded coveringB of A from D we will

mean thaB = | J,—, B, is the union of a sequence of covering )2, of A from D with
Bo = {1}, together with afunction: B — D satisfying the following conditions:

1. {(b)) N A | b € B} is a basis of the topology of;
2. forallb € B we haveb < b;
3. forn € N, and forb € B, andc € B,11, if [b] N (¢) # ¥ thenb < T,

4. for everyb = | | by, where(b,)%, is a sequence with, € B, andb, < b1,
either[b] =@ orb € e(X); thatis,b = e(x) for somex € X.

Note that in the last condition we have
o o0
mzﬂwzﬂ@)

The first equality follows from1, Proposmon 2.2.10], and the second from the fact that
b < bn+1 |mplles that[b ] D (b )D [bn+1] The idea here is that the sequen@gs ;>

with b, € B, andb,1 < b,1+1 can be thought of as akin to Cauchy sequences |n metric
spaces.
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Lemma 22. Letm, nAbe natural numbers withh < n, and letb € B,, andc € B,, with
[b]1N (c) # V. Thenb < C.

Proof. Since[b]N(c) # ¥, we may choose € [b]N(c). Thenfori = m+1,m+2,...,n,
sinceB; is a covering ofA, we may choose; € B; with y € (b;) so thath,, = c. It follows
by property3 above that

b <L byy1 < - K by
and hence the result follows by transitivity &f. O

Further to the above definition we will refer tcauntable graded covering of A from
D whenever each of the seB;, is countable (infinite or finite) for alk € N, and hence
B = U, B, is countable. We see that® = | J>° ,N" together with :N>® — N as
the inclusion map is a countable graded coveringidffrom N. Note also that ifB is a
countable graded covering dffrom D then we can define the produst® ® B by

o0
N®® B = UN” x By,
n=0

which is a countable graded coveringldf x A from N x D, where
(h,b) = (D).

The next result shows the existence of countable graded coverings of an analytic sub
of a general metric space. Our proof is a construction relying on Hausdorff’'s maxime
principle.

Proposition 23. Let X be a metric space with metrig, let D = J(BX), and lete = { o1,
as described in Subsecti@®. Suppose that is an analytic subset of. Then there exists
a countable graded covering of A from D.

Proof. To aid notation we will denote bix, r)) the open ball with centre and radius-,
which we recall is the sé&tx, r){). We letBg = { L} andE C X suchthatA is contained in
the closure off; for example E = X or any dense subset &for A. Thenforn = 1,2, ...
we let

Fp={xeE | (x., 2" NA# 0}

and apply Hausdorff's maximal principle to choaSg, a maximal subset of,, satisfying
the property that for all distinct points y € G, we havep(x, y) > 27"~1. Then we set
B, = {(x,27")} | x € G,) andB = | J>°, B,, and define the function: B — D by
takingI =1 andforb € B,,, withb = (x,27")J, by?: (x, 27"12); this is well defined
since{:BX — J(BX), is injective. Observe that for = 1,2, ..., if x € A then there
existsy € E with x € ((y,27"2)). Thus, by the maximality o, eithery € G,, or
there existg € G, with p(z, y) < 271 and hence € (z, 27")). It follows thatB,, is a
covering ofA for all n € N. Also notice that sinc&,, satisfies the above-stated property
we see that

{(x,27"7%) | x € G}

is a disjoint family of open subsets &f, each with non-empty intersection with, and
consequently, under the inverse image of the continuous function (mapping the polish sp:
onto A), can be at most countable. To see propértywe suppose thdf is an open subset
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of X and thatt € A N U. Then we may choose = 1,2, ... sufficiently large such that
(x,27"*3) c U, and hence, as in the above observation, we see that therezexisis
such thatx € (z, 27™)). It follows that

x €(z,27"?) C (x,27"3) C U,

and propertyl follows on taking the intersection with. Property2 is an immediate con-
sequence of the definition e on BX and the fact that approximation is preserved in the
embedding oBX into J(BX), . Property3 is immediate whem = 0. Forn = 1,2, ...
andb = (x,27"){ andc = (y, 27"~ | we see thalb] N (¢) # ¥ implies that

p(x’ y) <" 4 2—n—1 < 2—H+2 _ 2—I1+1.

