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Abstract

Circadian rhythms act to optimise many aspects of our biology and thereby ensure that physiological processes are occurring at the most

appropriate time. The importance of this temporal control is demonstrated by the strong associations between circadian disruption, mor-

bidity and disease pathology. There is now a wealth of evidence linking the circadian timing system to metabolic physiology and nutrition.

Relationships between these processes are often reciprocal, such that the circadian system drives temporal changes in metabolic pathways

and changes in metabolic/nutritional status alter core molecular components of circadian rhythms. Examples of metabolic rhythms include

daily changes in glucose homeostasis, insulin sensitivity and postprandial response. Time of day alters lipid and glucose profiles following

individual meals whereas, over a longer time scale, meal timing regulates adiposity and body weight; these changes may occur via the

ability of timed feeding to synchronise local circadian rhythms in metabolically active tissues. Much of the work in this research field

has utilised animal and cellular model systems. Although these studies are highly informative and persuasive, there is a largely unmet

need to translate basic biological data to humans. The results of such translational studies may open up possibilities for using timed dietary

manipulations to help restore circadian synchrony and downstream physiology. Given the large number of individuals with disrupted

rhythms due to, for example, shift work, jet-lag, sleep disorders and blindness, such dietary manipulations could provide widespread

improvements in health and also economic performance.
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Introduction

Circadian rhythms are cyclical endogenous processes that

occur with a periodicity of approximately 24 h. They are

found throughout the natural world, from simple unicellu-

lar organisms through to human beings(1). Possession of

such rhythms enables organisms to anticipate predictable

changes in the environment and thus adapt their physi-

ology accordingly. Temporal control over metabolic

processes also allows cells and organisms to separate

opposing biochemical pathways, for example, redox reac-

tions and anabolism v. catabolism. Moreover, in model

species, it has been demonstrated that possession of circa-

dian rhythms that synchronise to environmental changes

confers a selective advantage(2).

A great deal of current research is being undertaken at

the interface between the circadian timing system, meta-

bolic physiology and nutritional science. Studying how

these major biomedical areas inter-relate will not only

increase our understanding of healthy metabolism, but

may also guide the development of nutritional interven-

tions for body-weight regulation, the management of

obesity-related disease and the treatment of circadian dis-

orders associated with shift work, jet-lag, abnormal sleep

phase and blindness.

The mammalian circadian timing system

It was recognised over 40 years ago that a small brain

region within the anterior hypothalamus, the suprachias-

matic nuclei (SCN), is important for the expression of circa-

dian rhythms in mammals(3,4). When the SCN are isolated

from surrounding brain tissue in vivo, or maintained as

tissue explants in vitro, their neurones maintain robust

rhythmicity(5–7). Furthermore, if SCN tissue from one

animal is transplanted to another animal that has had its

SCN lesioned, the resulting behavioural rhythms reflect

that of the donor animal, not the host(8). It is therefore

clear that the SCN play a key role in the generation of

mammalian circadian rhythms.

Mammalian clocks outside the SCN, termed ‘peripheral

clocks’, were first identified in tissues such as the retina,

which exhibits rhythmic hormone secretion when

maintained in culture(9). Following the cloning of genetic
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components of the mammalian clock came the discovery of

rhythmic clock gene expression in peripheral tissues(10,11).

Subsequent advances came from the use of transgenic

animals in which reporter gene expression is driven by

clock gene elements. Real-time imaging of tissue explants

taken from these animals confirmed that many peripheral

tissues possess an endogenous clock(12,13). Perhaps most

surprisingly, circadian rhythms have also been identified

in cultures of immortalised cells(14–16).

In animal models, rhythmic clock gene expression

is known to occur in multiple tissues involved in meta-

bolism and nutritional physiology, including the liver,

pancreas, gastrointestinal tract, adipose tissue and skeletal

muscle(17,18). For ethical and technical reasons, molecular

analysis of human tissues is difficult and various strate-

gies have been adopted to study human clock gene

expression(19). However, clock gene rhythms have now

successfully been observed in human leucocytes(20,21),

fibroblasts(22,23) and adipose tissue(24,25), with single time

point analysis of clock gene expression in other tissues,

including pancreatic islets(26).

