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A DOMAIN-THEORETIC APPROACH TO INTEGRATION
IN HAUSDORFF SPACES.

J. D. HOWROYD

Abstract

In this paper we generalize the construction of a domain-theoretic
integral, introduced by Professor Abbas Edalat, in locally compact
separable Hausdorff spaces, to general Hausdorff spaces embedded
in a domain. Our main example of such spaces comprises general
metric spaces embedded in the rounded ideal completion of the par-
tially ordered set of formal balls. We go on to discuss analytic subsets
of a general Hausdorff space, and give a sufficient condition for a
measure supported on an analytic set to be approximated by a se-
quence of simple valuations. In particular, this condition is always
satisfied in a metric space embedded in the rounded ideal completion
of its formal ball space. We finish with a comments section, where we
highlight some potential areas for future research and discuss some
questions of computability.

1. Introduction

The aim of this paper is to provide a general domain-theoretic construction of an integral akin
to the classical Riemann integral on compact intervals of the real line. Such an integral was
first constructed in compact metric spaces in [3] and generalized to locally compact separable
Hausdorff spaces in [12]. The constructions in [3, 12] begin by embedding the Hausdorff
space into an associated domain — the upper space ordered by reverse inclusion; see
Subsection2.2for a definition. Here we generalize this approach to an arbitrary Hausdorff
space (topologically) embedded into a domain; in particular, any metric space may be
embedded into the rounded ideal completion of its formal ball space. When this general
framework has been set up, the definition of the integral in [3] carries over directly to our
setting; the main work is then to show that the properties of the integral carry over to our
framework. We, therefore, propose the nameRiemann–Edalat integralfor the construction
that we give.

The integral is with respect to aT-continuous probability Borel measure on the Hausdorff
space. This gives rise to a continuous valuation on the domain, which may be approximated
by simple valuations. Corresponding to each simple valuation are upper and lower Darboux
sums that bound the value of the integral. The integral is then defined by taking the ‘limit’
of these Darboux sums over the directed family of approximating simple valuations. In
this way, it is the measure that is approximated by simple valuations, as opposed to the
construction of the Lebesgue integral where the function to be integrated is approximated
by simple functions.
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We go on to study the properties of the Riemann–Edalat integral, and compare it with
the Lebesgue integral. Our results, in this respect, are analogous to the standard results
concerning the Riemann integral. Similar results were shown in [3, 12]; however, new
proofs of our main results, Theorem12and Proposition14, are required for our framework.
We also mention that if the underlying space is completely regular (and Hausdorff) then the
Bourbaki extension of the Riemann–Edalat integral recaptures the Lebesgue integral. We
then proceed with an investigation into integration over subsets of the underlying space of
a certain form; namelyD-Suslin sets. This leads to a construction of a sequence of simple
valuations, approximating the measureµ, which is sufficient to compute the integral with
respect to a measure supported on such a set. The notion of aD-Suslin set is closely related
to the notion of an analytic set, and indeed in a metric space (embedded in its associated
domain) they are equivalent. We conclude with a comments section, where we remark on
a number of alternatives and some topics for further attention.

1.1. Motivation

Domain theory, introduced by Dana Scott in 1970, has become a basic paradigm in
theoretical computer science; in particular, as a mathematical foundation for denotational
semantics. The success of this theory has been in using domains as a model for a com-
putational process or as a model for a data type with incompletely specified elements. A
new area of research has focused on using domain theory for computational models of
spaces in classical mathematics. The survey paper [7] gives a comprehensive overview of
these developments. We give a selective overview in the next paragraph of some of these
developments, which are of particular interest in the context of this paper.

We begin with [5], which presented a computational model (namely, the upper space
ordered by reverse inclusion) for locally compact second countable Hausdorff spaces. This
gave a computational framework in which dynamical systems, iterated function systems and
measure theory could be discussed. This was set up in [5] and extended in [8]; also see [6,13]
for further applications to iterated function systems. The framework for measure theory was
based on the foundational work concerning valuations on a domain given in [19, 22]; see
also [17]. This led on to the development in [3] of a domain-theoretic integral on compact
metric spaces, which was generalized to locally compact second countable Hausdorff spaces
in [12]. Applications of this framework have been given, for example, in stochastic processes
(see [4]) and in statistical physics (see [2]). Then in [10] a new computational model (namely,
the ideal completion of the space of formal balls) was presented for metric spaces, giving
a framework for iterated function systems and measure theory in this setting; see [18] for
further developments concerning this model. Also, see [24,25] for a detailed discussion
of computational models for polish spaces. In a slightly different direction, we mention
the treatment of computability (of points, sequences and functions) in the real line given
in [14], using the interval domain (see Subsection2.2) as a computational model for the
real line. This work was then extended in [15] to a treatment of computability in Banach
spaces, using the model of [10]. We also mention the ripening theory of exact real number
arithmetic; in connection with integration theory, see [9,11].

By taking the model of [10] as our main example (of a Hausdorff space embedded in a
domain), we give, in this paper, a domain-theoretic integral in this setting. We also remark
that the spaces on which the domain-theoretic integral was constructed in [3, 12] are by
hypothesis metrisable. Thus, if the metric of these spaces is known, then the computational
model of [10] may be used to construct the integral. On the other hand, in other circumstances
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a new domain-theoretic model may better reflect the underlying structure of the Hausdorff
space in question. In this respect we develop a general theory that is applicable whenever a
Hausdorff space is embedded in a domain.

There are various theories of integration in mathematics. Perhaps the most elementary
is that of reverse differentiation, which dates back to the time of Newton. However, some
functionsf : R → R, most notablyf (x) = e−x2

, could not be integrated by this method,
yet their integral seemed to make sense. The problem is to write down a functionF in terms
of a list of standard functions which differentiates to givef . The introduction of Riemann
integration by mathematicians such as Cauchy, Riemann, Stieltjes and Darboux gave the
first cohesive mathematical theory. These mathematicians could say thate−x2

is (Riemann)
integrable (on compact intervals) and that there is a functionF whose derivative ise−x2

but it may be not possible to write it down in terms of the standard list of functions of their
time; this was later shown to be the case. It was also possible to integrate some functions
where the indefinite integral is not differentiable (at every point). An important part of the
Riemann theory of integration is its constructive nature, which has led to the development
of numerical methods to approximate the value of an integral.

A significant limitation to the theory of Riemann integration is that it lacks good conver-
gence properties. One way that this limitation was overcome was by extending the Riemann
integral by defining the integral of a function which is the monotone limit of a sequence of
integrable functions. This is the basis upon which the Daniell theory of integration arose. At
about the same time Lebesgue, among others, developed a new theory of integration, which
also had good convergence properties. It turns out that the Lebesgue integrable functions
(with respect to the standard Lebesgue measure) are precisely those that are Daniell inte-
grable. Similarly, those functions which are integrable with respect to the Daniell extension
of the Riemann–Stieltjes integral are precisely those that are Lebesgue–Stieltjes integrable.
However, the Lebesgue integral could be defined in abstract spaces whenever a measure is
given on the abstract space. With this advantage, the Lebesgue theory stands as a basis for
modern integration theory and analysis.

Further developments include the McShane integral, which is equivalent to the Lebesgue–
Stieltjes integral, and the theories of Denjoy, Perron and Henstock, which are all equivalent
to each other, and numerous other variations on these themes, giving generalizations in vari-
ous ways. Developments in other directions include contour integration of complex analysis,
de Rahm cohomology, stochastic calculus (in particular Ito integrals and Stratonovich in-
tegrals), Feinman integrals, and so on. However, much of the constructive nature of the
Riemann integral is lost from these general theories.

The theory of integration that we present here keeps the constructive nature of the Rie-
mann integral, and indeed naturally leads to algorithms that can evaluate an integral (of a
Riemann–Edalat integrable function) to any desired accuracy. In contrast to the Riemann
integral, we are not limited to integration only in the Euclidean spaces (R

n), our construc-
tion being applicable in many abstract spaces. Every Riemann–Edalat integrable function
is Lebesgue integrable, and the values of the integrals agree, see Subsection4.3. In fact, a
Riemann–Edalat integrable function must be bounded and continuous almost everywhere
which, in general, is a more restrictive condition than Lebesgue summability. However, in
the case when the underlying space is completely regular (and Hausdorff), the Bourbaki
extension of the Riemann–Edalat integral (from the space of continuous functions) recap-
tures the Lebesgue integral, see Subsection4.4 for details. In Subsection7.4, we discuss
another extension process which is appropriate when the underlying space is not completely
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regular, this time, the extension based on the integral of a continuous function on a domain
with respect to a continuous valuation.

Thus our theory of Riemann–Edalat integration should not be seen as a more general
integral than, say the Lebesgue integral, but as an extension of the Riemann integral to
more abstract spaces — giving a computational framework to integration in this setting. In
application, this gives a method, which may be encoded in a computer program, to evaluate
specific integrals of physical or theoretical interest where traditional numerical methods are
inappropriate. Secondly, our domain-theoretic integral should provide a means by which to
answer theoretical questions of computability; for example, what is the class of functions
for which the integral with respect to a given measure is computable. Lastly, it is also hoped
that there may be some feedback into the classical theory of integration and measure which
may lead to new and interesting results.

1.2. Outline of the paper

We now give a section-by-section outline of this paper. We follow the introduction
by outlining the basic set-up to be considered throughout the rest of the paper, and give
definitions of the notation and terminology used. We also give, in Subsection2.2, a number
of examples of constructions of a domain into which a particular type of Hausdorff space
may be embedded; in particular, the rounded ideal completion of the partially ordered set
of formal balls of a general metric space, introduced and discussed in [10]. This example
was the main driving force in the construction given in this paper of the domain-theoretic
integral, and thus may provide an intuitive insight into the proofs of the results that follow.

Section3 gives the definition of the integral, with respect to aT-continuous probability
Borel measure, and shows its basic properties. In particular, Corollary9 asserts thatR(µ),
the family ofµ-integrable functions, is a real vector space, and that integration, with respect
to µ, is a positive linear functional. This section is based on the work presented in [3].

The next section goes on to explore the properties of this integral. We mention Theo-
rem12, which characterizes the familyR(µ)of allµ-integrable functions, and the discussion
in Subsection4.4of the Bourbaki extension of our integral in the case when the underlying
spaceX is completely regular and Hausdorff. We also outline, in this case, how the Bourbaki
integral recaptures the measureµ and the Lebesgue integral with respect toµ.

In Section5we introduce a concept of aD-Suslin subset. We then give, for aT-continuous
probability Borel measureµ supported on aD-Suslin subsetA, a construction of a sequence
(νn)

∞
n=0 of approximating simple valuations witĥµ = ⊔∞

n=0 νn. In particular, the (upper
and lower) integrals of a functionf : X → R may be evaluated from the (upper and lower)
Darboux sums corresponding to each of the simple valuations in(νn)

∞
n=0. Furthermore, ifµ

is anyT-continuous Borel measure on the underlying Hausdorff spaceX, then this directly
leads to a definition of the integral

∫
A

f dµ of a functionf : X → R over anyD-Suslin
subsetA of X with 0 < µ(A) < ∞. Details of this may be found in the introductory
comments for the section.

Section6 gives a sufficient condition for an analytic subset of a general Hausdorff space
X, embedded in the domainD, to beD-Suslin. This is done using the notion of a countable
graded cover. It is also shown that in the case whenX is a metric space andD is the rounded
ideal completion of the space of formal balls then this condition is met, and hence every
analytic subset isD-Suslin. We end this section with a discussion relating these ideas to the
support of aT-continuous probability Borel measure on a complete metric space.

Finally, we comment, in Section7, on a number of points. We start by mentioning a
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few drawbacks of the current theory. Next we remark that there is some latitude in our
definition of the integral; specifically, the functionsf∗ andf ∗ may be changed. However,
the functionsf∗ andf ∗ are precisely the functions that make our definition of the integral
logically equivalent to the definition of the integral in [3, 12] on compact and locally
compact separable Hausdorff spaces. Subsection7.3lists a number of questions concerning
topological measure theory that have arisen within this paper. In Subsection7.4we introduce
an extension process of the integral on a domainD with respect to continuous valuations,
giving a new integral on the underlying spaceX, which we suggest recaptures the Lebesgue
integral of a function with respect to aT-continuous locally finite regular Borel measure on
X. If this integral could be placed in a computable framework then we feel that it would be
an excellent field for future research. We finish the section with some comments concerning
some of the many questions of computability with respect to the work described within this
paper.

1.3. Acknowledgements

Professor Abbas Edalat inspired much of the worked presented here, with many dis-
cussions that we had together. Mauricio Alvarez-Manilla pointed out that the assumption
throughout an earlier manuscript that all measures wereT-regular was unnecessary. Thanks
are also given to the anonymous referees for their numerous comments and corrections.

2. Preliminaries

In this section we set up the basic definitions, terminology and constructions that will be
used throughout the rest of this paper.

2.1. The underlying spaces

Throughout this paperX will be a space of points endowed with a Hausdorff topology
T, andD will be a domain with orderingv and a least element⊥; by a domainwe mean
a continuous directed complete partially ordered set. We use the standard terminology and
notations of domain theory, as for example in [1], and of topology, as for example in [21].
We also suppose thate: X → D is a topological embedding whereD is given the Scott
topology. In many circumstancesX is embedded as (a subset of) the space of maximal
points ofD. However, in this paper, we shall not assume this; an example of one of the
anonymous referees shows that some generality is gained by not making this assumption.

We recall that a non-empty subsetA ⊆ D isupwardly directedwhenever for alla, b ∈ A

there existsc ∈ A with a, b v c. By saying thatD is directed completewe mean that every
upwardly directed setA has a supremum, which we denote by

⊔
A. Forc, d ∈ D, we say

thatc approximatesd and writec � d whenever for all upwardly directed subsetsA ⊆ D

with d v ⊔
A there existsa ∈ A with c v a. We say that a subsetB ⊆ D is a basis

of approximationof D whenever for every elementd ∈ D the setBd = {b ∈ B|b � d}
is an upwardly directed set withd = ⊔

Bd . A directed complete partially ordered set is
said to becontinuouswhen it has a basis of approximation. A subsetC ⊆ D is a lower
setwhenever for alld ∈ D with d v c for somec ∈ C we haved ∈ C. Finally, theScott
topologyis defined by giving the closed sets as those setsC ⊆ D which are lower sets and
closed under the supremum of directed sets; that is, for all upwardly directed setsA ⊆ C

we have
⊔

A ∈ C.
The embeddinge allows us to define two set-valued maps,[ · ]: D → P(X) by [d] =
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e−1(d↑) and( · ): D → T by (d) = e−1(d↑↑), where

d↑ = {c ∈ D | d v c} and d↑↑ = {c ∈ D | d � c}.
We remark that an alternative, leading to a slightly different theory, would be to define[d]
as the topological closure (inX) of e−1(d↑); however, we shall not pursue this here.

Note 1. We observe the following simple consequences of these definitions.

1. If a v b then[b] ⊆ [a] and(b) ⊆ (a).

2. If a � b then[b] ⊆ (a), and[b] = ⋂
a�b(a).

3. [⊥] = (⊥) = X.

4. If B ⊆ D is a basis of approximation, then{(b) | b ∈ B} is a basis of the topologyT.

5. It follows from the fact thatT is Hausdorff that[e(x)] = {x} for all x ∈ X.

We useR to denote thereal numbers, together with the usual operations of addition,
multiplication and order6. Thepositive reals(x ∈ R with x > 0) will be denoted byR+,
thenon-negative realsbyR

+
0, theextended reals(R∪{−∞,∞}) by R̄, and thenon-negative

extended reals(R+
0 ∪ {∞}) by R̄

+
0 , with the usual conventions concerning±∞. We shall,

however, state explicitly each time that we require the convention

±∞ · 0 = 0 = 0 · ±∞.