Finally, we see that property follows from the fact that if(b,);2 , is a sequence with
b, € B, then writingb,, = (x,, r,){ (forn > 1) we have lim_. oo r, = 0. O

6.3. When analytic sets arB-Suslin

We can now give a sufficient condition for an analytic4éb be aD-Suslin set. When this
is the case, we may apply the results of Sechitmconclude that &-continuous probability
Borel measure supported ohis approximated by a sequence of simple valuations with
supremunyi.

Theorem 24. Let A be a non-empty analytic subsetXf Suppose thaB is a countable
graded covering ofA from D. ThenA is a D-Suslin subset of.

Proof. Letg: NN — X be a continuous function with image and letA denote the graph
of g, as defined in equatiai®.1). Then by considering coversafc NN x A chosen from
the countable graded coverifig® ® B of NN x A from N x D, we define inductively a
function (i, »): N*° — N*° ® B such that

To(hb) = Db):N® > NxD
is an (N x D)-Suslin scheme that generatés The result then follows by defining the
D-Suslin schemd: N> — D by
d = pp o(k,g) =B=Aob,

wherepp denotes the projection map frdMx D onto D, and noting that the set resulting
from the Suslin operation applied tbis A = px (A).
To define(A, b): N*®° — N*° @ B we start with(L(()), b(())) = ((), L). Then induc-
tively, we suppose that («), b(x)), wherex € N, has been chosen such that
() (D-Gelm)] x [bGc|m)]) N A#Q.
m=0
We let(A(k - i), b(k - i))7°, be an enumeration of the set

{(9, ) e N"T 5 Byya | (0) x (@) N () (IxGklm)] x [b(k|m)]) N A # (Z)},
m=0
where we use repetition in the case when this set is finite. Note that it is non-empty sin
N1 % B,1 coversNY x A,
Observe that property of a countable graded cover implies that forsalt N> and all
i € Nwehavei(x), b(/c)) < (M(kc-D), b(K i)).Leti e NN and consider the corresponding
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sequencéi(iln), 75(i|n)) . By the construction, we see thati|n) « /\(i|(n + 1)) and
thus|_|72 g A(iln) € NN, We letx= g(|I,~A(iln)), and show that € Noe 0[b(||n)] We
deduce, from property of a countable graded cover, tHal’> 0b(lln) = e(x). It follows
that(, b) is an(N x D)-Suslin scheme and that

/\ 0] x b)) = Uﬂwunnx[b(wrz)

kN> ieNN n=0

The converse set inclusion follows from the fact thac (A()) x (b()) and

oo
[A(k)] x [b(k)]NAC U(A(K 1)) X (b(k - 1))
i=0
for all k € N, Thus for eachi € NV there exists, by induction, a sequerteg); > o, with
Kk, € N such thati, g(i)) € [A(kn)] X [b(ky)] C [M(ky)] X [b(/cn)] foralln € N.

We complete the proof by showing that for= 0, 1, ... we havex € [b(i|n)]. Since
B, is a cover ofA we may choose € B, such thait <« e(x). Then by the continuity of
g there existsV > n such that for alj € NN with jjN = A(i|N) = (2o A ()N we
haveg(j) € (¢). But by definition we have

N
(1G] x [b(iln)]) N A # @,
n=0
and hencéc) N [b(i|n)] # @, sinceN > n. Thus, by Lemma&6, we have

bliln) €« T < ¢ < e(x),

and the result follows. O
Combining this result with PropositidB we have the following corollary.

Corollary 25. Let X be a metric space ant = J(BX), as described in Subsecti@nm®?.
Then every analytic subsatof X is a D-Suslin set.

6.4. The support of a measure in a complete metric space

In this subsection we suppose ti}ais a complete metric space with metgicand that
D = J(BX)_, as discussed in Subsectidr?. We also suppose thatis a T-continuous
probability Borel measure oK. As in Subsectiors.2, we will denote by(x, r)) the open
ball with centrex and radius-. Recall that thesupportsptu of u may be defined by

x\Jw eTinw) =0},

and hencer € sptu if and only if for all open seté/ with x € U we haveu(U) > 0. We
now give a construction that sptis D-Suslin; in particular, spt is analytic. Consequently,
the results in Sectiob apply, giving a sequence of simple valuations with suprengum
WhenX is not complete then the result here applies in the compléfiofn X, which may
be identified with the space of maximal pointsJgBX) | ; in this case we may then be able
to proceed further if{ is a D-Suslin subset oX.