The presence of rhythms throughout the body requires

appropriate physiological mechanisms to keep tissues

correctly synchronised to one another. The SCN receive

photic information directly from the retina and are readily

synchronised to the external light–dark cycle(27). In normal

circumstances, the clock in the SCN then synchronises

rhythms elsewhere in the body through a variety of

output pathways(28). A commonly used analogy to describe

this organisation refers to the SCN as a conductor of an

orchestra, with the peripheral tissues representing indi-

vidual musicians; each of the ‘musicians’ is capable of

generating its own time but requires the central ‘conductor’

to ensure that they all maintain correct time relative to each

other and thus optimal overall output.

There are many ways through which the SCN can

synchronise peripheral tissues. These include endocrine

and neuronal pathways, such as the secretion of gluco-

corticoids and the tone of the autonomic nervous

system(28). In addition, by influencing the timing of

sleep–wake rhythms, the SCN also dictate the timing of

certain behaviours, for example, feeding, which are

thought to be critical to the rhythms in peripheral tissues

as explained below.

Metabolic functions of circadian timing and specific
roles of peripheral clocks

Since the identification of clocks in peripheral tissues,

a critical challenge has been to identify their physiological

role. An early indication that peripheral clocks had

a strong influence on metabolism came from transcriptomic

analyses. Depending on the analytical methods used, these

studies estimated that up to 20 % of the transcriptome

in peripheral tissues exhibits 24 h variation(29–33). Identifi-

cation of the rhythmic transcripts revealed a large cluster

of genes encoding proteins involved in metabolic pathways.

Later proteomic analysis also suggested that up to 20 %

of proteins in the mouse liver oscillate with a circadian

rhythm, and many of these proteins are indeed involved

in important metabolic functions(34). Technical advances

have since permitted direct analysis of the daily metabolome

in different tissues. Similar to the transcriptomic and pro-

teomic data, both mouse(35–37) and human(38–40) studies

estimate that up to 20 % of the metabolome is under

24 h regulation.

Genetic evidence for a role of circadian clocks in

key metabolic processes is now substantial. As discussed

previously(41), the precise nature of metabolic abnormality

in transgenic animals depends upon their genetic back-

ground. Nonetheless the dysregulation of key metabolic

processes, including glucose and lipid homeostasis, follow-

ing disruption of key genes involved in circadian biology

reveals fundamental links between circadian genetics

and metabolism(42–47). Consistent with these animal data,

a number of groups have now reported correlations

between aspects of human metabolism and clock gene

polymorphisms(48–53).

One limitation of studies involving individuals with

‘whole body’ genetic changes is that they do not clearly

indicate the contribution of individual tissue rhythms to

whole-organism physiology. Using the Cre-Lox recom-

binase system to disrupt the Bmal1 (brain and muscle

arnt-like protein-1) gene in a tissue-specific manner, circa-

dian rhythms in the liver, pancreas and white adipose

tissue have been selectively ‘knocked out’ allowing the

in vivo role of their clocks to be investigated. Mice bearing

a liver-specific clock disruption exhibit increased glucose

clearance following acute challenge, fasting hypoglycae-

mia and other features suggesting that the hepatic clock

regulates glucose export into the blood(54). By contrast,

disruption of the pancreatic clock results in hyper-

glycaemia, reduced glucose tolerance and impaired insulin

secretion(55,56). Finally, knock-out of Bmal1 in white

adipose tissue induces obesity; a contributory mechanism

to this phenotype is the temporal modification of PUFA

signalling from adipocytes to appetite-regulatory regions

of the hypothalamus, leading to increased feeding during

the resting phase of the day(57). Thus, circadian dysfunc-

tion in individual tissues can lead to major changes in

whole-body energy metabolism.

Timed feeding as a synchroniser of peripheral clocks

The food-entrainable oscillator

Restriction of food availability to a narrow time window

each day results in profound reorganisation of behaviour

and physiology(58,59). Such temporal restriction induces

a bout of activity in advance of food availability, termed

‘food anticipatory activity’ (FAA). This phenomenon was

originally observed in rats, but has since been reported
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in multiple vertebrate and invertebrate species. More

detailed analysis in rodents reveals that this FAA is

also accompanied by physiological changes including

increased core body temperature and serum glucocorticoid

concentration.