For real-valued functions, with a common domain, the algebraic operations, partial or-
dering6, and suprema and infima are defined pointwise. We usef ∧ g for min{f, g}, and
f ∨g for max{f, g}. Also,f + will denotef ∨0, andf − will denote−(f ∧0). A non-empty
family F of real-valued functions, with a common domain, is said to beupwardly directed
whenever for eachf, g ∈ F there existsh ∈ F with f ∨ g 6 h. We writeF ↗ g whenF is
upwardly directed andg = supf ∈F f . Dually, we definedownwardly directedandF ↘ g.
For E ⊆ X we denote thecharacteristic functionof E by 1lE ; that is, 1lE : X → R and is
defined by

1lE(x) =
{

1 if x ∈ E;
0 otherwise.

2.2. Examples of such spaces

The first example that we consider is whenX is a locally compact (Hausdorff) space.
We define theupper spaceU⊥X to be the space

U⊥X = {K ⊆ X | K is non-empty and compact} ∪ {X},
ordered by reverse inclusionv = ⊇, which is seen to be a domain with least elementX.
The embeddinge: X → U⊥X is defined forx ∈ X by e(x) = {x}. This construction was
discussed extensively in [5], and a theory of integration was discussed in [3] in the case that
X is compact and metrisable (and hence also separable), and in [12] in the case thatX is
locally compact and separable. The theory of integration discussed in [3, 12] is easily seen
to be entirely equivalent to the theory discussed here withD = U⊥X. Note, however, that
here we do not assume that the space is separable.

Another example is given by theinterval domainI⊥R of R defined by

I⊥R = {[α, β] | α, β ∈ R andα 6 β} ∪ {R},
and ordered by reverse inclusion. Again,I⊥R is a domain, with least elementR, and the
embeddinge: R → I⊥R is defined forx ∈ R by e(x) = [x, x] = {x}. See [14] for an
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approach applying this domain to computability on the real line. We also mention [9],
which develops integration in Real PCF; here it is the interval domainI [0, 1] that is of
interest, defined by

I [0, 1] = {[α, β] | α, β ∈ R and 06 α 6 β 6 1}
and ordered, as above, by reverse inclusion.

The main example of the paper is whenX is a metric space with metricρ andD is
the spaceI(BX)⊥ to be defined in the next paragraph. Indeed the two (related) notions of
‘fine covering system’, see Subsection4.2, and of ‘graded covering’, see Subsection6.2,
were generalizations of constructions using formal balls. The spaceBX is the setX × R

+
0

with the orderingv, defined by(x, r) v (y, s) whenever (r> s and)ρ(x, y) 6 r − s.
Note that there is a natural topological embedding (with respect to the Scott topology on
BX) ι: X → BX defined byι(x) = (x, 0). This construction was discussed extensively
in [10] and further discussed in [18]. In the next paragraph we summarize the main results
from [10] that we shall use.

The spaceBX is a domain if and only ifX is complete. In the case thatX is not complete,
BX is a partially ordered set on which, although it is not directed complete, a ‘way below’
relation� can be defined in the usual way;a � b whenever for all directed setsB ⊆ BX

with least upper bound greater thanb, some element ofB is greater thana. This definition
amounts to(x, r) � (y, s) whenever (r > sand)ρ(x, y) < r − s. The spaceBX with the
relation� is an abstract basis, and hence, as in [1], we can ‘construct’ the rounded ideal
completion. A subsetI ⊆ BX is arounded ideal(or �-ideal) wheneverI is a (non-empty)
upwardly directed, lower set with respect to the relation�. The spaceI(BX) is the family
of all rounded idealsI ⊆ BX ordered by set inclusion. By adjoining a bottom element
⊥, which we can take to be∅, we obtain the spaceI(BX)⊥. By [1, Proposition 2.2.22],
I(BX)⊥ is a domain, with↓↓: BX → I(BX)⊥ a natural (continuous) embedding. We note
thate = ↓↓ ◦ ι: X → I(BX)⊥ is a topological embedding such that

e(X) = ↓↓ ◦ ι(X) = {(x, 0)↓↓ | x ∈ X}
is contained in the space of maximal points (which is homeomorphic to the topological
completion ofX). We also note that in the case thatX is a complete metric space we have

D = I(BX)⊥ ∼= B⊥X = BX ∪ {⊥}.
We remark that ifX is a second countable locally compact space, or ifX is a complete

separable metric space (and thus second countable), then in the above constructions the
resulting domainD has a countable basis of approximation ande(X) is the space of maximal
points of D. Also, in these cases, for alld ∈ D we see that[d] is closed inX, and
consequently that one(X) the inherited Scott topology and the inherited Lawson topology
coincide. It follows by [24, Corollary 2.5] thate(X) is aGδ subset ofD in the Scott topology
(that is,e(X) is a countable intersection of Scott open sets), and by [24, Corollary 2.6] that
e(X) is polish; in particularX is metrisable. A number of useful consequences of this setup
are given in [8] and in [25]. We mention [25, Theorem 8.7], which asserts that the map
µ 7→ µ̂ (to be defined in Subsection2.4) is a homeomorphism between the spaceM1X of
probability Borel measures onX with the weak topology and the space of maximal points
Max (P1D) of the normalised probabilistic power domain P1D with the inherited Scott
topology. This result follows on from the work presented in [8], where it is shown, in [8,
Proposition 4.2 and Corollary 4.1], that wheneverX is a separable metric space embedded
as aGδ subset ofD, and consequently a subset of the space of maximal points, then the
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mapµ 7→ µ̂ is an embedding ofM1X into a subset of the space of maximal points of the
probabilistic power domainPD.

2.3. Measures onX

Throughout this paper we will be concerned with measuresµ onX, which in our nomen-
clature will be termedT-continuous probability Borel measures. All measuresµ onX will
be assumed to be outer measures; that is,µ:P(X) → R̄

+
0 is a function satisfying the

following conditions:

1. µ(∅) = 0;

2. if E, F ⊆ X with E ⊆ F thenµ(E) 6 µ(F);

3. for any sequence(Ei)
∞
i=1 of subsets ofX we haveµ(

⋃∞
i=1 Ei) 6

∑∞
i=1 µ(Ei).

If µ(X) < ∞ thenµ is said to befinite, and ifµ(X) = 1 thenµ is said to be aprobability
measure. The advantage of the outer measure theory is that we do not have to worry about
whether the measure of a given set is defined; however, we will need to know which sets are
‘measurable’. We recall Carathéodory’s criterion: a setM ⊆ X is said to beµ-measurable
if for all E ⊆ X we have

µ(E) = µ(E ∩ M) + µ(E \ M).

We denote byMµ the family of allµ-measurable sets which, as is well known (see, for
example, [27, Theorem 2]), is aσ -algebra; that is,Mµ is closed under the set operations
of complement and countable union.

We letB denote the family of allBorel subsetsof X which is the smallestσ -algebra
that contains the familyT of all open subsets ofX; equivalently,B is the smallest family
of subsets ofX that contains the family of all open sets and the family of all closed sets,
and is closed under countable unions and (non-empty) countable intersections. A measure
µ is aBorel measurewheneverB ⊆Mµ andµ isB-regular (which is often referred to as
Borel regular); namely, for allE ⊆ X we have

µ(E) = inf {µ(B) | E ⊆ B ∈ B}.
The more conventional notion of a Borel measure is of a countably additive set function

ν:B→ R̄. We may define the (outer) measure extensionµ of ν by

µ(E) = inf {ν(B) | E ⊆ B ∈ B}
for all E ⊆ X. Thenµ is a Borel (outer) measure, in particularB ⊆ Mµ, that agrees with
ν on B; see [27, Section 2.4] or [26, exercises 12-3 through to 12-11]. Moreover, the
restriction ofµ toMµ (considered as a measure defined on aσ -algebra) is the completion
and then saturation (in that order) ofν.

We shall also be interested in two other topological properties of measures; namely
T-regular andT-continuous, whereT denotes the family of all open subsets ofX. A measure
µ is T-regular whenever for allE ⊆ X we have

µ(E) = inf {µ(T ) | E ⊆ T ∈ T},
and isT-continuous whenever for all subfamiliesU of T, which are (upwardly) directed by
⊆, we have

µ
(⋃
U
)

= sup{µ(U)| U ∈ U}.
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All the measures in the discussion that follows will be assumed to beT-continuous, as we
wish to relate them to continuous valuations. The condition thatµ beT-regular will only be
required in Subsections4.4and7.4. We note that, although all Borel measures are uniquely
determined by their restriction toT, the condition ofT-regularity gives a simple method by
which to reconstruct the original measure from this restriction toT.

The following lemma will be of use to guarantee that a finiteT-continuous Borel measure
isT-regular. We recall that a topological spaceX is said to beregularwhenever for all points
x ∈ X and closed subsetsF of X with x 6∈ F there exist disjoint open subsetsU andV of
X such thatx ∈ U andF ⊆ V .

Lemma 1. LetX be regular and letµ be a finiteT-continuous Borel measure onX. Then
µ is T-regular.

Proof. We consider the familyA of all Borel subsets ofX for which T-regularity holds;
that is

A = {
B ∈ B ∣∣ µ(B) = inf {µ(T ) | B ⊆ T ∈ T}} .

Sinceµ isB-regular, it suffices to show thatA = B. We note thatT ⊆ A sinceT ⊆ B. One
readily verifies, using the measurability of all the sets concerned, thatA is closed under
finite unions and intersections, and hence also under countable unions and intersections.
Thus the result will follow on showing thatA contains the family of all closed subsets of
X.

Let F be a closed subset ofX. For eachx ∈ X \ F we may, by the regularity ofX,
choose disjoint open subsetsUx andVx of X such thatx ∈ Ux andF ⊆ Vx . LettingU
denote the family of all finite unions of the setsUx , we see thatX \ F = ⋃

U. Thus for
ε > 0 we may choose a finite collection of points,x(1), . . . , x(n) in X \ F such that

µ

(
n⋃

i=1

Ux(i)

)
> µ(X \ F) − ε.

LettingT = ⋂n
i=1 Vx(i), it follows thatF ⊆ T , and that

µ(F) 6 µ(T ) < µ(X) − (µ(X \ F) − ε) = µ(F) + ε,

as required.

2.4. Normalised continuous valuations onD

To ‘construct’ the Riemann–Edalat integral onX we will work with the space P1D of
normalised continuous valuations onD, which we now define. We defineO to be the family
of all Scott open subsets ofD. A function ν:O → R̄

+
0 will be called avaluationon D

whenever the following conditions are satisfied:

1. ν(∅) = 0;

2. if U, V ∈ O with U ⊆ V thenν(U) 6 ν(V );

3. ν is modular; namely for allU, V ∈ O,

ν(U ∪ V ) + ν(U ∩ V ) = ν(U) + ν(V ).

A continuous valuationν satisfies the extra condition that for all subfamiliesU of O, which
are (upwardly) directed by⊆, we have

ν
(⋃
U
)

= sup{ν(U)| U ∈ U}.
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If, in addition,ν(D) = 1 thenν is said to be anormalised continuous valuation. We denote
the space of all normalised continuous valuations onD by P1D, and define the partial order
v1 on P1D by ν1 v1 ν2 wheneverν1(O) 6 ν2(O) for all Scott open setsO. As is well
known, the partial orderv1 induces a way below relation, which we shall denote by�1;
see for example [3,17].

Of special interest are thepoint valuationsηd defined for eachd ∈ D by

ηd(O) =
{

1 if d ∈ O;
0 if d 6∈ O.

A normalised simple valuationis a finite linear combination of point valuations which
belongs to P1D; for example∑

a∈A

raηa whereA ⊆ D is finite, and
∑
a∈A

ra = 1.

The embeddinge allows us to transfer a Borel measureµ on X to a valuationµ̂ on D by
defining

µ̂(O) = µ(e−1(O))

for all Scott open subsetsO; giving a mapµ 7→ µ̂ from the family of allT-continuous
probability Borel measures onX into P1D. We shall use the notationS(µ̂) for the directed
set

{ν ∈ P1D | ν simple andν �1 µ̂}.
In this way we may think ofS(µ̂) as the set of simple valuations approximatingµ.

The following two lemmas, taken from [3], will be of use; see also [19, pages 84 and 87].

Lemma 2. For two normalised simple valuations

ν1 =
∑
a∈A

raηa and ν2 =
∑
b∈B

sbηb,

whereA, B ⊆ D, we haveν1 v1 ν2 if and only if, for alla ∈ A andb ∈ B, there exists a
non-negative numberta,b such that∑

b∈B

ta,b = ra and
∑
a∈A

ta,b = sb

andta,b 6= 0 implies thata v b, for all a ∈ A andb ∈ B.

Lemma 3. For two normalised simple valuations

ν1 =
∑
a∈A

raηa and ν2 =
∑
b∈B

sbηb,

whereA, B ⊆ D, we haveν1 �1 ν2 if and only if⊥∈ A with r⊥ 6= 0 and, for alla ∈ A

andb ∈ B, there exists a non-negative numberta,b, with t⊥,b 6= 0, such that∑
b∈B

ta,b = ra and
∑
a∈A

ta,b = sb

andta,b 6= 0 implies thata � b, for all a ∈ A andb ∈ B.

We also give a result for P1D corresponding to [3, Proposition 2.4]; see also [3, Lemma
3.4] and [22, page 46].
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Lemma 4. Letλ be a normalised continuous valuation and letν = ∑
a∈A raηa be a simple

normalised valuation. Thenν �1 λ if and only if⊥∈ A with r⊥ > 0 and for all non-empty
B ⊆ A \ {⊥} we have ∑

b∈B

rb < λ(B↑↑),

whereB↑↑ denotes the set
⋃

b∈B b↑↑.

Proof. We will use the notation and methods of [3]. For the ‘if’ part, note that the conditions
above imply by [3, Proposition 2.4] thatν− � λ, and henceν = (ν−)+ �1 λ, by [3,
Proposition 3.2(ii)]. For the ‘only if’ part, first note that by [3, Lemma 3.4] we must have
⊥∈ A with r⊥ > 0. Therefore, by [3, Proposition 3.2(iii)] we haveν− � λ, and the result
follows directly from [3, Proposition 2.4].

3. Definition of the integral

We first define the integral and then show that it is well defined and linear. Our definition
is a straightforward generalization to our framework of that given in [3, Section 4].

3.1. The construction

We now define the integral, with respect to aT-continuous probability Borel measure
µ, for a bounded functionf : X → [α, β], where[α, β] is a (non-empty) interval ofR. We
define functionsf∗: D → [α, β] andf ∗: D → [α, β] by

f∗(d) = inf
x∈[d] f (x) and f ∗(d) = sup

x∈[d]
f (x),

with the convention that inf∅ = β and sup∅ = α. For eachν ∈ S(µ̂) we can expressν as∑
a∈A raηa , whereA ⊆ D and

∑
a∈A ra = 1, and define theDarboux lower sumby∫
f∗ dν =

∑
a∈A

raf∗(a),

and theDarboux upper sumby ∫
f ∗ dν =

∑
a∈A

raf
∗(a).