The result that spt is analytic, foru a finite measure on a complete metric space
with all open setgi.-measurable, follows easily fromi§, Theorem 2.2.16], which asserts
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that sptu is separable, and the fact that gpis by definition closed, and hence gpts a
complete separable metric space.

We let E be any dense subset Bf or E = X, and use this to define a countable graded
coveringB of sptu from D. We proceed as in the proof of Propositi@®. Forn=1,2, ...
we let

Fo={xeE | n(x,27""%) #0}

and then, as before, apply Hausdorff’s maximal principle to chéhse maximal subset
of F, satisfying the property that for all distinct pointsy € G, we havep(x, y) >
2-"=1 The setsB, and B, and the function : B — D are also defined as in the proof of
Proposition23. Observe that by the maximality 6f, we have

sptu € (J{(x.27") | x € G,

and henceB,, is a covering of spi for all n € N. Also notice that sinc&,, satisfies the
stated property,

[(x,27"72) | x € Gy}

is a disjoint family of open subsets &f each with positive measure, and hence can be
at most countable singe(X) = 1. Note that the last defining property of a graded cover
follows by the completeness af.

Next we ‘construct’ a functio: N — B suchthai = b = obh:N® — Disa
D-Suslin scheme that generates gpfThe definition ofb is by induction onN*> and is
similar to that used in the proof of Theoréx#. We start by letting(()) =_L. Then, for each
k € N°°, we suppose thdt(x) has been defined with(b(x))) > 0. We let(b(x - )72,
be an enumeration of the set

{c € Bug1 | n((©) Nib)] > 0},

where we use repetition in the case where this set is finite. Note that it is non-empty sin
B, 11 covers spj. Since spj is closed and hence complete, it follows that fori atl NN

we have|_|f,°:02;(i|n) € e(sptu). Since(b(k -i)):2, coverslb(k)] Nsptu, for allx € N*°,

we deduce that

sptu=/\ b1 = | (ibdln)]

keN> ieNN n=0

and hencel = b is as required. For eadhe NN, we may defing (i) to be the unique
x € X such thal |72 5 b(iln) = e(x). In this way we obtain afunctiogu:NN — X with
sptu = g(NY), and consequently sptis an analytic subset of .

7. Comments

In this section we make some comments concerning the results of this paper, and hi
light certain areas for further research. Perhaps many of the statements, concerning furt
research, may not seem obvious and, although we give a brief sketch of a justification, \
have not given complete proofs; in particular, for the justification tfigtds recaptures
the Lebesgue integral in general Hausdorff spaces. We feel that it is more appropriate t
such proofs be given in any future paper that might take up these investigations.
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7.1. Some drawbacks of the current theory

We recall Note2, where we remarked that the definition of the integral does not exten
directly to unbounded functions. This was seen to be a direct consequence of insisting t
D has a least element and the relatign in PLD. In fact, without minimal elements i
then«? is easily seen to be empty, and hené®Rs not a domain.

Perhaps the greatest drawback is that the measisrassumed to be a probability mea-
sure. Whenu is a finiteT-continuous Borel measure, then we can renormalise and apply th
construction to the measurg 1. (X); however, we would need to know, a priori, the precise
value of u(X). Signed measurgs can be dealt with in the case that we know the Jordan
decomposition = 1™ — ™ and then apply the construction to the renormalised parts
andu . If a theory of domain-valued valuations could be employed in the construction o
the integral then it might be possible to overcome some of these disadvantages; for exam
the value ofu(X) would be approximated by(D) wherev is a valuation taking values in
say the interval domaih; R of R, or even the interval domain R of R.

We also remark that an important hypothesis was hstHausdorff, and our construc-
tion is somewhat different from the construction of the integral (with respect to a valuatior
on a domain as defined, for example, iY]. Wheng: D — [«, B8], is Scott continuous
andx € PLD is a continuous valuation, the definition in [17] is equivalent to

/gdk: sup | gdv
veS(L)

where [ g dv is defined as in Subsecti@landS(1) denotes the directed set
{v € PD | v simple andb < A}.

Note that the simple valuations 1) allow us to approximate the valugg d from
below, but not from above.