Interestingly, FAA exhibits properties that are con-

sistent with it being controlled by endogenous circadian

clock(s), rather than being merely a food-driven pheno-

menon. For example, if the temporal window of food

availability is abruptly delayed, the onset of FAA takes

multiple 24 h cycles to resynchronise to the new feeding

time. Moreover, if an animal is completely food deprived,

FAA persists at approximately the same time every 24 h

for as long as the food deprivation can be maintained(58,59).

The underlying circadian basis of FAA has led to the

postulation that animals contain a food-entrainable oscil-

lator (FEO). Although there are reported differences in

FAA in mice lacking genetic components of the circadian

clock(60), these mice do retain the ability to display

FAA(61). It is therefore believed that the genetic control of

the FEO differs from other circadian processes. In keeping

with this idea, food anticipatory responses persist in SCN-

lesioned animals(62,63), indicating that the FEO resides in

tissue(s) outside of the SCN, the master circadian clock.

Some studies have suggested that the FEO may be closely

linked to the dorsomedial hypothalamic nuclei, a brain

region known to be involved in the homeostatic regulation

of feeding(64,65). Other work has highlighted the potential

role of extra-hypothalamic brain regions in FAA(66). The

anatomical localisation of the FEO remains a controversial

topic, however(67–69). Indeed the FEO may lie outside of

the brain or require the interplay between multiple tissues.

Regulation of rhythms in peripheral tissues

One potential mechanism underlying food-entrainable

rhythmicity is the effect of feeding time on peripheral

tissue clocks. In normal physiological conditions, the

timing of behavioural rhythms, such as feeding, is driven

by the SCN and thus represents a mechanism through

which the SCN can synchronise rhythms in the periphery.

The powerful nature of timed feeding as a circadian

signal becomes apparent when food availability is divorced

from SCN rhythms.

A typical protocol restricts food availability to nocturnal

rodents, so that they can only eat during the light period of

a light–dark cycle. This inverts the phase of clock gene

rhythms in peripheral tissues, such as the liver, kidney,

heart, pancreas, lung, gastrointestinal tract, and brown

and white adipose tissue(33,70–72). Full entrainment of the

liver rhythms appears to occur within 2–3 d, whereas the

other peripheral tissues may require up to 1 week before

they exhibit the maximal phase shift. A later mouse study

involved removal of food access for the first 6 h of the

dark period of a light–dark cycle, with mild energy restric-

tion. After 4 d in this protocol, mice exhibited delayed

rhythms of hepatic and plasma TAG concentration,

together with delayed rhythms of lipogenic and clock

gene expression in both liver and adipose tissue(73).

When animals are able to eat ad libitum quantities of

food during temporal restriction paradigms, SCN rhythms

remain locked to the light–dark cycle(70,71). However, the

combination of temporal food restriction and hypoener-

getic food availability does induce reorganisation of

rodent SCN rhythms(74,75). Indeed, hypoenergetic feeding

of nocturnal rodents without restricting food availability

to the light period alters the phase of SCN-driven

rhythms(76) as well as gene expression in peripheral

tissues(77). Thus the overall effect of feeding on circadian

organisation appears to involve an interaction between

both the timing and the quantity of food intake (Fig. 1).

An important caveat when extrapolating the studies

described above to human society is the relevance to stan-

dard human meal patterns. A common theme in human

society is a feeding pattern of three meals per d. In con-

trast, most animal studies to date have utilised prolonged

ad libitum feeding opportunities restricted to certain

phases of the 24 h day. Some studies, however, have devel-

oped a ‘humanised’ meal protocol for rodents. When rats

are only given their daily energy intake over ‘lunch’ and

‘dinner’ their gene expression rhythms in liver, heart and

white adipose tissue are delayed compared with a group

receiving the same total energy intake spread over three

meals(78). Consistent with this finding, studies in mice

SCN

Ad libitum food Temporal food restriction Temporal food restriction
and hypoenergetic availability