TheRiemann–Edalat lower integralis then defined as∫
∗
f dµ = sup

ν∈S(µ̂)

∫
f∗ dν,

and similarly theRiemann–Edalat upper integralas∫ ∗
f dµ = inf

ν∈S(µ̂)

∫
f ∗ dν.

Finally, when
∫
∗ f dµ = ∫ ∗

f dµ we write
∫

f dµ for the common value, and say thatf is
Riemann–Edalat integrable, which we will denote byf ∈ R(µ); that is,R(µ) is the family
of all bounded functionsf : X → R such that

∫
f dµ exists.

Note 2. We remark that the above construction does not extend directly to unbounded
functions (except the special case that

∫
f dµ = ±∞). For if ν = ∑

a∈A raηa ∈ S(µ̂), by
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Lemma4, we see that⊥∈ A with r⊥ > 0. Thus for unboundedf either
∫

f ∗ dν = ∞ or∫
f∗ dν = −∞ (or both).

3.2. The integral is well defined

We will now show that these definitions are sensible. In doing so we will closely follow
the steps in [3]; in particular, compare our Lemma6 and Corollaries7 and 9 with [3,
Proposition 4.2, Corollary 4.3 and Proposition 4.1, respectively]. The proofs of our results,
listed above, mimic those given in [3], and are only given for completeness. It may also
be advantageous to consider[α, β] as an order structure[α, β]∗, ordered by the usual real
ordering6, and the dual space[α, β]∗, ordered by the opposite ordering6op = >. Thus
f∗: D → [α, β]∗ andf ∗: D → [α, β]∗ are both order-preserving, but in general may not
be continuous.

Lemma 5. Letν ∈ S(µ̂). Then
∫

f∗ dν 6
∫

f ∗ dν.

Proof. We can expressν as∑
a∈A

raηa whereA ⊆ D is finite, and
∑
a∈A

ra = 1.

The result follows by noting that for eacha ∈ A we havef∗(a) 6 f ∗(a).

Lemma 6. Letν1, ν2 ∈ S(µ̂). Supposeν1 v ν2. Then∫
f∗ dν1 6

∫
f∗ dν2 and

∫
f ∗ dν1 >

∫
f ∗ dν2 .

Proof. Expressν1 as
∑

a∈A raηa andν2 as
∑

b∈B sbηb, whereA, B ⊆ D are finite, and the
coefficients sum to one. Then by Lemma2 there existta,b > 0 such that for eacha ∈ A

andb ∈ B

ra =
∑
b∈B

ta,b and sb =
∑
a∈A

ta,b

and

ta,b 6= 0 H⇒ a v b.

Thus ∫
f∗ dν1 =

∑
a∈A

(∑
b∈B

ta,b

)
f∗(a) 6

∑
b∈B

(∑
a∈A

ta,b

)
f∗(b) =

∫
f∗ dν2

since

ta,b 6= 0 H⇒ a v b H⇒ [a] ⊇ [b] H⇒ f∗(a) 6 f∗(b).

A dual argument holds forf ∗.

Corollary 7. Letν1, ν2 ∈ S(µ̂). Then
∫

f∗ dν1 6
∫

f ∗ dν2.

Proof. SinceS(µ̂) is directed, we can takeν3 ∈ S(µ̂) with ν1, ν2 v ν3. Then∫
f∗ dν1 6

∫
f∗ dν3 6

∫
f ∗ dν3 6

∫
f ∗ dν2 .
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Lemma 8. Letf, g: X → R be bounded,c ∈ R
+
0 andν ∈ S(µ̂). Then∫

(f + g)∗ dν >
∫

f∗ dν +
∫

g∗ dν,

∫
(f + g)∗ dν 6

∫
f ∗ dν +

∫
g∗ dν,

∫
(−f )∗ dν = −

∫
f ∗ dν and

∫
(−f )∗ dν = −

∫
f∗ dν,

∫
(cf )∗ dν = c

∫
f∗ dν and

∫
(cf )∗ dν = c

∫
f ∗ dν,

and iff 6 g then ∫
f∗ dν 6

∫
g∗ dν and

∫
f ∗ dν 6

∫
g∗ dν.

Proof. The result follows easily by noting that for alla ∈ D we have

(f + g)∗(a) > f∗(a) + g∗(a), (−f )∗ = −f ∗ and (cf )∗(a) = cf∗(a)

and iff 6 g thenf∗(a) 6 g∗(a), and similarly forf ∗, g∗ with a dual inequality holding
for (f + g)∗.

Corollary 9. The setR(µ) of functions, with addition and scalar multiplication defined
pointwise, is a real vector space, and integration with respect toµ is a positive linear
functional.

Proof. It follows directly from Lemmas5 and8 that∫ ∗
f dµ +

∫ ∗
g dµ >

∫ ∗
(f + g) dµ >

∫
∗
(f + g) dµ >

∫
∗
f dµ +

∫
∗
g dµ, (3.1)

and hence forf, g ∈ R(µ) we havef + g ∈ R(µ) and∫
(f + g) dµ =

∫
f dµ +

∫
g dµ,

since in this case the left- and right-hand sides of(3.1)must be equal. Similarly,cf ∈ R(µ)

and
∫

cf dµ = c
∫

f dµ, wheneverc ∈ R andf ∈ R(µ), and
∫

f dµ > 0 whenever
f ∈ R(µ) with f > 0.

4. Properties of the integral

The aim of this section is to draw parallels with the classical Riemann integral on compact
intervals ofR. In particular, we classify all functionsf ∈ R(µ) and show that the Lebesgue
integral is recaptured by the Bourbaki extension of

∫ · dµ on the lattice of continuous
functions on a completely regular, Hausdorff spaceX.

4.1. A condition for integrability

Our first result is a restatement of [3, Proposition 4.6], which will prove useful in the
remainder of this section.
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Lemma 10 (TheR-Condition). Let f : X → R be bounded. Thenf ∈ R(µ) if and only
if for all ε > 0, there existsν ∈ S(µ̂) such that∫

f ∗ dν −
∫

f∗ dν < ε.

Proof. Let f ∈ R(µ), so that
∫
∗ f dµ = ∫ ∗

f dµ = ∫
f dµ. Let ε > 0 and choose

ν1, ν2 ∈ S(µ̂) with∫
f dµ −

∫
f∗ dν1 <

ε

2
and

∫
f ∗ dν2 −

∫
f dµ <

ε

2
.

SinceS(µ̂) is directed we may chooseν3 ∈ S(µ̂) with ν1, ν2 v ν3, so that∫
f ∗ dν3 −

∫
f∗ dν3 < ε.

Conversely, forf 6∈ R(µ) we may set

ε =
∫ ∗

f dµ −
∫

∗
f dµ > 0.

Then, for allν ∈ S(µ̂) we have∫
f ∗ dν −

∫
f∗ dν >

∫ ∗
f dµ −

∫
∗
f dµ = ε,

thus completing the proof.

4.2. Characterization of integrable functions

Here we show (see Theorem12) that an analogue holds for the Riemann–Edalat integral
of the well-known Lebesgue criterion which characterizes the Riemann integrable functions
on a compact interval ofR. Our first task is to find the set of continuity points of a function
f : X → R.

We define a setC ⊆ D to be acovering ofX fromD whenever

X ⊆
⋃
c∈C

(c)

and for allc ∈ C we have(c) 6= ∅. We letC denote the family of all coverings ofX from
D and define the relation6 onC by A 6 B if and only if wheneverx ∈ X anda ∈ A with
a � e(x) there is ab ∈ B with a v b � e(x); that is,

∀a ∈ A, ∀x ∈ X,
(
a � e(x) H⇒ ∃b ∈ B : a v b � e(x)

)
.

Observe that ifA ⊆ D is such thatX ⊆ ⋃
a∈A(a) then

{a ∈ A | (a) 6= ∅}
is a covering ofX from D. For B⊆ C, a family of coverings ofX, we say thatB is afine
covering systemof X wheneverB is directed with respect to the ordering6, defined above,
and {

(b)
∣∣ ∃B ∈ B : b ∈ B ∈ B}

is a basis of the topology onX. An example of such a fine covering system isC. However,
in the arguments that follow, it may be useful to consider a smaller family. WhenB ⊆ D is
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a basis of approximation inD then we can take

B = {A ⊆ B | A is a covering ofX from D}.
Another example is provided whenX is a metric space,D = I(BX)⊥ ande = ↓↓ ◦ ι, as
discussed in Subsection2.2. Here it suffices to take any dense setE ⊆ X, or E = X, and
then let

B = {{(x, 2−n)↓↓ | x ∈ E} ∣∣ n ∈ N
}
.

Throughout the rest of this subsection we suppose that a fine covering systemB of X is
given.

Let f : X → [α, β]. We define�f : D → [0, β − α] by

�f (d) = sup{f (x)− f (y) | x, y ∈ (d)}.
ForB ∈ B andε > 0, we define

Gε
B(f ) =

⋃
{(b) | b ∈ B and�f (b) 6 ε}.

Notice that ifA 6 B thenGε
A(f ) ⊆ Gε

B(f ). Hence

Gε(f ) =
⋃
B∈B

Gε
B(f )

is a directed union of open sets. We also note that ifd ∈ D is such that(d)∩X\Gε(f ) 6= ∅,
then�f (d) > ε, sinceB is fine onX. Finally,

G(f ) =
⋂
ε>0

Gε(f ) = {x ∈ X | f is continuous atx}.

Lemma 11. LetF ⊆ X be closed and letν = ∑
a∈A raηa ∈ S(µ̂). Then∑

{ra | a ∈ A and(a) ∩ F 6= ∅} > µ(F).

Proof. Let

B = {a ∈ A | (a) ∩ F = ∅},
so that ∑

{ra | a ∈ A and(a) ∩ F 6= ∅} =
∑

a∈A\B
ra.

If B = ∅ then the conclusion holds since
∑

a∈A ra = 1 > µ(F). By Lemma4, ⊥∈ A. If
⊥∈ B thenF = (⊥) ∩ F = ∅, which implies thatB = A, and the conclusion holds by
convention; namely,

∑ ∅ = 0 = µ(∅). Thus we may assume thatB 6= ∅ andB ⊆ A \ {⊥},
and hence by Lemma4 we have∑

b∈B

rb < µ̂(B↑↑) = µ(e−1(B↑↑)),

whereB↑↑ denotes the set
⋃

b∈B b↑↑. The result follows on noting that for eachb ∈ B we
have(b) ⊆ X \ F , so thate−1(B↑↑) = ⋃

b∈B(b) ⊆ X \ F , and consequently∑
a∈A\B

ra > 1 − µ(e−1(B↑↑)) > 1 − µ(X \ F) = µ(F)

as required.
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We can now show our main theorem, which extends [3, Theorem 6.5] and [12, Theo-
rem 5.12] to the framework of this paper.

Theorem 12. Letf : X → [α, β] be bounded. Thenf ∈ R(µ) if and only iff is continuous
at µ-almost allx ∈ X.

Proof. Suppose thatf is not continuous atµ-almost allx ∈ X; that isµ(G(f )) < 1. Then
for someε > 0 we haveµ(Gε(f )) < 1, and hence the closed setX \ Gε(f ) has positive
measure. Thus for allν = ∑

a∈A raηa ∈ S(µ̂) we have∫
f ∗ dν −

∫
f∗ dν =

∑
a∈A

ra sup
x,y∈[a]

(
f (x) − f (y)

)
> εµ(X \ Gε(f )) > 0,

since ifa ∈ A is such that(a) ∩ (X \ Gε(f )) 6= ∅ then

sup
x,y∈[a]

(
f (x) − f (y)

)
> ε.

Therefore, theR-condition fails.
The converse will be shown by checking that theR-condition holds. Suppose thatf is

continuousµ-almost everywhere, and letε > 0. Thenµ(Gε(f )) = 1. Hence we may take
B ∈ B with µ(Gε

B(f )) > 1 − ε. We define

O =
⋃

{b↑↑ | b ∈ B and�f (b) 6 ε}
so thate−1(O) = Gε

B(f ). Thusµ̂(O) = µ(Gε
B(f )) > 1 − ε, and hence we may take

ν = ∑
a∈A raηa ∈ S(µ̂) with ν(O) > 1 − ε. Thus

∑
a∈A\O ra < ε and hence∑

a∈A\O
ra
(
f ∗(a) − f∗(a)

)
< (β − α)ε.

For eacha ∈ A ∩ O there existsb ∈ B such that

b � a and �f (b) 6 ε.

Thus

sup
x∈[a]

f (x) − inf
y∈[a] f (y) = f ∗(a) − f∗(a) 6 ε,

and hence
∑

a∈A∩O ra
(
f ∗(a) − f∗(a)

)
6 ε. Therefore,∫

f ∗ dν −
∫

f∗ dν =
∑
a∈A

ra
(
f ∗(a) − f∗(a)

)
< ε + (β − α)ε = (1 + β − α)ε,

and the result follows.

4.3. A connection with Lebesgue integration

In this subsection we show that if a function is Riemann–Edalat integrable then it is
Lebesgue summable, and the values of the integrals agree. This extends [3, Theorem 7.2] and
[12, Theorem 5.13] to our setting; our proof is similar to that of [12, Theorem 5.13]. There
are a number of (equivalent) definitions of the Lebesgue integral of a functionf : X → R̄

with respect to a measureµ, which we shall denote here byµ(f ). We give one such
definition which will suit our purposes; see, for example, [16, Section 2.4].
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We letM denote the family of allµ-measurable subsets ofX, and letu: X → R̄. We
recall thatu is said to be aµ-measurable functionwhenever

{x ∈ X | u(x) > t} ∈M
for all t ∈ R. We say thatu: X → R̄ is aµ-step functionif and only if u is aµ-measurable
function with countable imageu(X) ⊆ R̄ such that∑

t∈u(X)

tµ(u−1(t)) =
∑

t∈u+(X)

tµ(u−1(t)) −
∑

t∈u−(X)

tµ(u−1(t)) ∈ R̄;

that is, the right-hand side of the equality is not of the form∞ − ∞. The usual convention
of ±∞ · 0 = 0 = 0 · ±∞ is employed here.

Let f : X → R̄ be any function. Theupper Lebesgue integralof f with respect toµ is
defined by

µ∗(f ) = inf

 ∑
t∈u(X)

tµ(u−1(t))
∣∣ f 6 u is aµ-step function

 ,

and similarly thelower Lebesgue integralis defined by

µ∗(f ) = sup

 ∑
t∈u(X)

tµ(u−1(t))
∣∣ f > u is aµ-step function

 .

We say thatf isLebesgueµ-integrablewheneverf is aµ-measurable function andµ∗(f ) =
µ∗(f ), and we defineµ(f ) to be the common value. By aLebesgueµ-summablefunction
f we mean a Lebesgueµ-integrable functionf such thatµ(f ) 6= ±∞. The family of
all Lebesgueµ-summable functionsf : X → R̄ will be denoted byL(µ). We note that if
µ∗(f ) = µ∗(f ) 6= ±∞ thenf is µ-measurable, and hencef ∈ L(µ). We also note that
if u is aµ-step function thenu is Lebesgueµ-integrable and

µ(u) =
∑

t∈u(X)

tµ(u−1(t)).

Theorem 13. Letf ∈ R(µ). Thenf ∈ L(µ) and
∫

f dµ = µ(f ).

Proof. Choose a sequence of simple valuations(νi ∈ S(µ̂))∞i=1 with∫
f ∗ dνi →

∫
f dµ and

∫
f∗ dνi →

∫
f dµ asi → ∞.