The difference between the two integrals is highlighted by the following example. Le
X be a Hausdorff space ardl a domain, as assumed throughout this paperylié the
Dirac (point) mass at a pointe X; thatis, forE € X

1 ifxekE;
“(E)Z{o if x ¢ E.

Letd € D be such thak € [d] butx ¢ (d). Then definef = 14, the characteristic
function onX of (d), and defingg = 1,4, the characteristic function ob of 44. Notice
that f = g o e andji = n.(r), and thatf ¢ R(w), by Theorenil2, but [ g d (as defined
above) is well defined and takes the value that one would expect, namely 0. However,
the Riemann—Edalat integral were to be extended to integral3,dn such a way as to
maintain the approximation of ¢ d/x from both above and below, then one might expect
thatg would not be integrable.

7.2. Variants of the functiong, and f*

Here we remark that there is some latitude in our definition of the integral in the way thz
we define the functiong, and f*. To see this let us define fgt: X — [«, 8] the following
functions onD with values in[«, 8]

feo(d) = inf f(x) and f®d) = sup f(x),
xe(d) xe(d)
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and

fra(d) = supfu(e) and (@) = inf ).
e<d ed

The next result shows that either of the two groups could repfaead f* in the definition

of the integral.

Lemma 26. Let f: X — [«, 8] andu be aT-continuous probability Borel measure ah
Then

/fduz sup | faydv= sup [ fidv,

veS(i) veS(it)

and similarly for the upper integral.
Proof. By the definitions of the functiong.,, fi and f. it is easily seen that

f(*) 2 f* 2 f[*],
and hence

sup | faydv > /fdlt > sup | fixdv.
veS(ii) * veS ()

To show equality we simply need to verify that fore S(i) we have

/f(*) dv < sup [ fiqda.

rES()

By interpolation we may choosee S(j) such that «* 1 «* /i and the result follows
by Lemma3 on noting that fow, b € D with a < b we havef(,)(a) < fi«(b). O

Finally, we remark that the functionf.: D — [a, Bl and f*1: D — [a, B1* are
continuous, and that = fi,j o e (or f = fI*1 o ¢) if and only if f is lower (or upper,
respectively)semicontinuoughat is, the functions’: X — [«, Bl« and f: X — [«, B]%,
respectively, are continuous.

7.3. Questions of measure theory

We begin by defining a measuneon a topological spack to belocally finiteif for all
pointsx € X there exists an open sgtsuch thatt € T andu(T) < oo. We may then ask
whether Lemmad. holds with finiteT-continuous Borel measure replaced by locally finite
TJ-continuous Borel measure.

The next question that arises comes from Subse&ibnWe say that a measugeis
hereditaryT-continuousdf for all £ C X and for alll € T which are (upwardly) directed
by C, we have

i (EmUu) =sup{(ENU) | U e ). (7.1)

We are interested in what natural conditions ofi-aontinuous Borel measune imply
thatu is hereditaryT-continuous. We recall that Nofremarked that equatiair.1) holds

if u is T-regular andE is a measurable set with(E) < oo. In fact, the condition that

E be p-measurable is irrelevant to equatiohl); we requiredt to be u-measurable in
Subsectiorb.5to ensure that./E is a Borel measure. Consequently, we define a measur
u to befull whenever for all subset8 of X we have

W(E) = sup{u(EN M) | M is u-measurable and(M) < oo}.
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One may then readily verify thatBregular,J-continuous full Borel measure is hereditary
TJ-continuous. This then raises the question of wheth&ragular,T-continuous locally
finite Borel measure is full.

We now introduce two more concepts that will be useful in the next subsection. We wi
say thatu is aregular Borel measuren X wheneveru is a Borel measure ol which is
T-regular and satisfies the following inner regularity condition: fopatheasurable subsets
M of X we have

w(M) = sup{u(C) | C € M andC is closed inX}.

Similarly, we say that is aRadon—Borel measumheneve is aT-regular Borel measure
that satisfies the Radon condition: for almeasurable subset$ we have

w(M) =sup{u(K) | K €M, K is compact angk(K) < oo}.

If ©is a Radon—-Borel measure atds a directed (byc) family of open sets then for all
compactk < | JU there existd/ € U with K C U, sincell was assumed to be directed.
Consequently, every Radon—Borel measurg-ntinuous.