SCN SCN

Peripheral
clocks

NeuronesHormonesActivity

Peripheral
clocks

NeuronesHormonesActivity

Peripheral
clocks

NeuronesHormonesActivity

Fig. 1. Regulation of the circadian timing system by light and food. Under normal conditions of ad libitum food, light synchronises the master clock, the suprachias-

matic nuclei (SCN), which then synchronises peripheral clocks via neuronal and endocrine pathways, together with control over behavioural activity and thus

feeding time. When feeding time (but not energy availability) is restricted, light remains the dominant synchroniser of the SCN, but peripheral clocks are synchro-

nised to feeding time. Under conditions of temporal and energy food restriction, both the SCN and peripheral clocks are synchronised to the feeding time.

(A colour version of this figure can be found online at http://www.journals.cambridge.org/nrr)
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using a range of mealtime combinations indicate that the

first meal following a long fasting period provides an

important synchronising signal to peripheral clocks(77,79).

To date there are no comparable molecular data from

human studies. One rare investigation of timed feeding

on human circadian physiology is an experiment in

which subjects were fed a single daily carbohydrate-rich

meal for 3 d; morning consumption of this meal advanced

core body temperature and heart rate, but not melatonin,

rhythms compared with evening meal timing(80). Further-

more, a delay in the timing of three daily meals within a

fixed light–dark cycle is known to delay the phase of

plasma leptin rhythms(81), which may be at least partially

due to changes in adipose tissue clocks.

Although redundancy of signalling pathways providing

input to the relevant tissues hinders elucidation of mechan-

istic insight into food entrainment, some progress has been

made. At the nutritional level, phase shifting of the

liver clock seems greater when the starch component of

a mixed diet provides a large postprandial glucose

concentration(82). Interestingly, however, ingestion of 100

% glucose, sucrose or maize starch is insufficient to alter

the phase of liver rhythms, indicating that mixed macronu-

trient content may be necessary for food entrainment in the

liver(83). At the physiological level, temporal food restric-

tion more rapidly resynchronises peripheral clock gene

rhythms in mice that have been adrenalectomised, com-

pared with sham-operated controls(84). This finding

suggests that glucocorticoid signalling, which is believed

to be an endocrine link between the SCN and peripheral

clocks(85), may inhibit or delay the impact of temporal

food availability. At the molecular level, it has been

demonstrated that rhythmic phosphorylation of key tran-

scription factors CREB and Akt (cAMP response element-

binding protein and protein kinase B) in the mouse liver

is driven by temporal feeding patterns(86). In keeping

with this result, the expression of multiple genes targeted

by molecular nutrient and stress sensors was similarly

dependent on feeding time(86). Finally, mice deficient for

the gene Parp1 (poly [ADP-ribose] polymerase 1) or

the neurone-specific g form of protein kinase C (PKCg)

exhibit impaired synchronisation to timed feeding(87,88).

Despite these advances, the mechanisms that mediate

the effects of food on the circadian system are poorly

understood and will doubtless be the subject of multiple

further studies.

Human metabolic physiology and postprandial responses
vary across the day

Diurnal changes

Diurnal rhythmicity refers to 24 h changes that occur in

individuals kept in a varying environment, for example,

a 24 h light–dark cycle. Although such rhythms are often

relevant to a real-life scenario, there is the possibility that

they are driven by environmental fluctuations rather than

endogenous processes per se. As a result, they are not

considered to be truly circadian.

Arguably the best-characterised daily metabolic rhythms

in humans relate to changes in glucose homeostasis.

Diurnal changes in glucose tolerance have been recog-

nised in human subjects for many years(89). Sensitivity to

elevated glucose concentration is greatest in the early

morning and then declines over the course of the day,

leading to a phenomenon that has been termed ‘afternoon

diabetes’. This daily change is not dependent upon

changes in gastrointestinal function, but instead appears

to be the result of altered glucose utilisation and insulin

sensitivity, with maximal insulin sensitivity occurring in

the early morning and decreasing throughout the day(89).