We writeνi = ∑
a∈Ai

ra,iηa and define

ui(x) = min{f ∗(a) | a ∈ Ai andx ∈ (a)},
vi(x) = max{f∗(a) | a ∈ Ai andx ∈ (a)},

so thatui > f > vi . We work withvi for the time being.
We order the values off∗(a) for a ∈ Ai asc0 < · · · < cn and define forj = 0, . . . , n

Bi(j) = {a ∈ Ai | f∗(a) > cj } and Ui(j) = e−1(Bi(j)↑↑) =
⋃

b∈Bi(j)

(b).
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Note by Lemma4 that⊥∈ Ai and hencec0 = f∗(⊥) andBi(0) = Ai . We also note that
for j = 1, . . . , n we have∅ 6= Bi(j) ⊆ Ai \ {⊥} andBi(j) ⊂ Bi(j − 1). Next we write
c̃0 = c0 andc̃j = cj − cj−1 for j = 1, . . . , n. Thus

vi =
n∑

j=0

c̃j 1lUi(j),

and hencevi is aµ-step function. Also

µ(vi) =
n∑

j=0

c̃jµ(Ui(j)) >
n∑

j=0

c̃j

 ∑
b∈Bi(j)

rb,i

 =
∑
a∈Ai

ra,if∗(a) =
∫

f∗ dνi .

Dually, ordering the values off ∗(a) for a ∈ Ai asd0 > · · · > dm we may represent

ui =
m∑

j=0

d̃j 1lVi(j),

whered̃j < 0 for j = 1, . . . , m and show that

µ(ui) 6
∑
a∈Ai

ra,if
∗(a) =

∫
f ∗ dνi .

Thus fori = 1,2, . . . we see thatui andvi areµ-step functions and∫
f ∗ dνi > µ(ui) > µ∗(f ) > µ∗(f ) > µ(vi) >

∫
f∗ dνi .

Letting i → ∞ we see that

µ∗(f ) = µ∗(f ) =
∫

f dµ 6= ±∞,

and the result follows.

4.4. Bourbaki extensions of the integral

We begin this subsection by defining the notion of a Bourbaki integral on a Stonian
lattice of functions. Our treatment (and terminology) is in the spirit of [16, Section 2.5],
except that we use Bourbaki extensions instead of Daniell extensions. The text [26] gives
an excellent account of both the Bourbaki and Daniell extensions of an integral defined on
a vector lattice of functions (defined in [26, 2.1], and called afundamental system). Here
our first extension of the integral is from the Stonian latticeS to the vector latticeS − S,
see below. All subsequent steps are as in [26], and thus our treatment here is essentially
equivalent to that of [26].

A family S of functionsf : X → R is aStonian latticeif and only if wheneverc ∈ R
+
0

andf, g ∈ S then

f + g, cf, f ∧ g, f ∧ c

are all inS, and iff 6 g theng − f ∈ S.
Observe thatf + = f − f ∧ 0, f − = f + − f and|f | = f + + f − are inS. Also, if S

is a Stonian lattice, then so is

S+ = {f ∈ S | f > 0}.
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Finally, the main example that we wish to consider is the case whereS is the family of all
bounded continuous functionsf : X → R.

A function I : S → R is a positive Bourbaki integral(on the Stonian latticeS) means
that wheneverf, g ∈ S, c ∈ R

+
0 andF ⊆ S is downwardly directed withF ↘ 0, that is

inff ∈F f (x) = 0 for all x ∈ X, we have

I (f + g) = I (f ) + I (g), I (cf ) = cI (f ), inf
f ∈F

I (f ) = 0,

and iff 6 g thenI (f ) 6 I (g).
We note that the following proposition and Corollary9 imply thatI (f ) = ∫

f dµ is a
positive Bourbaki integral on the Stonian latticeS of bounded continuous functions onX,
and so also onS+.

Proposition 14. Let F be a downwardly directed family of bounded, continuous, non-
negative functions withF ↘ 0. Then

inf
f ∈F

∫
f dµ = 0.

Proof. Without loss of generality we may suppose thatβ may be chosen so thatf : X →
[0, β] for all f ∈ F. If there were no suchβ, then replacingF by the (downwardly directed)
subfamilyG = {f ∈ F | f 6 g} in the following argument, for some choseng ∈ F (which
by definition is bounded), shows that

inf
f ∈G

∫
f dµ = 0.

The result then follows on noting that

0 6 inf
f ∈F

∫
f dµ 6 inf

f ∈G

∫
f dµ,

sinceF must be non-empty and everyf ∈ F is non-negative.
Let ε > 0 and define for eachf ∈ F

Gε(f ) = f −1([0, ε)),

so thatX = ⋃
f ∈FGε(f ) is a directed union of open sets. Thus there existsf ∈ F such

thatµ(Gε(f )) > 1 − ε, sinceµ(X) = 1. Define

O =
⋃{

d↑↑ ∣∣ d ∈ D and(d) ⊆ Gε(f )
}

so thate−1(O) = Gε(f ) and hencêµ(O) > 1 − ε. Chooseν = ∑
a∈A raηa ∈ S(µ̂) with

ν(O) > 1 − ε. Then ∑
a∈A\O

raf
∗(a) < εβ,

and ∑
a∈A∩O

raf
∗(a) 6

∑
a∈A∩O

raε 6 ε,

since ifa ∈ O then there is ad ∈ D with d � a and[a] ⊆ (d) ⊆ Gε(f ), so thatf ∗(a) 6 ε.
Therefore,

0 6
∫

f∗ dν 6
∫

f ∗ dν < ε + εβ = (1 + β)ε,
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and hence

0 6
∫

f dµ 6 (1 + β)ε.

Sinceε was arbitrary, the result follows.

We recall that the topological spaceX is said to becompletely regularwhenever for all
pointsx ∈ X andU ⊆ X open withx ∈ U there exists a continuous functionf : X → [0, 1]
such thatf (x) = 1 andf (y) = 0 for all y ∈ X \ U . We also note that ifX is completely
regular then it is also regular. In this case, the following theorem allows us to recapture the
measureµ from the Bourbaki integralI (f ) = ∫

f dµ defined on the lattice of bounded
continuous functions onX. For an interesting example of what can go wrong if we were to
use the Daniell theory, see [16, 2.5.15].

We use the notationGτ , whereG is a family of subsets ofX, to denote the closure ofG
under directed unions; that is,

Gτ =
{⋃

F

∣∣∣ F ⊆ G andF is directed under⊆
}

.

We shall also use the following terminology. A measureφ onX is aGτ -measurewhenever
Gτ ⊆Mφ (that is, each set inGτ isφ-measurable) andφ isGτ -regular; that is, for allE ⊆ X

φ(E) = inf {φ(G) | E ⊆ G ∈ Gτ },
with the convention that inf∅ = ∞. We will say thatφ is acontinuousGτ -measureif φ

is aGτ -measure andφ is Gτ -continuous; that is, for all subfamiliesH of Gτ , which are
(upwardly) directed by⊆, we have

φ
(⋃
H
)

= sup{φ(H)| H ∈ H}.

Theorem 15. LetS be a Stonian lattice of functions onX, and letI be a positive Bourbaki
integral onS. Define

G = {{x ∈ X | f (x) > t} ∣∣ f ∈ S+ andt > 0
}
.

Then there exists a unique continuousGτ -measureφ onX such that for allf ∈ S we have

I (f ) = φ(f ),

whereφ(f ) denotes the Lebesgue integral off with respect toφ.

Proof. The proof of this is similar to the proof of the Daniell–Stone Theorem as in [16, 2.5.2
and 2.5.3], except that we need to replace increasing sequences of functions by upwardly
directed familiesF. The measureφ is defined as follows. ForE ⊆ X, let us say thatF ⊆ S+
suitsE if and only if F is upwardly directed and supF > 1lE ; that is, supf ∈F f (x) > 1
wheneverx ∈ E. Then we define

φ(E) = inf
{

supf ∈F I (f )
∣∣ F ⊆ S+ andF suitsE

}
.

Notice that ifF ⊆ S is upwardly directed and supF > 1lE then {f + | f ∈ F} ⊆ S+
suitsE and supf ∈F I (f +) = supf ∈F I (f ), since by the continuity ofI on S we have
inff ∈F I (f −) = 0.

The proofs that

1. φ is a measure onX,
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2. if E ⊆ X andg ∈ S+ with g 6 1lE thenI (g) 6 φ(E),

3. every memberf ∈ S+ is aφ-measurable function,

may be transcribed from the proof of [16, Theorem 2.5.2] by replacing increasing sequences
of functions by the appropriate directed subfamilies ofS+. Also, the proof thatI (f ) = φ(f )

for all f ∈ S is precisely as in [16, Theorem 2.5.2].
Then, as noted in [16, 2.5.3],(

f ∧ (t + r) − f ∧ t
)
/r ↗ 1l{x∈X | f (x)>t} asr ↘ 0 (4.1)

wheneverf ∈ S+ andt > 0. It follows thatH ∈ Gτ if and only if there exists a directed
family H ⊆ S+ such that 1lH = ∨

H. We need to show that each member ofGτ is
φ-measurable, andφ is Gτ -regular andGτ -continuous.

LetH ∈ Gτ andH ⊆ S+ be such that 1lH = ∨
H. Then, in order to prove measurability,

we show that forE ⊆ X we have

φ(E) > φ(E ∩ H) + φ(E \ H), (4.2)

as the reverse inequality follows by the definition thatφ is a measure. Thus we may assume
that φ(E) < ∞. Let F ⊆ S+ suit E and suppose that supf ∈F I (f ) < ∞. We define
K = {f ∧h |f ∈ F andh ∈ H} and for eachh ∈ Hwe defineF(h) = {f −f ∧h |f ∈ F}.
ThenK suitsE ∩ H , and hence for allε > 0 we can chooseg ∈ F andh ∈ H such that

I (g ∧ h) > sup
k∈K

I (k) − ε

since supk∈K I (k) 6 supf ∈F I (f ), which is finite. It follows thatF(h) suitsE \ H , since
f ∧ h 6 1lH and that

φ(E ∩ H) + φ(E \ H) 6 I (g ∧ h) + ε + sup
f ∈F(h)

I (f ) 6 sup
f ∈F

I (f ) + ε.

The inequality(4.2)follows on lettingε tend to zero and taking the infimum over all families
F that suitE.

The fact thatφ is Gτ -continuous follows easily by standard techniques from equation
(4.1)and the fact thatI is continuous onS+. To prove Gτ -regularity, we letE ⊆ X be such
that φ(E) < ∞, and letε > 0. Then we may chooseF ⊆ S+ such thatF suitsE and
supf ∈F I (f ) < φ(E) + ε. Then

G =
⋃
f ∈F

{x ∈ X | f (x) > 1/(1+ ε)}

satisfiesE ⊆ G and

φ(G) 6 (1 + ε) sup
f ∈F

I (f ) < (1 + ε)(φ(E) + ε).

Regularity follows on lettingε ↘ 0.
Finally, for a measureθ such that all functionsf ∈ S+ areθ -measurable andθ(f ) =

I (f ), we see by equation(4.1) that θ must agree onG with φ. It follows that if θ is a
continuousGτ -measure thenθ = φ.

Notice that whenX is completely regular andS is the Stonian lattice of bounded con-
tinuous functions onX, thenG, above, is a family of open subsets ofX which is a basis of
the topology onX and is closed under finite unions. HenceGτ is the familyT of all open
subsets ofX. Thus the unique measureφ is precisely the original measureµ, by Lemma1
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and Theorems12 and13. Furthermore, it is then the case thatĪ , the Bourbaki extension
of I (f ) = ∫

f dµ, recaptures the Lebesgue integral with respect toµ = φ; that is, for all
f : X → R̄ we haveĪ (f ) = µ(f ) whenever either side is defined. This is proved in [26,
Theorem 12.18 and Corollary 12.22]; see also [26, Remark 10.2].

We briefly sketch the steps in theBourbaki extension̄I of a general Bourbaki integralI

defined on a Stonian latticeS. We let S− S denote the family of functions

{f − g | f, g ∈ S} = {f − g | f, g ∈ S+}.
Notice that ifS is a vector lattice thenS − S = S. We extend (if necessary)I to S − S by
definingI (f − g) = I (f ) − I (g) which uniquely determines the value ofI (f − g) by the
linearity of I and the order properties ofS.

Next we let(S− S)∗ denote the family of all functionsg such that there is an upwardly
directed familyF ⊆ S− S with F ↗ g and defineI ∗: (S− S)∗ → R̄ by setting

I ∗(g) = sup
f ∈F

I (f )

whereF andg are as above. The value ofI ∗(g) is uniquely determined by the continuity of
I onS. Dually, we define(S−S)∗ andI∗ by replacing ‘upwardly directed’ by ‘downwardly
directed’. For all functionsf : X → R̄ we define the upper integralI# by

I#(f ) = inf {I ∗(g) | g ∈ (S− S)∗ andg > f }
and similarly the lower integralI# by

I#(f ) = sup{I∗(g) | g ∈ (S− S)∗ andg 6 f }
with the convention that inf∅ = ∞ and sup∅ = −∞. In the case whenS − S = S we
simply writeS∗ for (S− S)∗ andS∗ for (S− S)∗ in the above definitions.

A functionf : X → R̄ is said to beI -summablewheneverI#(f ) = I#(f ) 6= ±∞, and
in this case we denote the common value byI (f ). The family of allI -summable functions
is denoted byL(I ). For the last extension, we letL+(I ) denote the family of all functions
f : X → R̄ such thatf ∧g ∈ L(I ) for all g ∈ S−S, and duallyL−(I ) contains all functions
such thatf ∨ g ∈ L(I ) for all g ∈ S − S. Finally, we letL̄(I ) = L+(I ) ∪ L−(I ) and
extendI to Ī : L̄(I ) → R̄ by settingĪ (f ) = I#(f ) wheneverf ∈ L+(I ) andĪ (f ) = I#(f )

wheneverf ∈ L−(I ). This is well defined sinceL(I ) = L+(I ) ∩L−(I ); see for example
[26, Remark 6.6]. The functions in̄L(I ) are said to beI -integrable.

A full account of this procedure is given in [26]. We also remark that the measureφ,
in Theorem15, may simply be defined forE ⊆ X by φ(E) = I#(1lE), and thatE is
φ-measurable if and only if 1lE ∈ L+(I ).

5. Integration onD-Suslin subsets

In this section we suppose thatA is a non-empty subset ofX of a certain form; namely,
a D-Suslin set. AT-continuous probability Borel measureµ is said to besupportedon A

wheneverµ(X \ A) = 0. In this case theD-Suslin structure ofA, together with enough
knowledge ofµ, directly leads to a construction of a sequence(νn)

∞
n=0 of simple valuations

that approximatesµ with µ̂ = ⊔∞
n=0 νn and hence the integral of a function onX may

be approximated by evaluating the Darboux sums for this sequence. The next section will
deal with identifying which sets areD-Suslin. We also note that for the weakly hyperbolic
iterated function systems with probabilities, as discussed in [6], the attractor of the IFS is
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D-Suslin and the invariant measure is aT-continuous probability Borel measure supported
on the attractor; see also [5, Section 6] and [10, Section 6].

Another motivation for this section is to define the integral over a (D-Suslin) setA with
respect to aT-continuous Borel measureµ on X for which 0 < µ(A) < ∞; we do not
assume thatµ is supported onA. This may be achieved in the following way. We define the
measureµ/A by

(µ/A)(E) = µ(E ∩ A)

µ(A)
(5.1)

for all E ⊆ X. Then for anyf : X → R we may define∫
A

f dµ = µ(A)

∫
f d(µ/A) (5.2)

whenever the right-hand side exists. We show in Subsection5.5thatµ/A is aT-continuous
probability Borel measure wheneverA is aD-Suslin set, and consequently the right-hand
side of this definition may be evaluated by a sequence of simple valuations.