We remark that for a ‘Radon measure’ most authors also requir it < oo for
all compactkK; in our terminology, this would be a locally finite Radon—Borel measure.
Also, our definition of a regular Borel measure is non-standard; this term is usually use
in the literature as an equivalent term for ‘Radon measure’. Perhaps the most interest
question that arises here is the identification of the topological spaces for which it is tre
that everyJ-regular,J-continuous locally finite Borel measure (or even, every locally finite
full regular Borel measure) is Radon—Borel.

Finally, we observe that a reason why complete separable metric spaces may be viev
as a natural setting for topological measure theory is that every (locally) finite Borel measu
is Radon—Borel. We note th3@itcontinuity follows from the fact that the topology is second
countable. The fact that every closed set is a countable intersection of open sets gives
T-regularity. Lastly the Radon condition follows from the theory of analytic sets aéd [
Theorem 2.2.12]; see also [23, Theorem 9.9].

7.4. Another integral

In this subsection we define a new integral. Our definition is akin to the Bourbaki exter
sion that was sketched at the end of Subsectidn However we work with two families
of functions which, in general, will not be Stonian lattices as defined in Subsetton
One family will be used to define an upper integral, and the other to define a lower integr:
In fact, the functions in these families will be defined on the donfaimto which our
Hausdorff spac« is embedded. The integral defined on these families that we extend wil
be that of integration with respect to a continuous valuation as defined, for examflg].in [

In order to relate this integral to the Lebesgue integral, we shall assume throughout tt
subsection that is a T-continuous locally finite regular Borel measure. This gives rise
to the continuous valuatioft € V D; the family of all continuous valuations which take
values inRg. The orderc on VD is defined, as in Subsectidh4, by v C A whenever
v(0) < A(0) for all Scott open set®. Notice, however, that this partial order induces
a way below relation« which is quite distinct from the way below relatieg* on PLD.
Simple valuationare defined, as before, to be finite linear combinations of point valuations
for example

> rana  whereA C Disfinite and ) " r, < oo.

acA acA
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We shall denote by§ (/1) the directed set
{veVD |vissimple and « ji}.

A detailed account of this theory, given in a more general setting, may be fouhd]iiye
remark that in the case thatis a probability measure then we may work P replacing
S(Q) with S(2) in what follows.

We denote byR, the domain of extended real numbers ordered by the usual ordering
and duallyR* ordered by<°? = >. A functiong is said to bebounded lower simplen D
wheneverg: D — R, is continuous (with respect to the Scott topology),

Image(g) = {g(d) |[d € D} S R

is a finite set, and

/gd;l = sup | gdv <00 (7.2)

where [ ¢ dv is defined fon = Y, , ran4, s in Subsection.2, by

/gdv = Zrag(a).
acA
We denote the family of all bounded lower simple functions/my F.. Similarly, we
definebounded upper simplinctions onD and the familyF* with R, replaced byR*
and the condition (7.2) replaced by its dual; that is,

/gd/l = inf /gdv > —00,
veS(R)
where the infimum may be regarded as a supremum with respg€fto

We letF* denote the closure df, under directed suprema; that is,e F* whenever
there exists an upwardly directed subfan§hz F, such thalG  h. Notice that

F* C [D — Ry \ {—o0}],

the space of all Scott continuous functions mappihinto R, \ {—oc}, and that/ - dix
may be defined ofi* by

/hd;l =sup [ gdi =sup sup | gdv,

g€$ ge€SveS(p)
for all h € F#. Dually, we defineF; as the closure of* under directed infima; that is,
directed suprema with respect<@*. We also extend’ - diz to F4 by

/hdﬁ, =inf | gdi = inf inf g dv,
g€$ g€9veS(n)
whenevel§ \{ A.

Then forf: X — R we say that: D — R, is amajorantof fif » € ¥ andf < hoe,
and we denote the family of all majorants gfby F#(f). Similarly, 1: D — R* is a
minorantof f if h € Fx and f > h o e, and we denote the family of all minorants pfy
Fu(f). We define

#
/ fdu= inf fhdﬁ and /fdu = sup hdp.
heF#(f) # heFu(f)
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Whenever

we define

to be the common value, and say thfats u-summable. We denote Hy(u) the family
of all u-summable functions oX. Observe that the assumption thats a regular Borel
measure implies th&k, andF* are contained it (w).