In addition to glucose homeostasis, the regulation of

plasma lipids is also subject to daily variation. Not only

are basal concentrations of TAG elevated at night, but

also there are diurnal changes in the postprandial TAG

response. Ingestion of a meal at night results in increased

plasma TAG that remains elevated for longer than the

response to the same meal given during the day(90).

A study of postprandial responses to breakfast and lunch

reported approximately 50 % less change in plasma TAG

concentration following lunch than breakfast, despite the

plasma TAG fraction showing no differences in concen-

tration of [13C]palmitic acid that was included in each

meal(91). The physiological basis for temporal differences

in postprandial TAG response may therefore be indepen-

dent of absorption or mobilisation of meal-derived lipids

from the gut(91).

A number of groups have studied temporal variation

of adipokines, which are adipose-derived hormones that

regulate metabolic physiology in the brain and multiple

peripheral tissues(92,93). Diurnal rhythms have been

reported for many of these hormones, including leptin,

adiponectin, chemerin, lipocalin and visfatin(94–98).

Although the secretion of these hormones is likely to be

governed by multiple factors such as feeding and sleep,

detailed analyses of leptin secretion suggest that there is

likely to be an underlying circadian component to adipo-

kine rhythmicity(99,100). Furthermore, given the functional

roles of adipokines, their rhythmic secretion may make

important contributions towards the daily changes in

glucose and lipid homeostasis described above.

Identification of endogenous circadian rhythms

In order to unmask truly endogenous circadian rhythms

from temporal changes in the environment, a number of

different laboratory protocols have been developed.

The most widely used of these are the constant routine

and forced desynchrony protocols(101,102). In a constant

routine, subjects are kept awake in a supine posture in

constant dim light, with identical regular (for example,

hourly) snacks. Although this protocol effectively removes
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environmental rhythms, it does result in the development

of sleep debt due to the necessity to keep subjects

awake. One solution to this problem is to allow subjects

to sleep during the dark phase of a light–dark cycle that

is sufficiently different from 24 h to permit entrainment of

subjects’ circadian rhythms; this is the basis of a forced

desynchrony protocol. For example, a commonly used var-

iant of this protocol employs a 28 h light–dark cycle that

therefore allows subjects to sleep every 28 h, while their

circadian rhythms occur (‘free run’) with a frequency of

approximately 24 h.

Various research groups have utilised the above proto-

cols to investigate the contribution of the endogenous

circadian system to daily rhythms of glucose and lipid

metabolism. One study in which 4-hourly meals were

administered over a constant routine revealed elevation

of both postprandial glucose and TAG during the biologi-

cal night, especially after high-fat meal intervention over

the week preceding the constant routine(103). Consistent

with this finding, analysis of postprandial responses

during a forced desynchrony of 27-h days revealed effects

of both circadian time and length of prior wakefulness on

glucose and TAG concentration(104). By contrast, postpran-

dial insulin responses were regulated by circadian time,

but not length of wakefulness. A more recent forced

desynchrony protocol kept volunteers on 28-h days, each

of which contained four meals: breakfast, lunch, dinner

and a snack shortly before bedtime(105). It was found that

the times during which subjects were awake and eating

during their biological night resulted in multiple cardio-

metabolic changes, including decreased plasma leptin

concentration and increased concentrations of both plasma

glucose and insulin. In fact, the postprandial responses

of some of these healthy subjects during the biological

night were equivalent to the responses of a pre-diabetic

individual(105). In a separate cross-over study using forced

desynchrony, volunteers had daily metabolic profiles

assessed after both three 21-h days and also three 27-h

days. Although there were some differences in response

to the 21-h v. 27-h days, both schedules disrupted

glucose–insulin metabolism, increased carbohydrate oxi-

dation and reduced protein oxidation, but had little or

no effect on appetite or energy balance(106). The human

circadian system therefore exerts clear influence over key

aspects of metabolic physiology.

Effects of body weight on circadian rhythms

The data discussed above describe the interaction between

clocks and metabolism on a relatively short-term time

frame. Of importance to health is the longer-term relation-

ship between circadian rhythms, metabolic status and

body weight. Indeed, many studies in the literature have

reported altered daily rhythms in association with factors

including altered body weight, presence of metabolic

disease and long-term changes in nutrient intake.