5.1. The Suslin operation

We start with the usual notations to define theSuslin operation. For n∈ N, as usualNn

consists of all sequences of natural numbersκ = (κ1, . . . , κn), interpretingN0 by {( )}; the
set of the empty sequence( ). ThenN

∞ denotes the disjoint union of theNn over alln ∈ N. At
last,NN is defined to consist of all sequencesi = (iλ ∈ N)∞λ=1. Forκ = (κ1, . . . , κn) ∈ N

n

andm ∈ N with m 6 n we writeκ|m = (κ1, . . . , κm) ∈ N
m; we do not defineκ|m for

m > n. Similarly, wheni ∈ N
N we write i|n = (i1, . . . , in) ∈ N

n for all n ∈ N. Finally,
again whenκ = (κ1, . . . , κn) ∈ N

n andi ∈ N we will write κ · i = (κ1, . . . , κn, i) ∈ N
n+1,

for the concatenation of (the finite sequence)κ followed by the sequence(i).
Next, letF be any class of subsets ofX; then theSuslin-Fsetsare the sets of the form

S =
∧

κ∈N∞
F(κ) =

⋃
i∈NN

∞⋂
n=0

F(i|n)

where(F (κ) ∈ F)κ∈N∞ is a subfamily ofF, or equivalentlyF : N
∞ → F. Of special interest

(see Section6) is the case whenF is the family of all closed subsets ofX. We may refer to
S as the set resulting from the Suslin operation applied toF : N

∞ → F. Alternatively, we
will simply say thatF generatesS.

As is well known, see for example [16, 20, 23, 27], the family of all Suslin-F sets,
whereF is any family of sets, containsF and is closed under countable unions, countable
intersections and the Suslin operation; that is,S(S(F)) = S(F), whereS(F) denotes
the family of all Suslin-F sets. Also, letµ be any measure and letM be the class of all
µ-measurable sets. Then all Suslin-M sets areµ-measurable, that isS(M) =M; see [27,
Theorem 26]. In particular, ifF is a family ofµ-measurable sets thenS(F) ⊆M.

We define a metricσ onN
N by

σ(i, j) =
{

0 if i = j
2−λ if i 6= j

(5.3)

whereλ is the least positive integer such thatiλ 6= jλ. We note that with this metricNN is a
complete separable (ultra-)metric space; the resulting topological space is often called the
Baire space.
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In what follows it will be useful to denote byN the set of pointsN∞ ∪ N
N together with

the partial orderv, and the resulting Scott topology, whereλ v κ whenever eitherλ = κ

or λ ∈ N
n (for somen ∈ N) andλ = κ|n; that is,κ ∈ N

N or κ ∈ N
m with m > n. Notice

thatN is a domain, withN∞ a countable basis of approximation (of algebraic elements),
and with( ) (the empty sequence) bottom. Furthermore, the inherited topology (from the
Scott topology) onNN (the space of maximal points) is precisely the topology generated
by the metricσ . We also note that forκ ∈ N

∞ we have

(κ) = κ↑↑ ∩ N
N = κ↑ ∩ N

N = [κ].

5.2. D-Suslin subsets

For the remainder of this section we will be concerned with the Suslin operation using the
structure ofD — the domain in which the space of pointsX is embedded. We define aD-
Suslin schemeto be a functiond: N

∞ → D such that for allκ ∈ N
∞ and alli ∈ N we have

d(κ) � d(κ · i) and for alli ∈ N
N we have

⊔∞
n=0 d(i|n) ∈ e(X). In this way the function

d can be extended to a unique continuous functiond̄:N → D such thatd̄(NN) ⊆ e(X).
Without loss of generality we shall also impose the condition thatd(( )) =⊥.

A subsetA ⊆ X will be said to be aD-Suslin setif there exists aD-Suslin scheme
d: N

∞ → D such that

A =
∧

κ∈N∞
[d(κ)] =

⋃
i∈NN

∞⋂
n=0

[d(i|n)].

Note that for eachi ∈ N
N we have

∞⊔
n=0

d(i|n) =
∞⋂

n=0

[d(i|n)] =
∞⋂

n=0

(d(i|n)).

Consequently,A = d̄(NN) and

A =
∧

κ∈N∞
(d(κ)) =

⋃
i∈NN

∞⋂
n=0

(d(i|n)).

It follows that the setA is µ-measurable for any Borel measureµ onX, since each(d(i|n))

is µ-measurable.
Given aD-Suslin setA and correspondingD-Suslin schemed, we may decomposeA

into a collection of smaller and smaller setsE(κ) whereκ ranges inN∞. We suppose that
κ ∈ N

j , wherej ∈ N. We define theκ-cylinder ofA to be the set of points

A(κ) =
⋃

∞⋂
n=j

[d(i|n)] ∣∣ i ∈ N
N andi|j = κ

 .

Writing κ · i|n, wherei ∈ N
N andn ∈ N, for the concatenation of (the finite sequence)κ

followed by (the finite sequence)i|n, we have

A(κ) =
⋃

i∈NN

∞⋂
n=0

[d(κ · i|n)] =
⋃

i∈NN

∞⋂
n=0

(d(κ · i|n))

and hence, forµ a Borel measure onX, the setA(κ) is µ-measurable.
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We see that

A(κ) =
∞⋃

n=0

A(κ · n) ⊆ [d(κ)]

for all κ ∈ N
∞. However this is not a disjoint union. Forκ ∈ N

j , we set

E(κ) = A(κ) \
j⋃

i=1

κi−1⋃
n=0

A(κ|(i − 1) · n),

where the interpretation forj = 0 is thatE(( )) = A(( )) = A. It now follows that for all
κ ∈ N

∞,

E(κ) =
∞⋃

n=0

E(κ · n)

where the union is disjoint. Consequently, by induction, we have forj ∈ N

A =
⋃

κ∈Nj

E(κ),

again the union being disjoint.
Alternatively, it is sufficient to define≺ on N

j as thelexicographical ordering, where
λ ≺ κ wheneverλ 6= κ and for the leasti with λi 6= κi we haveλi < κi . Then forκ ∈ N

j

we have

E(κ) = A(κ) \
⋃
λ≺κ

A(λ),

whereλ ranges inNj . The disadvantage is that the union is infinite.

5.3. The construction of a sequence of approximating valuations

We suppose thatA is a D-Suslin subset ofX, with D-Suslin schemed: N
∞ → D

such thatd(( )) =⊥. We also suppose thatµ is aT-continuous probability Borel measure
supported onA (that is,µ(X \ A) = 0) such that the quantities

m(κ) = µ(E(κ))

are known for eachκ ∈ N
∞. Note thatµ(A) = 1 and hencem(( )) = 1. Using theD-Suslin

schemed: N
∞ → D and the functionm: N

∞ → R, we construct a sequence(νn)
∞
n=0 of

simple valuations approximatinĝµ.
We start withν0 = η⊥, which in our notation may be represented asηd(( )). Our goal

will be to choose a sequence(κ(n) ∈ N
n)∞n=1, with κ(n) = (k(n, 1), . . . , k(n, n)) say, and

a sequence of ‘coefficient’ functions(rn)∞n=0. To aid with notation we will order forn ∈ N

eachN
n by thepointwise order6n, whereλ 6n κ wheneverλi 6 κi for i = 1, . . . , n; and

of course( ) 60 ( ). Then forκ ∈ N
n we will write

[0, κ] = {λ ∈ N
n|λ 6n κ}.

At thenth stagern: [0, κ(n)] ∪ {( )} → R is chosen andνn will be defined as

νn =
∑

λ∈[0,κ(n)]
rn(λ)ηd(λ) + rn(( ))ηd(( )),
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wherern(( )) is defined by

rn(( )) =
1 −

∑
λ∈[0,κ(n)]

rn(λ)

 .

Our construction will be based on the simple fact that forn = 1,2, . . . we have

(1 − 2−n)2 = 1 − 21−n + 2−2n > 1 − 21−n.

We chooseκ(1) = (k(1,1)) so that

∑
λ∈[0,κ(1)]

m(λ) =
k(1,1)∑
i=0

m(( ) · i) =
k(1,1)∑
i=0

m(i) > 1

2
,

(where we omit the redundant parenthesis in ‘m((i))’). Then set forλ = (i) ∈ [0, κ(1)]

r1(λ) = m(λ)

2
= m(i)

2
.

Observe that

1

2
>

∑
λ∈[0,κ(1)]

r1(λ) >
(

1

2

)2

> 0.

Next, we chooseκ(2) = (k(2, 1), k(2, 2)) with κ(1) 61 κ(2)|1 such that

k(2,1)∑
i=0

m(( ) · i) =
k(2,1)∑
i=0

m(i) > 7

8
,

and then for eachλ = (i) 61 κ(2)|1
k(2,2)∑
j=0

m(λ · j) =
k(2,2)∑
j=0

m(i, j) > 7m(λ)

8
.

Then set forλ = (i, j) ∈ [0, κ(2)]
r2(λ) = 3m(λ)

4
= 3m(i, j)

4
.

Observe that

3

4
>

∑
λ∈[0,κ(2)]

r2(λ) > 3

4

(
7

8

)2

>
1

2
,

and that forλ ∈ [0, κ(1)] we have

k(2,2)∑
j=0

r2(λ · j) > 3

4

(
7m(λ)

8

)
>

m(λ)

2
= r1(λ).

We continue in this way, so that at thenth stage we chooseκ(n) = (k(n, 1), . . . , k(n, n))

with κ(n − 1) 6n−1 κ(n)|(n − 1), such that

k(n,1)∑
i=0

m(( ) · i) =
k(n,1)∑
i=0

m(i) > 22n−1 − 1

22n−1
= 1 − 21−2n ,
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and then forj = 1, . . . , n− 1 (in that order) and for eachλ 6j κ(n)|j we have

k(n,j+1)∑
i=0

m(λ · i) > 22n−j − 1

22n−j
m(λ) = (1 − 2j−2n)m(λ) .

Then set forλ ∈ [0, κ(n)]
rn(λ) = (1 − 2−n)m(λ).

Again, observe that

1 >
∑

λ∈[0,κ(n)]
m(λ) > (1 − 21−2n)

n−1∏
j=1

(1 − 2j−2n) > (1 − 2−n) ,

and hence that

1 − 2−n >
∑

λ∈[0,κ(n)]
rn(λ) > 1 − 21−n.

Also, observe that forλ ∈ [0, κ(n − 1)] we have

k(n,n)∑
i=0

rn(λ · i) > (1 − 2−n)(1 − 2−n−1)m(λ) > (1 − 21−n)m(λ) = rn−1(λ).

5.4. Properties of the sequence of valuations

Here we show that the sequence(νn)
∞
n=0 is such that

ν0 �1 · · · �1 νn �1 νn+1 �1 · · · �1 µ

for n = 0, 1, . . . , and thatµ̂ = ⊔∞
n=0 νn. It follows that∫

∗
f dµ = lim

n→∞

∫
f∗ dνn and

∫ ∗
f dµ = lim

n→∞

∫
f ∗ dνn,

and, consequently, thatf ∈ R(µ) if and only if

lim
n→∞

∫
f∗ dνn = lim

n→∞

∫
f ∗ dνn.

Lemma 16. Letn ∈ N. Thenνn �1 νn+1.

Proof. By Lemma3 it is sufficient to definetθ,λ for θ ∈ [0, κ(n)] andλ ∈ [0, κ(n + 1)] by

tθ,λ =
{

0 if θ 6= λ|n;

rn(θ)rn+1(λ)/
(∑k(n+1,n+1)

i=0 rn+1(θ · i)
)

if θ = λ|n,

and

t( ),λ =
{

rn+1(λ) if λ|n 6∈ [0, κ(n)];
rn+1(λ) − tλ|n,λ if λ|n ∈ [0, κ(n)],

and

tθ,( ) = 0 and t( ),( ) = rn+1(( )).

It is now a simple matter to show that forθ ∈ [0, κ(n)] ∪ {( )},∑
λ∈[0,κ(n+1)]∪{( )}

tθ,λ = rn(θ),
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and forλ ∈ [0, κ(n + 1)] ∪ {( )},
t( ),λ 6= 0 and

∑
θ∈[0,κ(n)]∪{( )}

tθ,λ = rn+1(λ),

and thattθ,λ 6= 0 impliesd(θ) � d(λ).

Lemma 17. Letn ∈ N. Thenνn � µ̂.

Proof. It is sufficient to prove thatνn+1 v1 µ̂. Let O be an open subset ofD. If ⊥∈ O

thenO = D and consequently

νn+1(O) = 1 = µ̂(O) = µ(e−1(O)).

Thus we may suppose that⊥6∈ O, and define

I = {λ ∈ [0, κ(n + 1)] | d(λ) ∈ O}.
We note that for eachλ ∈ I we have

E(λ) ⊆ A(λ) ⊆ [d(λ)] ⊆ e−1(O).

Hence

νn+1(O) =
∑
λ∈I

rn+1(λ) <
∑
λ∈I

m(λ) = µ

(⋃
λ∈I

E(λ)

)
6 µ(e−1(O)) = µ̂(O),

as required.

Theorem 18. We haveµ̂ = ⊔∞
n=0 νn in P1D.

Proof. Let O be an open subset ofD. It suffices to show that

lim
n→∞ νn(O) = µ̂(O) = µ(e−1(O)).

We consider the sets

3(n) = {λ ∈ N
n | d(λ) ∈ O}.

Then for eachx ∈ e−1(O)∩A there existsi ∈ N
N such thate(x) = ⊔∞

n=0 d(i|n) and hence
d(i|n) ∈ 3(n) for all sufficiently largen ∈ N. Thus

e−1(O) ∩ A ⊆
∞⋃

n=0

⋃
λ∈3(n)

E(λ). (5.4)

Conversely, forn ∈ N andλ ∈ 3(n) we haveE(λ) ⊆ [d(λ)] ∩ A ⊆ e−1(O) ∩ A, and
hence equality holds in equation(5.4). Also, for alln ∈ N we have⋃

λ∈3(n)

E(λ) ⊆
⋃

λ∈3(n+1)

E(λ),

since ifλ ∈ 3(n) thenλ · i ∈ 3(n + 1) for all i ∈ N. It follows that

µ̂(O) = µ(e−1(O)) = µ(e−1(O) ∩ A) = lim
n→∞

∑{
m(λ)

∣∣ λ ∈ 3(n)
}
.
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Letting (κ(n) ∈ N
n)∞n=1 denote the sequence used in the construction of(νn)

∞
n=0 to define

(rn: [0, κ(n)] → R)∞n=1, we note that

lim
n→∞

∑{
m(λ)

∣∣ λ ∈ N
n \ [0, κ(n)]} = 0.

Thus

lim
n→∞

∑{
rn(λ)

∣∣ λ ∈ 3(n) ∩ [0, κ(n)]}
= lim

n→∞(1 − 2−n)
∑{

m(λ)
∣∣ λ ∈ 3(n) ∩ [0, κ(n)]}

= lim
n→∞

∑{
m(λ)

∣∣ λ ∈ 3(n) ∩ [0, κ(n)]} = µ̂(O),

and the result follows.

Corollary 19. Letf : X → [α, β] be bounded. Then∫
∗
f dµ = lim

n→∞

∫
f∗ dνn and

∫ ∗
f dµ = lim

n→∞

∫
f ∗ dνn.