For the final extension, we Iét, («) denote the family of all functiong: X — R such
that f A (goe) e £(u) forall g € F,, and dually& _ (1) contains all functions such that
fVvi(goe) e £(un)forall g € F*. We can then extend —du to£(n) = (W) UL_(n)
as in Subsectiod.4 upon checking that (1) = £ (n) N£_ ().

Notice that whenX is completely regulan is a finite T-continuous measure aridis
the family of all bounded continuous functiopgsX — R, as in Subsection.4, we have

T =1lgm | f<ge8) and Fu(f) =g f>ges.l.

Thus, on performing the Bourbaki extension/o — R, defined by/ (f) = [ f du, we
have

#
*(f) = / fdu and  Iy(f) = /# fdu

forall f: X — R. Hencet(n) = L(I) and Ffdu=1(f)forall f € £(n). Itremainsto
be verified that (1) = L(1), and that the extension of —du to£(y) is given byl.

To see that the integral —du recaptures the Lebesgue integral in general Hausdorff
spaces, we make the following definitions. Wellétdenote the Stonian lattice of all mea-
surable functionsf: X — R such that Imageéf) is a finite set ange(f (R \ {0})) is
finite. We define the positive Daniell integrdl M — R by

J(f) =Y (tn(f7H®) | ¢ € Image(f) andr # 0}.

Then, as in 26, Chapter 12], we let: £(J) — R be the Daniell extension of. By [26,
Exercise 12-7, Theorems 12.17 and 12.19, and Corollary 12.21], we findithptecisely
the Lebesgue integral with respectitoWe denote byM* the family of all functionsg on
X which are the supremum of an increasing sequériog”, in M, and byJ* the Daniell
extension of/ to M*. We note forf: X — R that for allh € #(f) with [ hdji < co we
haveh € M* and [ h dji = u(h) = J*(h), and hence

#
du > inf J*(g).
/ Sfdu It (&)

Conversely, one readily verifies, using the assumption ghiata regular Borel measure,
that for allg € M* with J*(g) < oo ande > 0 there exist& € F7(g) such that

M(g)=J*(g)<fhdll<M(g)+e,
and hence forf: X — R we have
#
du < inf J*(9).
/ fdu ot (@)
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Thus, as in the preceding paragragliy) = £(J) and f~f du = J(f) forall f € £(w).

In comparison to the inner extension theory of an elementary integral develog@s] in [
Chapter V], we denote by the family of all bounded upper semicontinuous functions
g: X — [0, 00)* satisfying the condition thaf g'*!dii < oo. We definel: E — R by
1(g) = [ g di. Then, using the notation and methods of [23], we note fhat E; and
I = I|E, and that¥(E) is the family of all closed set§ € X with ©(C) < oco. Hence,
upon checking the condition that for all< v in E, we have

I(v) — I (u) <sup{l(g)l g € Eandg <v —u}, (7.3)

the main theorem of3, Theorem 15.9] is applicable, and thukas a unique maximal
representation; |€(A;). Furthermore we have

1,(f)=/fdAr|¢(A,) forall f € [0, co]X.

To see that inequality7.3) holds, we note that
sup{l(g)lge Eandg <v—u}=IL,(v—u) = /(v —u)du
#

sincev —u > 0. Alsov,u € £(u) = L(J), sincel (v) < oo andpu is a regular Borel
measure, and hence

Iw)—I(w)=1L,w) —Lu) =JWw) —Ju) =JWw—u) = /(v —u)du.
#

Let 9t denote the family of alj.-measurable sets; then, upon checking thas inner
regulart(E) atn, it follows that |9t = A, |9N.

We note thatin the case wherés a locally finite Radon—Borel measure, it would be more
natural to work withE = USCK™ (X), the space of all upper semicontinuous functions from
Xto Rg with compact support; see [23, Theorem 16.7] for an extended Riesz representati
theorem in this setting. Also, in the case whgris aT-regular,J-continuous locally finite
Borel measure, it may be profitable to develop an outer extension theory of an element:
integral which should be dual to the inner theory of [23, Chapter V].

Finally, we comment that one way to give this process a computable framework, is |
determine for which functiong: X — R there is an effective construction of upwardly
directed familiesg of bounded upper simple functions that produce majorams f and
downwardly directed familie$( of bounded lower simple functions that produce minorants
h of f, such that the integralf ¢ d/i and [ 4 dix can be determined to within any desired
accuracy.