Following the demonstration of daily rhythms of plasma

leptin in human subjects, it was reported that the per-

centage amplitude of these rhythms declined in obese indi-

viduals(94,107,108). However, not all studies have been able

to replicate this finding(109,110). The reasons for discrepan-

cies are not clear, but may include varied pre-laboratory

controls, sex of subjects, extent of obesity (i.e. BMI of

30–35 v. 40þ kg/m2) and distribution of fat within the

obese subjects recruited.

Another hormone that appears to demonstrate corre-

lation between rhythm amplitude, body weight and meta-

bolic health is melatonin. An early report that nocturnal

melatonin concentration positively correlates with BMI in

insulin-sensitive human subjects(111) has been supported

by recent data reporting elevated amplitude melatonin

rhythms in obese non-diabetic men, although blunted

melatonin rhythms are present in weight-matched men

with type 2 diabetes(110). In addition, nocturnal melatonin

concentration correlates with aspects of the metabolic syn-

drome in women(112). The functional relevance of these

endocrine data is supported by molecular and genetic

evidence for a role of melatonin signalling in metabolic

physiology and type 2 diabetes mellitus. Common poly-

morphisms of the human MT2 melatonin receptor have

been associated with impaired glucose homeostasis and

type 2 diabetes in multiple populations(113–116). Although

the calculated risk of developing type 2 diabetes is small

for these polymorphisms, subsequent work identified

additional rare MT2 variants that confer a much higher

risk of diabetes and also disrupt melatonin signalling in

cell culture experiments(117). Evidence from animal

models further supports the existence of a physiological

link between melatonin, insulin secretion(118) and insulin

sensitivity(119,120). When comparing rodent and human

data, it should be recognised that elevated melatonin

secretion occurs at night in all species, irrespective of

whether they are active at night or during the day; there-

fore direct translation of data relating melatonin to glucose

homeostasis from rodents to humans is difficult. Despite

this, there is now evidence to support linking low

nocturnal melatonin levels in humans, estimated from

morning urinary metabolite concentration, with the risk

of developing type 2 diabetes(121) and also insulin resis-

tance in non-diabetic subjects(122).

Comparison of molecular rhythms in lean and obese

individuals has also been addressed by a number of

research groups. Reduced amplitude rhythms have been

reported in tissues such as adipose(123,124), liver(124,125)

and brain stem(126) of obese and diabetic mice. However,

interpretation of these data is sometimes hampered by

the use of different genetic strains in the lean and obese

groups. We have recently compared daily profiles of

clock gene expression in subcutaneous adipose biopsies

taken from lean and obese human subjects and failed to

observe any effects of body weight on these molecular

rhythms(25). Although it is possible that differences would
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have been observed if we had been able to serially sample

other (for example, visceral) adipose depots, the data

nonetheless indicate that obesity per se does not impair

clock gene rhythms in all metabolically active tissues.

A small number of animal studies have compared lean

and obese groups generated by manipulation of dietary

intake, rather than examining the effects of altered body

weight due to genetic differences. In most cases, dietary

obesity results in clear changes in aspects of the circadian

system, but the available results are not entirely consistent.

In one study, 6 weeks of high-fat diet altered behavioural

and endocrine rhythms, together with changes in gene

expression profiles that included reduced amplitude

clock gene rhythms in adipose and liver(127). In another

experiment, mice were fed for 7 weeks with either a

high- or low-fat diet, fasted for 24 h and killed in constant

darkness. Comparison of clock gene expression in the liver

of these animals revealed a phase delay of approximately

3 h with no consistent reduction in rhythm amplitude in

the animals fed on a high-fat diet(128). Analysis of two day-

time time points in mice maintained on high- or low-fat

diets for 11 months also revealed altered liver and kidney

clock gene expression(129). In contrast to the above studies,

which all used male mice, few significant differences were

observed in liver and adipose clock gene rhythms from

female mice fed high- or low-fat diets for 8 weeks(130).