Proof. Forn = 0, 1, . . . we haveνn ∈ S(µ̂), and hence∫
f∗ dνn 6

∫
∗
f dµ 6

∫ ∗
f dµ 6

∫
f ∗ dνn.

Conversely, for eachλ ∈ S(µ̂), sinceµ̂ = ⊔∞
n=0 νn, we have λv1 νn for all sufficiently

largen ∈ N. Thus, by Lemma6, we have∫
f∗ dλ 6 lim

n→∞

∫
f∗ dνn and lim

n→∞

∫
f ∗ dνn 6

∫
f ∗ dλ,

and the result follows.

5.5. Quotient measures

Here we suppose thatµ is aT-continuous Borel measure onX, and thatA is aD-Suslin
subset ofX with 0 < µ(A) < ∞. We show that our definition of

∫
A

f dµ, in equation
(5.2), is well defined.

Proposition 20. Letµ andA be as above. Then the measureµ/A, as defined in equation
(5.1), is a T-continuous probability Borel measure supported onA.

Proof. It is clear thatµ/A is a probability measure supported onA. Thus the result will
follow on showing that all Borel sets are(µ/A)-measurable,µ/A isB-regular, andµ/A is
T-continuous.

Let M be aµ-measurable set. Then for allE ⊆ X we have

µ(E ∩ A) = µ((E ∩ A) ∩ M) + µ((E ∩ A) \ M) = µ((E ∩ M) ∩ A) + µ((E \ M) ∩ A).

Thus(µ/A)(E) = (µ/A)(E ∩ M) + (µ/A)(E \ M), and henceM is (µ/A)-measurable.
Consequently,B ⊆Mµ ⊆Mµ/A.

We use theB-regularity ofµ and the fact thatB is a σ -algebra to show thatµ/A is
B-regular. We recall, from Subsection5.2, thatA is µ-measurable since it isD-Suslin.
SinceB is closed under countable intersections we may chooseB1 ∈ B such thatA ⊆ B1
andµ(B1) = µ(A). Similarly, we may chooseB2 ∈ B such thatB1 \ A ⊆ B2 and

µ(B2) = µ(B1 \ A) = µ(B1) − µ(A) = 0.
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DefiningC = B1 \ B2, we see thatC ⊆ A andµ(A \ C) = 0. SinceB is closed under
complements, we also haveC ∈ B andX \ C ∈ B. Thus for allE ⊆ X andB3 ∈ B with
E ∩ A ⊆ B3 we haveE ⊆ B3 ∪ (X \ C) and

(µ/A)(B3 ∪ (X \ C)) = µ((B3 ∩ A) ∪ (A \ C))

µ(A)
= µ(B3 ∩ A)

µ(A)
6 µ(B3)

µ(A)
.

TheB-regularity ofµ/A follows on taking the infimum over all such setsB3.
Finally, we letU be a family of open subsets ofX, which is (upwardly) directed by⊆,

and letU = ⋃
U. Lettingd: N

∞ → D be aD-Suslin scheme that generatesA, we consider
the set

K = {κ ∈ N
∞ | ∃V ∈ U : E(κ) ⊆ V }.

It is clear that
⋃

κ∈K E(κ) ⊆ U ∩ A. Conversely, for allx ∈ U ∩ A we may choose
V ∈ U such thatx ∈ V . Then, as in the proof of Theorem18, there existsi ∈ N

N such that
e(x) = ⊔∞

n=1 d(i|n) and henceE(i|n) ⊆ [d(i|n)] ⊆ V for all sufficiently largen ∈ N. Thus
U ∩ A = ⋃

κ∈K E(κ). SinceK is countable andU is directed we may choose a sequence
(Vn)

∞
n=1 of sets inU such thatVn ⊆ Vn+1 for n = 1,2, . . . andU ∩ A = ⋃∞

n=1 Vn ∩ A.
It follows from the fact thatµ is a Borel measure thatµ(U ∩ A) = limn→∞ µ(Vn ∩ A).
Therefore,

(µ/A)(U) = lim
n→∞(µ/A)(Vn) 6 sup

V ∈U
(µ/A)(V ) 6 (µ/A)(U),

as required.

Note 3. The above proof thatµ/A is T-continuous is based on the separability (in the
inherited topology) of theD-Suslin setA. An alternative, say ifA were an arbitrary mea-
surable subset ofX, would be to assume thatµ is T-regular. We may then be interested in
whetherµ/A is T-regular. The proof of this can be set out in a similar fashion to the proof
of B-regularity, provided thatA is µ-measurable and

µ(A) = sup{µ(C)| C ⊆ A andC is closed inX}. (5.5)

In the case whenµ is finite, equation(5.5) follows easily from the assumptions thatµ is
T-regular andT ⊆ Mµ; that is, all open sets areµ-measurable. Ifµ is not finite then this
result is more problematic. However, under the assumptions thatA is D-Suslin andµ is a
T-regular Borel measure, we may by standard methods, see [16, Theorem 2.2.12], choose
compactC ⊆ A with µ(C) as close as we wish toµ(A), and hence equation(5.5)holds
sinceX is Hausdorff.

6. Analytic sets

The aim of this section is to discuss sufficient conditions under which an analytic subset
A of X is aD-Suslin subset ofX. In particular, ifX is a metric space andD = I(BX)⊥ as
described in Subsection2.2then every non-empty analytic subset isD-Suslin. We define a
set to beanalyticwhenever it is the continuous image of a polish space; this is slightly more
general than the definition given in [20, 14.5]. Note that everyD-Suslin subsetA of X is
analytic, sinceA = d̄(NN) whered̄ is the extension of anyD-Suslin schemed: N

∞ → D

that generatesA.
We begin by recalling some of the standard results concerning analytic sets and polish

spaces. We then introduce the notion of a countable graded cover ofA from D, and show
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that if X is a metric space andD = I(BX)⊥ then every non-empty analytic subsetA

has a countable graded cover. The next subsection shows that every non-empty analytic
subset with a countable graded covering fromD is D-Suslin. We finish this section with a
discussion of the support of aT-continuous probability Borel measure.

Note, however, that without some condition on the spaceX we cannot expect that every
analytic set isD-Suslin. For example, in the case whenX contains a pointx such that
A = {x} is not a countable intersection of open sets, clearlyA is the continuous image of
the one-point space, and hence analytic. But ifd: N

∞ → D is aD-Suslin scheme, such
thatA is the set resulting from the Suslin operation applied tod, then for eachi ∈ N

N we
must haveA = {x} = ⋂∞

n=0(d(i|n)), contradicting our initial hypothesis.

6.1. Preliminary results

Throughout this section we will suppose thatA is a non-empty analytic subset ofX. As
is well known, every non-empty polish space is the continuous image of the Baire spaceN

N,
and hence we may assume thatA is the image of a continuous functiong: N

N → X. We
recall that a topological spaceX is polishwhenever it is metrisable by a complete separable
metric.

In what follows we will make frequent use of the product spaceN
N × X endowed with

the product topology. We will denote bypX the projection map fromNN×X ontoX; which
is continuous by definition. Note thatN

N× X is Hausdorff since bothNN andX are. Also,
in the case thatX has a metricρ thenN

N×X may be metrised by the product metricσ ×ρ

which is defined by

(σ × ρ)
(
(i, x), (j, y)

) = max
{
σ(i, j), ρ(x, y)

}
,

whereσ is as in equation(5.3). The metricσ ×ρ is complete wheneverρ is complete (since
σ is complete) and consequentlyN

N × X is polish wheneverX is polish (sinceNN is also
separable). We may also (topologically) embed the spaceN

N × X into the product domain
N × D where the orderv is defined by(λ, c) v (κ, d) wheneverλ v κ andc v d. The
embedding is simply given by the product mapι × e of the inclusion mapι: N

N → N and
the embeddinge: X → D; that is(i, x) 7→ (i, e(x)).

In the case whenF is the family of all closed subsets of (the Hausdorff space)X, we are
able to characterize the Suslin-F sets as the projections of closed subsets ofN

N × X onto
X. To see this, we letS be a Suslin-Fset of the form

S =
∧

κ∈N∞
F(κ) =

⋃
i∈NN

∞⋂
n=0

F(i|n);

thenS = pX(S̃) where

S̃ = {
(i, y)

∣∣ i ∈ N
N andy ∈ ⋂∞

n=0 F(i|n)
}
,

which is closed in the product topology onN
N × X. Conversely, if̃S is a closed subset of

N
N × X thenpX(S̃) has the form

pX(S̃) =
∧

κ∈N∞
F(κ) =

⋃
i∈NN

∞⋂
n=0

F(i|n)

where forκ ∈ N
n we takeF(κ) to be the closure (inX) of the set

S(κ) = {
y ∈ X

∣∣ ∃i ∈ N
N : κ = i|n and(i, y) ∈ S̃

}
.
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Observe that in the case whenX is polish theñS is a closed subset of the polish space
N
N × X. ThusS̃ is polish, and henceS is analytic.
On the other hand, every analytic subsetA of (the Hausdorff space)X is a Suslin-F set,

whereF denotes the family of all closed subsets ofX. To see this we may suppose thatA is
the image of the continuous functiong: N

N → X. Then, lettingÃ be the graph ofg, that is

Ã = {
(i, x)

∣∣ i ∈ N
N andg(i) = x

}
, (6.1)

we see, sinceX is Hausdorff, that̃A is a closed subset ofN
N×X. It follows thatA is a Suslin-

F set by the above characterization. We deduce the following (well-known) characterization
of the analytic subsets of a polish space.

Theorem 21. LetF be the family of all closed subsets of a polish spaceX. Then the analytic
subsets ofX are precisely the Suslin-Fsets.

In particular, the family of all analytic subsets of a complete separable metric spaceX

contains all closed subsets ofX, and hence all Borel subsets ofX, since it is closed under
all countable unions and intersections, and every open set is a countable union of closed
sets. However, in general this family is not aσ -algebra of sets, and consequently is a much
larger class of subsets ofX than the Borel family.

6.2. Graded coverings

We now extend the notion of a covering ofX from D, which we met in Subsection4.2.
Recall that ‘Cis a covering ofX from D’ means that

X ⊆
⋃
c∈C

(c)

and for allc ∈ C we have(c) 6= ∅. Here we wish to consider coverings of our analytic set
A ⊆ X. We say thatC is acovering ofA fromD to mean that

A ⊆
⋃
c∈C

(c)

and for allc ∈ C we have(c) ∩ A 6= ∅. By a graded coveringB of A from D we will
mean thatB = ⋃∞

n=0 Bn is the union of a sequence of coverings(Bn)
∞
n=0 of A fromD with

B0 = {⊥}, together with a function̂ : B → D satisfying the following conditions:

1. {(̂b) ∩ A | b ∈ B} is a basis of the topology ofA;

2. for all b ∈ B we havêb � b;

3. for n ∈ N, and forb ∈ Bn andc ∈ Bn+1, if [b ] ∩ (c) 6= ∅ thenb̂ � ĉ;

4. for everyb = ⊔∞
n=0 b̂n, where(bn)

∞
n=0 is a sequence withbn ∈ Bn andb̂n � b̂n+1,

either[b] = ∅ or b ∈ e(X); that is,b = e(x) for somex ∈ X.

Note that in the last condition we have

[b] =
∞⋂

n=0

[̂bn] =
∞⋂

n=0

(̂bn).

The first equality follows from [1, Proposition 2.2.10], and the second from the fact that
b̂n � b̂n+1 implies that[̂bn] ⊇ (̂bn) ⊇ [̂bn+1]. The idea here is that the sequences(bn)

∞
n=0

with bn ∈ Bn and b̂n � b̂n+1 can be thought of as akin to Cauchy sequences in metric
spaces.
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Lemma 22. Let m, n be natural numbers withm < n, and letb ∈ Bm andc ∈ Bn with
[b] ∩ (c) 6= ∅. Then̂b � ĉ.

Proof. Since[b]∩(c) 6= ∅, we may choosey ∈ [b]∩(c). Then fori = m+1, m+2, . . . , n,
sinceBi is a covering ofA, we may choosebi ∈ Bi with y ∈ (bi) so thatbn = c. It follows
by property3 above that

b̂ � b̂m+1 � · · · � b̂n

and hence the result follows by transitivity of�.

Further to the above definition we will refer to acountable graded coveringB of A from
D whenever each of the setsBn is countable (infinite or finite) for alln ∈ N, and hence
B = ⋃∞

n=0 Bn is countable. We see thatN
∞ = ⋃∞

n=0 N
n together witĥ : N

∞ → N as
the inclusion map is a countable graded covering ofN

N from N. Note also that ifB is a
countable graded covering ofA from D then we can define the productN

∞ ⊗ B by

N
∞ ⊗ B =

∞⋃
n=0

N
n × Bn,

which is a countable graded covering ofN
N × A fromN × D, where

(λ, b)̂ = (λ, b̂).

The next result shows the existence of countable graded coverings of an analytic subset
of a general metric space. Our proof is a construction relying on Hausdorff’s maximal
principle.

Proposition 23. LetX be a metric space with metricρ, letD = I(BX)⊥ and lete = ↓↓ ◦ ι,
as described in Subsection2.2. Suppose thatA is an analytic subset ofX. Then there exists
a countable graded coveringB of A fromD.

Proof. To aid notation we will denote by((x, r)) the open ball with centrex and radiusr,
which we recall is the set((x, r)↓↓). We letB0 = {⊥} andE ⊆ X such thatA is contained in
the closure ofE; for example,E = X or any dense subset ofX or A. Then forn = 1,2, . . .

we let

Fn = {
x ∈ E

∣∣ ((x, 2−n−2)) ∩ A 6= ∅}
and apply Hausdorff’s maximal principle to chooseGn, a maximal subset ofFn satisfying
the property that for all distinct pointsx, y ∈ Gn we haveρ(x, y) > 2−n−1. Then we set
Bn = {(x, 2−n)↓↓ | x ∈ Gn} andB = ⋃∞

n=0 Bn, and define the function̂ : B → D by
taking⊥̂ =⊥ and forb ∈ Bn, with b = (x, 2−n)↓↓, by b̂ = (x, 2−n+2)↓↓; this is well defined
since↓↓: BX → I(BX)⊥ is injective. Observe that forn = 1,2, . . . , if x ∈ A then there
existsy ∈ E with x ∈ ((y, 2−n−2)). Thus, by the maximality ofGn, eithery ∈ Gn, or
there existsz ∈ Gn with ρ(z, y) < 2−n−1 and hencex ∈ ((z, 2−n)). It follows thatBn is a
covering ofA for all n ∈ N. Also notice that sinceGn satisfies the above-stated property
we see that {

((x, 2−n−2))
∣∣ x ∈ Gn

}
is a disjoint family of open subsets ofX, each with non-empty intersection withA, and
consequently, under the inverse image of the continuous function (mapping the polish space
ontoA), can be at most countable. To see property1, we suppose thatU is an open subset
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of X and thatx ∈ A ∩ U . Then we may choosen = 1,2, . . . sufficiently large such that
((x, 2−n+3)) ⊆ U , and hence, as in the above observation, we see that there existsz ∈ Gn

such thatx ∈ ((z, 2−n)). It follows that

x ∈ ((z, 2−n+2)) ⊆ ((x, 2−n+3)) ⊆ U,

and property1 follows on taking the intersection withA. Property2 is an immediate con-
sequence of the definition of� on BX and the fact that approximation is preserved in the
embedding ofBX into I(BX)⊥. Property3 is immediate whenn = 0. Forn = 1,2, . . .

andb = (x, 2−n)↓↓ andc = (y, 2−n−1)↓↓ we see that[b] ∩ (c) 6= ∅ implies that

ρ(x, y) < 2−n + 2−n−1 < 2−n+2 − 2−n+1.