7.5. Computability

Our first notion of computability is that of agffective representatioof the Hausdorff
spaceX. Given the framework of this paper, it is perhaps most natural toXakmbedded
in an effectively given domairD in the sense given inl§, Section 3]; that isp is an
w-continuous pointed domain with a countable b#Sis- {c, | n € N} of approximation,
such that the relation, <« ¢, is recursively enumerable in m. Then we will say thai
has an effective structure whenever there is a graded covBriﬁgU,fio B, C C, where
eachB,, is recursively enumerable (as a subse€dftogether with a computable function
B — C,and a computable functiadn N>*° — B such thab(N") C B, foralln € N
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andb: N — C is a D-Suslin scheme that generatésthat is,

x= A bwl=J N&im)

k€N ieNN n=0

Note that this implies thaX is separable and analytic; that is, the continuous image of &
polish space.

An alternative to assuming the existence of the computable funétidi® — B is
to assume that the relatio) N [¢] # @ is recursively enumerable. However, in this
case we cannot construct the entire functqfas this would require determining whether
certain sets are finite or infinite), but we can construct a sequence of fun@ijong, —
B);2 o whereN, € N,y1 € N* andb,11|N, = b, for n € N, which are sufficient to
constructthe sequencg; ) , of simple valuations approximatingof Subsectiors.3. We
omit the details as we feel that this slight increase in generality does not merit the furth
complications to the construction of the sequeqgg;° . This alternative should allow us,
in the case whel is complete, to relate our notion of an effective representatigh\with
the notion of an effectively given (complete) metric space, given in [15, Subsection 3.2].

The above then naturally leads to the following definition. A meaguie effective
whenever there exists a computable sequence of partial fungtipri§> — [0, 1])72 ,
suchthat foreach € Nthe sefx € N*°|r, («) is definedjs finite (and computable) and the
sequence of valuationg = ), e n ()15, forms an approximating sequence ihP
with supremumi. Our viewpoint is that we start with the sequen¢es;° , and consider
the resultant measures; alternatively, in considering a computational problem involving
particular measurg, the problem itself gives a method for computing the sequengg’ .

For an effectivel-continuous probability Borel measupeand bounded functioif e
R(11) we need to be able to approximate the valueg.h(x)) and £* (b (x)), forallx € N
such that, () is defined for some € N, so that the value of fdu can be evaluated to
any given accuracy. Thus we may consider all bounded funcfios— R such that there
exists a computable increasing sequence of computable increasing fur(@t,ioﬁs—>
R*)s"zo and a computable decreasing sequence of computable decreasing functions (tha
increasing with respect ta°"), (h,: B — R*)>,, whereB = {b | b € B}, such that for
allbe B

e < fo) and (D) < hy(b),
and

/(hn — g, = Y rn(K)(hn(i;(K)) - gn(i;(’())) — 0.

keN>®

asn — oo. Such functiong’ may be termeg -almost effective functions. The results of this
paper imply that the value gf f du exists and can be computed to any accuracy, given that
w is an effectiveT-continuous probability Borel measure, and tlias a;-almost effective
function. An interesting question that arises is whether all bounded funcfiokis— R,
which are continuoug-almost everywhere, afe-almost effective, wher® has an effective
representation and is an effectiveT-continuous probability Borel measure.

Thatan analytic set C X is effectiveneans there is a computable functiotN> — B
suchthab(N") C B, foralln € N andh: N® — Cis aD-Suslin scheme that generates
Then for aT-continuous Borel measugeon X such that O< ©(A) < oo and the function
m:N*° — [0, 1] is computable, wherei(x) = w(E(x))/u(A) and E(x) is as defined
in Subsectiorb.2, we can define the sequence of valuations;? , as in Subsectiob.3.
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In this way we see that/A is an effectiveT-continuous probability Borel measure. We
also note that a slight increase in generality is afforded by considering sequences of par
functions(b,: N, — B) whereN, C N,+1 € N*® andb,4+1|N, = b, forn € N.

Again, one may ask questions about how the definition of an effective analytic set ce

be weakened, say by using sequences of computable functig)js ;, which in some
sense approximate the continuous functtoN>*° — B satisfying the conditions stated
above. We presume that such questions may be highly related to the mathematical sub
of effective descriptive set theory.
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