The differences in type and magnitude of response

observed in mice chronically fed a high-fat diet probably

reflect details of experimental design such as sex of the

animal, dietary composition and environmental conditions

used during the protocol. Sex is an issue of note in regard

to human physiology, where sex differences in circadian

rhythms(131), adiposity(132) and nocturnal postprandial

response (described below) have been reported. Further-

more, the extreme changes in dietary intake utilised in

animal experiments may not accurately represent typical

human diets. It is therefore clear that more research is

required in this area before the translational consequences

are fully understood.

Relevance to human lifestyle

As would be expected for an emerging research field, the

available literature mostly derives from controlled labora-

tory experiments. However, the biological principles

described have far-reaching implications for many people

living in contemporary society.

Dietary regulation of body weight

Evidence is rapidly accumulating to support an important

role of meal times in the long-term regulation of body

weight. Proof-of-concept studies in animal models have

utilised different timed feeding paradigms. Mice housed

in a light–dark cycle and fed a high-fat diet gain more

weight when the food is available only throughout the

light phase, when they would usually be resting, than

when it is provided throughout the dark phase(133). This

body-weight effect becomes statistically significant within

2 weeks and despite trends towards increased energy

intake and reduced activity in the light-fed animals, there

were no statistically significant changes in these para-

meters. In a refinement of the protocol, mice were fed a

high- or low-fat diet that was available either ad libitum

throughout the day, or during a 4 h period in the middle

of the light phase(134). Remarkably, temporal food restric-

tion resulted in reduced body weight on both high- and

low-fat diets, to the extent that mice on a restricted high-

fat diet weighed less than those provided with a low-fat

diet ad libitum. This occurred despite no difference in

energy consumption (as expressed relative to body

weight) between the restricted high-fat-diet group and

the two low-fat-diet groups, although mice under restricted

feeding did exhibit elevated total daily activity compared

with ad libitum controls(134). Comparing these two studies,

it seems that the duration of restricted food availability has

profound effects on body-weight regulation, but the

mechanisms underlying this phenomenon are not yet clear.

In humans, there is an increasing interest in the effects of

meal timing per se on metabolism and body weight. Work

in this area has understandably focused to a large degree

on meals taken at the start and end of the day, for instance

the study of breakfast consumption and individuals with

night eating disorders. Evidence suggests a role for regular

breakfast consumption in the maintenance of healthy body

weight, although the issue has rarely been approached

from a chronobiological perspective and questions

remain about the causative mechanisms involved(135,136).

Night eating syndrome has recently been included in the

fifth edition of the Diagnostic and Statistical Manual of

Mental Disorders (DSM-5). It is broadly characterised by

recurrent episodes of nocturnal eating that cannot be

better accounted for by other behavioural and psychiatric

disorders, and is discussed in detail elsewhere(137). The

relationship between night eating syndrome and body

weight is complex, with some variable findings reported

in the literature. Despite this, the overall evidence provides

compelling associations between night eating and obesity,

with a consistent finding that night eating syndrome is

more prevalent in overweight and obese groups(138). The

importance of evening meals is further highlighted in

studies of subjects without night eating disorder. For

example, energy consumption after 20.00 hours has been

associated with BMI independently of age, sleep timing

and sleep duration(139). This group later reported that

protein intake within 4 h of sleep onset is associated with

elevated BMI after controlling for age, sex, sleep timing

and sleep duration(140).

The link between food timing and body weight is also

apparent in dietary weight-loss studies. A group of 420

individuals undergoing a 20-week weight-loss programme

were categorised according to the time at which they ate
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lunch, which was their main daily meal. Those in the late

group lost less weight and at a slower rate than the early

group, with no difference in energy intake, energy expen-

diture, dietary composition or sleep duration(141). In a

separate experiment, obese/overweight women consumed

energy-restricted diets that differed in the proportion of

energy distributed between breakfast and dinner. The

women eating more energy at breakfast than dinner not

only lost more weight but also exhibited an improved

metabolic profile in insulin sensitivity and TAG concen-

tration(142). Together these data support the hypothesis

that the timing of food intake is important for body-

weight regulation.