Finally, we see that property4 follows from the fact that if(bn)
∞
n=0 is a sequence with

bn ∈ Bn then writingbn = (xn, rn)↓↓ (for n > 1) we have limn→∞ rn = 0.

6.3. When analytic sets areD-Suslin

We can now give a sufficient condition for an analytic setA to be aD-Suslin set. When this
is the case, we may apply the results of Section5to conclude that aT-continuous probability
Borel measure supported onA is approximated by a sequence of simple valuations with
supremumµ̂.

Theorem 24. Let A be a non-empty analytic subset ofX. Suppose thatB is a countable
graded covering ofA fromD. ThenA is aD-Suslin subset ofX.

Proof. Let g: N
N → X be a continuous function with imageA, and letÃ denote the graph

of g, as defined in equation(6.1). Then by considering covers of̃A ⊆ N
N×A chosen from

the countable graded coveringN
∞ ⊗ B of N

N × A fromN × D, we define inductively a
function(λ, b): N∞ → N

∞ ⊗ B such that̂◦ (λ, b) = (λ, b̂): N
∞ → N × D

is an (N × D)-Suslin scheme that generates̃A. The result then follows by defining the
D-Suslin schemed: N

∞ → D by

d = pD ◦ (λ, b̂) = b̂ =̂◦ b,

wherepD denotes the projection map fromN×D ontoD, and noting that the set resulting
from the Suslin operation applied tod is A = pX(Ã).

To define(λ, b): N∞ → N
∞ ⊗ B we start with(λ(( )), b(( ))) = (( ),⊥). Then induc-

tively, we suppose that(λ(κ), b(κ)), whereκ ∈ N
n, has been chosen such that

n⋂
m=0

([λ(κ|m)] × [b(κ|m)]) ∩ Ã 6= ∅.

We let(λ(κ · i), b(κ · i))∞i=0 be an enumeration of the set{
(θ, c) ∈ N

n+1 × Bn+1
∣∣ ((θ) × (c)

) ∩
n⋂

m=0

([λ(κ|m)] × [b(κ|m)]) ∩ Ã 6= ∅
}
,

where we use repetition in the case when this set is finite. Note that it is non-empty since
N

n+1 × Bn+1 coversNN × A.
Observe that property3 of a countable graded cover implies that for allκ ∈ N

∞ and all
i ∈ Nwe have(λ(κ), b̂(κ)) � (λ(κ·i), b̂(κ·i)). Leti ∈ N

N , and consider the corresponding
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sequence(λ(i|n), b̂(i|n))∞n=0. By the construction, we see thatλ(i|n) � λ(i|(n + 1)) and
thus

⊔∞
n=0 λ(i|n) ∈ N

N. We let x= g(
⊔∞

n=0 λ(i|n)), and show thatx ∈ ⋂∞
n=0[̂b(i|n)]. We

deduce, from property4 of a countable graded cover, that
⊔∞

n=0 b̂(i|n) = e(x). It follows
that(λ, b̂) is an(N × D)-Suslin scheme and that∧

κ∈N∞
[λ(κ)] × [̂b(κ)] =

⋃
i∈NN

∞⋂
n=0

[λ(i|n)] × [̂b(i|n)] ⊆ Ã.

The converse set inclusion follows from the fact thatÃ ⊆ (λ( )) × (b( )) and

[λ(κ)] × [b(κ)] ∩ Ã ⊆
∞⋃
i=0

(λ(κ · i)) × (b(κ · i))

for all κ ∈ N
∞. Thus for eachi ∈ N

N there exists, by induction, a sequence(κn)
∞
n=0, with

κn ∈ N
n, such that(i, g(i)) ∈ [λ(κn)] × [b(κn)] ⊆ [λ(κn)] × [̂b(κn)] for all n ∈ N.

We complete the proof by showing that forn = 0, 1, . . . we havex ∈ [̂b(i|n)]. Since
Bn is a cover ofA we may choosec ∈ Bn such thatc � e(x). Then by the continuity of
g there existsN > n such that for allj ∈ N

N with j|N = λ(i|N) = (
⊔∞

n=0 λ(i|n))|N we
haveg(j) ∈ (c). But by definition we have

N⋂
n=0

([λ(i|n)] × [b(i|n)]) ∩ Ã 6= ∅,

and hence(c) ∩ [b(i|n)] 6= ∅, sinceN > n. Thus, by Lemma26, we have

b̂(i|n) � ĉ � c � e(x),

and the result follows.

Combining this result with Proposition23we have the following corollary.

Corollary 25. LetX be a metric space andD = I(BX)⊥ as described in Subsection2.2.
Then every analytic subsetA of X is aD-Suslin set.

6.4. The support of a measure in a complete metric space

In this subsection we suppose thatX is a complete metric space with metricρ and that
D = I(BX)⊥, as discussed in Subsection2.2. We also suppose thatµ is aT-continuous
probability Borel measure onX. As in Subsection6.2, we will denote by((x, r)) the open
ball with centrex and radiusr. Recall that thesupportsptµ of µ may be defined by

X \
⋃

{U ∈ T | µ(U) = 0},
and hencex ∈ sptµ if and only if for all open setsU with x ∈ U we haveµ(U) > 0. We
now give a construction that sptµ isD-Suslin; in particular, sptµ is analytic. Consequently,
the results in Section5 apply, giving a sequence of simple valuations with supremumµ̂.
WhenX is not complete then the result here applies in the completionX̄ of X, which may
be identified with the space of maximal points ofI(BX)⊥; in this case we may then be able
to proceed further ifX is aD-Suslin subset of̄X.

The result that sptµ is analytic, forµ a finite measure on a complete metric spaceX

with all open setsµ-measurable, follows easily from [16, Theorem 2.2.16], which asserts
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that sptµ is separable, and the fact that sptµ is by definition closed, and hence sptµ is a
complete separable metric space.

We letE be any dense subset ofX, orE = X, and use this to define a countable graded
coveringB of sptµ fromD. We proceed as in the proof of Proposition23. For n= 1,2, . . .

we let

Fn = {
x ∈ E

∣∣ µ((x, 2−n−2)) 6= 0
}

and then, as before, apply Hausdorff’s maximal principle to chooseGn, a maximal subset
of Fn satisfying the property that for all distinct pointsx, y ∈ Gn we haveρ(x, y) >
2−n−1. The setsBn andB, and the function̂ : B → D are also defined as in the proof of
Proposition23. Observe that by the maximality ofGn we have

sptµ ⊆
⋃{

((x, 2−n))
∣∣ x ∈ Gn

}
,

and henceBn is a covering of sptµ for all n ∈ N. Also notice that sinceGn satisfies the
stated property, {

((x, 2−n−2))
∣∣ x ∈ Gn

}
is a disjoint family of open subsets ofX each with positive measure, and hence can be
at most countable sinceµ(X) = 1. Note that the last defining property of a graded cover
follows by the completeness ofX.

Next we ‘construct’ a functionb: N
∞ → B such thatd = b̂ = ̂ ◦ b: N

∞ → D is a
D-Suslin scheme that generates sptµ. The definition ofb is by induction onN∞ and is
similar to that used in the proof of Theorem24. We start by lettingb(( )) =⊥. Then, for each
κ ∈ N

∞, we suppose thatb(κ) has been defined withµ((b(κ))) > 0. We let(b(κ · i))∞i=0
be an enumeration of the set{

c ∈ Bn+1
∣∣ µ((c) ∩ [b(κ)]) > 0

}
,

where we use repetition in the case where this set is finite. Note that it is non-empty since
Bn+1 covers sptµ. Since sptµ is closed and hence complete, it follows that for alli ∈ N

N

we have
⊔∞

n=0 b̂(i|n) ∈ e(sptµ). Since(b(κ · i))∞i=0 covers[b(κ)] ∩ sptµ, for all κ ∈ N
∞,

we deduce that

sptµ =
∧

κ∈N∞
[̂b(κ)] =

⋃
i∈NN

∞⋂
n=0

[̂b(i|n)]

and henced = b̂ is as required. For eachi ∈ N
N, we may defineg(i) to be the unique

x ∈ X such that
⊔∞

n=0 b̂(i|n) = e(x). In this way we obtain a functiong: N
N → X with

sptµ = g(NN), and consequently sptµ is an analytic subset ofX.

7. Comments

In this section we make some comments concerning the results of this paper, and high-
light certain areas for further research. Perhaps many of the statements, concerning further
research, may not seem obvious and, although we give a brief sketch of a justification, we
have not given complete proofs; in particular, for the justification that –

∫
f dµ recaptures

the Lebesgue integral in general Hausdorff spaces. We feel that it is more appropriate that
such proofs be given in any future paper that might take up these investigations.
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7.1. Some drawbacks of the current theory

We recall Note2, where we remarked that the definition of the integral does not extend
directly to unbounded functions. This was seen to be a direct consequence of insisting that
D has a least element and the relation�1 in P1D. In fact, without minimal elements inD
then�1 is easily seen to be empty, and hence P1D is not a domain.

Perhaps the greatest drawback is that the measureµ is assumed to be a probability mea-
sure. Whenµ is a finiteT-continuous Borel measure, then we can renormalise and apply the
construction to the measureµ/µ(X); however, we would need to know, a priori, the precise
value ofµ(X). Signed measuresµ can be dealt with in the case that we know the Jordan
decompositionµ = µ+ −µ− and then apply the construction to the renormalised partsµ+
andµ−. If a theory of domain-valued valuations could be employed in the construction of
the integral then it might be possible to overcome some of these disadvantages; for example,
the value ofµ(X) would be approximated byν(D) whereν is a valuation taking values in
say the interval domainI⊥R of R, or even the interval domainI⊥R̄ of R̄.

We also remark that an important hypothesis was thatX is Hausdorff, and our construc-
tion is somewhat different from the construction of the integral (with respect to a valuation)
on a domain as defined, for example, in [17]. Wheng: D → [α, β]∗ is Scott continuous
andλ ∈ P1D is a continuous valuation, the definition in [17] is equivalent to∫

g dλ = sup
ν∈S(λ)

∫
g dν

where
∫

g dν is defined as in Subsection3.1andS(λ) denotes the directed set

{ν ∈ P1D | ν simple andν �1 λ}.
Note that the simple valuations inS(λ) allow us to approximate the value

∫
g dλ from

below, but not from above.
The difference between the two integrals is highlighted by the following example. Let

X be a Hausdorff space andD a domain, as assumed throughout this paper. Letµ be the
Dirac (point) mass at a pointx ∈ X; that is, forE ⊆ X

µ(E) =
{

1 if x ∈ E;
0 if x 6∈ E.

Let d ∈ D be such thatx ∈ [d] but x 6∈ (d). Then definef = 1l(d), the characteristic
function onX of (d), and defineg = 1ld↑↑ , the characteristic function onD of d↑↑. Notice
thatf = g ◦ e andµ̂ = ηe(x), and thatf 6∈ R(µ), by Theorem12, but

∫
g dµ̂ (as defined

above) is well defined and takes the value that one would expect, namely 0. However, if
the Riemann–Edalat integral were to be extended to integrals onD, in such a way as to
maintain the approximation of

∫
g dµ̂ from both above and below, then one might expect

thatg would not be integrable.

7.2. Variants of the functionsf∗ andf ∗

Here we remark that there is some latitude in our definition of the integral in the way that
we define the functionsf∗ andf ∗. To see this let us define forf : X → [α, β] the following
functions onD with values in[α, β]

f(∗)(d) = inf
x∈(d)

f (x) and f (∗)(d) = sup
x∈(d)

f (x),
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and

f[∗](d) = sup
c�d

f(∗)(c) and f [∗](d) = inf
c�d

f (∗)(c).

The next result shows that either of the two groups could replacef∗ andf ∗ in the definition
of the integral.

Lemma 26. Letf : X → [α, β] andµ be aT-continuous probability Borel measure onX.
Then ∫

∗
f dµ = sup

ν∈S(µ̂)

∫
f(∗) dν = sup

ν∈S(µ̂)

∫
f[∗] dν,

and similarly for the upper integral.

Proof. By the definitions of the functionsf(∗), f∗ andf[∗] it is easily seen that

f(∗) > f∗ > f[∗],
and hence

sup
ν∈S(µ̂)

∫
f(∗) dν >

∫
∗
f dµ > sup

ν∈S(µ̂)

∫
f[∗] dν.

To show equality we simply need to verify that forν ∈ S(µ̂) we have∫
f(∗) dν 6 sup

λ∈S(µ̂)

∫
f[∗] dλ.

By interpolation we may chooseλ ∈ S(µ̂) such thatν �1 λ �1 µ̂ and the result follows
by Lemma3 on noting that fora, b ∈ D with a � b we havef(∗)(a) 6 f[∗](b).

Finally, we remark that the functionsf[∗]: D → [α, β]∗ andf [∗]: D → [α, β]∗ are
continuous, and thatf = f[∗] ◦ e (or f = f [∗] ◦ e) if and only if f is lower (or upper,
respectively)semicontinuous; that is, the functionsf : X → [α, β]∗ andf : X → [α, β]∗,
respectively, are continuous.

7.3. Questions of measure theory

We begin by defining a measureµ on a topological spaceX to belocally finite if for all
pointsx ∈ X there exists an open setT such thatx ∈ T andµ(T ) < ∞. We may then ask
whether Lemma1 holds with finiteT-continuous Borel measure replaced by locally finite
T-continuous Borel measure.

The next question that arises comes from Subsection5.5. We say that a measureµ is
hereditaryT-continuousif for all E ⊆ X and for allU ⊆ T which are (upwardly) directed
by ⊆, we have

µ
(
E ∩

⋃
U
)

= sup
{
µ(E ∩ U)

∣∣ U ∈ U}. (7.1)

We are interested in what natural conditions on aT-continuous Borel measureµ imply
thatµ is hereditaryT-continuous. We recall that Note3 remarked that equation(7.1)holds
if µ is T-regular andE is a measurable set withµ(E) < ∞. In fact, the condition that
E beµ-measurable is irrelevant to equation(7.1); we requiredE to beµ-measurable in
Subsection5.5 to ensure thatµ/E is a Borel measure. Consequently, we define a measure
µ to befull whenever for all subsetsE of X we have

µ(E) = sup{µ(E∩ M) | M is µ-measurable andµ(M) < ∞}.
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One may then readily verify that aT-regular,T-continuous full Borel measure is hereditary
T-continuous. This then raises the question of whether aT-regular,T-continuous locally
finite Borel measure is full.

We now introduce two more concepts that will be useful in the next subsection. We will
say thatµ is aregular Borel measureonX wheneverµ is a Borel measure onX which is
T-regular and satisfies the following inner regularity condition: for allµ-measurable subsets
M of X we have

µ(M) = sup
{
µ(C)

∣∣ C ⊆ M andC is closed inX
}
.

Similarly, we say thatµ is aRadon–Borel measurewheneverµ is aT-regular Borel measure
that satisfies the Radon condition: for allµ-measurable subsetsM we have

µ(M) = sup
{
µ(K)

∣∣ K ⊆ M, K is compact andµ(K) < ∞}
.