Shift work and jet-lag

Since industrialisation, humans have gained the ability to

regulate environmental conditions and subsequently alter

temporal patterns of behaviour. Indeed the phrase ‘24/7

society’ is now in common usage to describe the constant

presence of industrial and social activity. In order to cope

with the demands of this modern aspect of society, varied

work schedules are now commonplace, with approxi-

mately 20 % of the European workforce engaged in night

shifts(143). This clearly indicates that a large section of the

population experiences regular misalignment of their

behaviour with the solar day. A second common cause

of abrupt circadian misalignment is jet-lag, the rapid

travel across time zones. Although this experience is a

rare and transient phenomenon for most people, it none-

theless affects a substantial number of individuals and in

some cases (for example, airline crew) can be a regular

event. A related phenomenon that is common in society

is a weekly change between widely differing sleep times

on work and free days. This has been termed ‘social

jet-lag’(144) and is associated with elevated BMI(145).

Multiple health problems are associated with shift work,

including increased risk of cardiovascular and metabolic

disease(146). Understanding the aetiology of shift work-

related morbidity is complex due to diverse contributory

factors such as sleep disturbance, altered social pressure

and patterns of food intake(147,148). For example, although

shift workers often report normal total energy intake, there

is commonly an altered temporal distribution of feeding

characterised by more irregular eating times, more snack-

ing and fewer substantial meals(148). Alongside these life-

style changes it is likely that disrupted circadian

physiology is a major contributor to the pathophysiological

consequences of shift work. Indeed it is generally recog-

nised that many shift workers in temperate regions

poorly adapt circadian rhythms to their work con-

ditions(149). As a result, these individuals experience pro-

longed durations of misalignment between their circadian

biology and behavioural patterns.

As described previously, postprandial profiles of glucose

and TAG concentration vary over the day. Such studies

clearly imply that shift workers eat a substantial proportion

of their meals during the time of suboptimal glucose and

lipid tolerance. This prediction is strengthened by studies

of simulated shift work where subjects are subjected to

an abrupt shift of typically 6–10 h in their daily routine.

Interestingly, the postprandial response in such protocols

is altered by the preceding diet. In comparable exper-

iments, the exaggerated postprandial response following

a test meal in shifted subjects was reduced for glucose

and insulin but increased for TAG following a low-fat

pre-meal(150) rather than a high-fat pre-meal(151). Further-

more, there are reported sex differences in postprandial

response, with a more pronounced elevation of TAG in

the first night of a simulated night shift in men than in

women(90).

In real shift workers, there are also postprandial data

describing the relative insulin resistance and lipid intoler-

ance following abrupt shift changes(152). Given the large

number of individuals undertaking shift work in modern

society, there is a clear need to improve circadian align-

ment in these individuals. One possible intervention is

the manipulation of light, which is able to reset circadian

rhythms and also directly improve alertness(153) even fol-

lowing short exposure times(154). However, timed food

may also be a powerful method for resetting rhythms to

a new phase. Of particular interest is the ability of timed

food to reset peripheral tissue rhythms.

Animal models support the idea that timed food intake

could be a valuable intervention to minimise adverse

effects of shift work. Mice subjected to an artificial shift

work-like environmental schedule exhibit circadian desyn-

chrony and metabolic disturbance(155). Similar findings

have been reported in rats exposed to an artificial shift

work protocol, although the body-weight increase and

metabolic disturbances experienced were attenuated

when food availability was restricted to the normal activity

phase(156). Further development of these animal models

will permit detailed molecular analysis to complement

human studies of shift work and its adverse effects.

Conclusion

A wealth of data from varied experimental approaches pro-

vides us with clear links between circadian, metabolic and

nutritional biology. These findings provide a strong foun-

dation upon which to model mechanisms underlying the

temporal differences in response to food intake. One limi-

tation of the field is that little translational research has yet

been performed in human subjects. Understanding the

circadian regulation of human metabolism will have pro-

found implications for nutritional science and explain

how time of day is important for postprandial physiology.

Furthermore, it will also reveal how timed dietary intake

can be used as a means to alleviate some of the deleterious

effects of circadian misalignment that are experienced by

large numbers of people within modern society.
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