If µ is a Radon–Borel measure andU is a directed (by⊆) family of open sets then for all
compactK ⊆ ⋃

U there existsU ∈ U with K ⊆ U , sinceU was assumed to be directed.
Consequently, every Radon–Borel measure isT-continuous.

We remark that for a ‘Radon measure’ most authors also require thatµ(K) < ∞ for
all compactK; in our terminology, this would be a locally finite Radon–Borel measure.
Also, our definition of a regular Borel measure is non-standard; this term is usually used
in the literature as an equivalent term for ‘Radon measure’. Perhaps the most interesting
question that arises here is the identification of the topological spaces for which it is true
that everyT-regular,T-continuous locally finite Borel measure (or even, every locally finite
full regular Borel measure) is Radon–Borel.

Finally, we observe that a reason why complete separable metric spaces may be viewed
as a natural setting for topological measure theory is that every (locally) finite Borel measure
is Radon–Borel. We note thatT-continuity follows from the fact that the topology is second
countable. The fact that every closed set is a countable intersection of open sets gives us
T-regularity. Lastly the Radon condition follows from the theory of analytic sets and [16,
Theorem 2.2.12]; see also [23, Theorem 9.9].

7.4. Another integral

In this subsection we define a new integral. Our definition is akin to the Bourbaki exten-
sion that was sketched at the end of Subsection4.4. However we work with two families
of functions which, in general, will not be Stonian lattices as defined in Subsection4.4.
One family will be used to define an upper integral, and the other to define a lower integral.
In fact, the functions in these families will be defined on the domainD into which our
Hausdorff spaceX is embedded. The integral defined on these families that we extend will
be that of integration with respect to a continuous valuation as defined, for example, in [17].

In order to relate this integral to the Lebesgue integral, we shall assume throughout this
subsection thatµ is aT-continuous locally finite regular Borel measure. This gives rise
to the continuous valuation̂µ ∈ VD; the family of all continuous valuations which take
values inR̄

+
0 . The orderv on VD is defined, as in Subsection2.4, by ν v λ whenever

ν(O) 6 λ(O) for all Scott open setsO. Notice, however, that this partial order induces
a way below relation� which is quite distinct from the way below relation�1 on P1D.
Simple valuationsare defined, as before, to be finite linear combinations of point valuations;
for example ∑

a∈A

raηa whereA ⊆ D is finite and
∑
a∈A

ra < ∞.
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We shall denote bȳS(µ̂) the directed set

{ν ∈ VD | ν is simple andν � µ̂}.
A detailed account of this theory, given in a more general setting, may be found in [17]. We
remark that in the case thatµ is a probability measure then we may work in P1D, replacing
S̄(µ̂) with S(µ̂) in what follows.

We denote bȳR∗ the domain of extended real numbers ordered by the usual ordering6,
and duallyR̄∗ ordered by6op = >. A functiong is said to bebounded lower simpleonD

wheneverg: D → R̄∗ is continuous (with respect to the Scott topology),

Image(g) = {g(d) | d ∈ D} ⊆ R

is a finite set, and ∫
g dµ̂ = sup

ν∈S̄(µ̂)

∫
g dν < ∞ (7.2)

where
∫

g dν is defined forν = ∑
a∈A raηa , as in Subsection4.2, by∫

g dν =
∑
a∈A

rag(a).

We denote the family of all bounded lower simple functions onD by F∗. Similarly, we
definebounded upper simplefunctions onD and the familyF∗ with R̄∗ replaced byR̄∗
and the condition (7.2) replaced by its dual; that is,∫

g dµ̂ = inf
ν∈S̄(µ̂)

∫
g dν > −∞,

where the infimum may be regarded as a supremum with respect to6op.
We letF# denote the closure ofF∗ under directed suprema; that is,h ∈ F# whenever

there exists an upwardly directed subfamilyG ⊆ F∗ such thatG↗ h. Notice that

F# ⊆ [D → R̄∗ \ {−∞}],
the space of all Scott continuous functions mappingD into R̄∗ \ {−∞}, and that

∫ · dµ̂

may be defined onF# by∫
h dµ̂ = sup

g∈G

∫
g dµ̂ = sup

g∈G
sup

ν∈S̄(µ̂)

∫
g dν,

for all h ∈ F#. Dually, we defineF# as the closure ofF∗ under directed infima; that is,
directed suprema with respect to6op. We also extend

∫ · dµ̂ toF# by∫
h dµ̂ = inf

g∈G

∫
g dµ̂ = inf

g∈G
inf

ν∈S̄(µ̂)

∫
g dν,

wheneverG↘ h.
Then forf : X → R̄ we say thath: D → R̄∗ is amajorantof f if h ∈ F# andf 6 h ◦ e,

and we denote the family of all majorants off by F#(f ). Similarly, h: D → R̄
∗ is a

minorantof f if h ∈ F# andf > h ◦ e, and we denote the family of all minorants off by
F#(f ). We define∫ #

f dµ = inf
h∈F#(f )

∫
h dµ̂ and

∫
#
f dµ = sup

h∈F#(f )

∫
h dµ̂.
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Whenever ∫ #

f dµ =
∫

#
f dµ 6= ±∞

we define

−
∫

f dµ

to be the common value, and say thatf is µ-summable. We denote by–L(µ) the family
of all µ-summable functions onX. Observe that the assumption thatµ is a regular Borel
measure implies thatF∗ andF∗ are contained in–L(µ).

For the final extension, we let–L+(µ) denote the family of all functionsf : X → R̄ such
thatf ∧ (g ◦ e) ∈ –L(µ) for all g ∈ F∗, and dually–L−(µ) contains all functions such that
f ∨ (g ◦ e) ∈ –L(µ) for all g ∈ F∗. We can then extend –

∫ · dµ to –̄L(µ) = –L+(µ) ∪–L−(µ)

as in Subsection4.4upon checking that–L(µ) = –L+(µ) ∩ –L−(µ).
Notice that whenX is completely regular,µ is a finiteT-continuous measure andS is

the family of all bounded continuous functionsg: X → R, as in Subsection4.4, we have

F#(f ) = {g[∗] | f 6 g ∈ S∗} and F#(f ) = {g[∗] | f > g ∈ S∗}.
Thus, on performing the Bourbaki extension ofI : S→ R, defined byI (f ) = ∫

f dµ, we
have

I#(f ) =
∫ #

f dµ and I#(f ) =
∫

#
f dµ

for all f : X → R̄. Hence–L(µ) = L(I ) and –
∫
f dµ = I (f ) for all f ∈ –L(µ). It remains to

be verified that̄–L(µ) = L̄(I ), and that the extension of –
∫ · dµ to –̄L(µ) is given byĪ .

To see that the integral –
∫ · dµ recaptures the Lebesgue integral in general Hausdorff

spaces, we make the following definitions. We letM denote the Stonian lattice of all mea-
surable functionsf : X → R such that Image(f ) is a finite set andµ(f −1(R \ {0})) is
finite. We define the positive Daniell integralJ :M→ R by

J (f ) =
∑

{tµ(f −1(t)) | t ∈ Image(f ) andt 6= 0}.
Then, as in [26, Chapter 12], we let̄J: L̄(J ) → R̄ be the Daniell extension ofJ . By [26,
Exercise 12-7, Theorems 12.17 and 12.19, and Corollary 12.21], we find thatJ̄ is precisely
the Lebesgue integral with respect toµ. We denote byM∗ the family of all functionsg on
X which are the supremum of an increasing sequence(fi)

∞
i=1 inM, and byJ ∗ the Daniell

extension ofJ toM∗. We note forf : X → R̄ that for allh ∈ F#(f ) with
∫

h dµ̂ < ∞ we
haveh ∈M∗ and

∫
h dµ̂ = µ(h) = J ∗(h), and hence∫ #

f dµ > inf
g∈M∗ J ∗(g).

Conversely, one readily verifies, using the assumption thatµ is a regular Borel measure,
that for allg ∈M∗ with J ∗(g) < ∞ andε > 0 there existsh ∈ F#(g) such that

µ(g) = J ∗(g) 6
∫

h dµ̂ < µ(g) + ε,

and hence forf : X → R̄ we have∫ #

f dµ 6 inf
g∈M∗ J ∗(g).
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Thus, as in the preceding paragraph,–L(µ) = L(J ) and –
∫
f dµ = J(f ) for all f ∈ –L(µ).

In comparison to the inner extension theory of an elementary integral developed in [23,
Chapter V], we denote byE the family of all bounded upper semicontinuous functions
g: X → [0, ∞)∗ satisfying the condition that

∫
g[∗] dµ̂ < ∞. We defineI : E → R by

I (g) = ∫
g[∗] dµ̂. Then, using the notation and methods of [23], we note thatE = Eτ and

I = Iτ |E, and thatT(E) is the family of all closed setsC ⊆ X with µ(C) < ∞. Hence,
upon checking the condition that for allu 6 v in E, we have

I (v) − I (u) 6 sup{I (g)| g ∈ E andg 6 v − u}, (7.3)

the main theorem of [23, Theorem 15.9] is applicable, and thusI has a unique maximalτ
representation1τ |C(1τ ). Furthermore we have

Iτ (f ) =
∫
∗

f d1τ |C(1τ ) for all f ∈ [0, ∞]X.

To see that inequality(7.3)holds, we note that

sup{I (g)| g ∈ E andg 6 v − u} = I∗(v − u) =
∫

#
(v − u) dµ

sincev − u > 0. Also v, u ∈ –L(µ) = L(J ), sinceI (v) < ∞ andµ is a regular Borel
measure, and hence

I (v) − I (u) = I∗(v) − I∗(u) = J(v) − J(u) = J(v − u) =
∫

#
(v − u) dµ.

LetM denote the family of allµ-measurable sets; then, upon checking thatµ is inner
regularT(E) atM, it follows thatµ|M = 1τ |M.

We note that in the case whereµ is a locally finite Radon–Borel measure, it would be more
natural to work withE = USCK+(X), the space of all upper semicontinuous functions from
X toR

+
0 with compact support; see [23, Theorem 16.7] for an extended Riesz representation

theorem in this setting. Also, in the case whereµ is aT-regular,T-continuous locally finite
Borel measure, it may be profitable to develop an outer extension theory of an elementary
integral which should be dual to the inner theory of [23, Chapter V].

Finally, we comment that one way to give this process a computable framework, is to
determine for which functionsf : X → R̄ there is an effective construction of upwardly
directed familiesG of bounded upper simple functions that produce majorantsg of f and
downwardly directed familiesH of bounded lower simple functions that produce minorants
h of f , such that the integrals

∫
g dµ̂ and

∫
h dµ̂ can be determined to within any desired

accuracy.

7.5. Computability

Our first notion of computability is that of aneffective representationof the Hausdorff
spaceX. Given the framework of this paper, it is perhaps most natural to takeX embedded
in an effectively given domainD in the sense given in [14, Section 3]; that is,D is an
ω-continuous pointed domain with a countable basisC = {cn | n ∈ N} of approximation,
such that the relationcn � cm is recursively enumerable inn, m. Then we will say thatX
has an effective structure whenever there is a graded coveringB = ⋃∞

n=0 Bn ⊆ C, where
eachBn is recursively enumerable (as a subset ofC), together with a computable function
:̂ B → C, and a computable functionb: N

∞ → B such thatb(Nn) ⊆ Bn for all n ∈ N
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andb̂: N
∞ → C is aD-Suslin scheme that generatesX; that is,

X =
∧

κ∈N∞
[̂b(κ)] =

⋃
i∈NN

∞⋂
n=0

[̂b(i|n)].

Note that this implies thatX is separable and analytic; that is, the continuous image of a
polish space.

An alternative to assuming the existence of the computable functionb: N
∞ → B is

to assume that the relation(b) ∩ [c] 6= ∅ is recursively enumerable. However, in this
case we cannot construct the entire functionb (as this would require determining whether
certain sets are finite or infinite), but we can construct a sequence of functions(bn: Nn →
B)∞n=0, whereNn ⊆ Nn+1 ⊆ N

∞ andbn+1|Nn = bn for n ∈ N, which are sufficient to
construct the sequence(νn)

∞
n=0 of simple valuations approximatingµ of Subsection5.3. We

omit the details as we feel that this slight increase in generality does not merit the further
complications to the construction of the sequence(νn)

∞
n=0. This alternative should allow us,

in the case whenX is complete, to relate our notion of an effective representation ofX with
the notion of an effectively given (complete) metric space, given in [15, Subsection 3.2].

The above then naturally leads to the following definition. A measureµ is effective
whenever there exists a computable sequence of partial functions(rn: N

∞ → [0, 1])∞n=0
such that for eachn ∈ N the set{κ ∈ N

∞|rn(κ) is defined}is finite (and computable) and the
sequence of valuationsνn = ∑

κ∈N∞ rn(κ)ηb̂(κ) forms an approximating sequence in P1D

with supremumµ̂. Our viewpoint is that we start with the sequences(rn)
∞
n=0 and consider

the resultant measures; alternatively, in considering a computational problem involving a
particular measureµ, the problem itself gives a method for computing the sequence(rn)

∞
n=0.

For an effectiveT-continuous probability Borel measureµ and bounded functionf ∈
R(µ) we need to be able to approximate the values off∗(̂b(κ)) andf ∗(̂b(κ)), for allκ ∈ N

∞
such thatrn(κ) is defined for somen ∈ N, so that the value of

∫
f dµ can be evaluated to

any given accuracy. Thus we may consider all bounded functionsf : X → R such that there
exists a computable increasing sequence of computable increasing functions(gn: B̂ →
R̄∗)∞n=0 and a computable decreasing sequence of computable decreasing functions (that is,
increasing with respect to6op), (hn: B̂ → R̄

∗)∞n=0, whereB̂ = {̂b | b ∈ B}, such that for
all b ∈ B

gn(̂b) 6 f∗(̂b) and f ∗(̂b) 6 hn(̂b),

and ∫
(hn − gn)dνn =

∑
κ∈N∞

rn(κ)
(
hn

(
b̂(κ)

)− gn

(
b̂(κ)

)) → 0.

asn → ∞. Such functionsf may be termedµ-almost effective functions. The results of this
paper imply that the value of

∫
f dµ exists and can be computed to any accuracy, given that

µ is an effectiveT-continuous probability Borel measure, and thatf is aµ-almost effective
function. An interesting question that arises is whether all bounded functionsf : X → R,
which are continuousµ-almost everywhere, areµ-almost effective, whereX has an effective
representation andµ is an effectiveT-continuous probability Borel measure.

That an analytic setA ⊆ X iseffectivemeans there is a computable functionb: N
∞ → B

such thatb(Nn) ⊆ Bn for all n ∈ N and̂b: N
∞ → C is aD-Suslin scheme that generatesA.

Then for aT-continuous Borel measureµ onX such that 0< µ(A) < ∞ and the function
m: N

∞ → [0, 1] is computable, wherem(κ) = µ(E(κ))/µ(A) andE(κ) is as defined
in Subsection5.2, we can define the sequence of valuations(νn)

∞
n=0 as in Subsection5.3.
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In this way we see thatµ/A is an effectiveT-continuous probability Borel measure. We
also note that a slight increase in generality is afforded by considering sequences of partial
functions(bn: Nn → B) whereNn ⊆ Nn+1 ⊆ N

∞ andbn+1|Nn = bn for n ∈ N.
Again, one may ask questions about how the definition of an effective analytic set can

be weakened, say by using sequences of computable functions(bn)
∞
n=0, which in some

sense approximate the continuous functionb: N
∞ → B satisfying the conditions stated

above. We presume that such questions may be highly related to the mathematical subject
of effective descriptive set theory.
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