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The Uncomplemented Subspace K(X,Y)

Ioana Ghenciu

Abstract. A vector measure result is used to study the complementation of the space K(X,Y)
of compact operators in the spaces W(X,Y) of weakly compact operators, CC(X,Y) of completely
continuous operators, and U(X,Y) of unconditionally converging operators. Results of Kalton and
Emmanuele concerning the complementation of K(X,Y) in L(X,Y) and in W(X,Y) are generalized.
The containment of ¢y and /o in spaces of operators is also studied.

Throughout this paper X and Y denote Banach spaces. Notation is consistent with
that used in Diestel [2]]. Let (P be the power class of the positive integers. Let (e,) be
the canonical base of ¢, (e}) be the canonical base of ¢;, and (eh) be the canoni-
cal base of £,, p > 1. The set of all bounded linear operators from X to Y will
be denoted by L(X, Y), and the compact, weakly compact, unconditionally converg-
ing, resp. completely continuous operators will be denoted by K(X,Y), W(X,Y),
U(X,Y), resp. CC(X,Y). An operator T: X — Y is unconditionally converging if T
maps weakly unconditionally converging series into unconditionally converging se-
ries. An operator T: X — Y is called completely continuous (or Dunford-Pettis) if
T maps weakly Cauchy sequences to norm convergent sequences. The w* — w con-
tinuous maps from X* to Y (resp. w* — w continuous compact) will be denoted by
Ly (X*,Y) (resp. K« (X*,Y)). The bounded subset A of X is called a limited subset
of X if each w*-null sequence in X* tends to 0 uniformly on A. If every limited subset
of X is relatively compact, then we say that X has the Gelfand-Phillips property.

Numerous authors have studied the complementation of the spaces W (X, Y) and
K(X,Y) in the space L(X,Y). See Bator and Lewis [1]], Kalton [12], Emmanuele
[4,5], Emmanuele and John [7], Feder [8,09], and John [I1]]. Kalton [12]] proved
that if ¢, is complemented in X and Y is infinite dimensional, then K(X,Y) is not
complemented in L(X,Y). Emmanuele [[6] showed that if £, embeds in X and there
is an operator T: ¢, — Y such that (T(e2)) is basic and normalized, then K(X,Y) is
not complemented in W(X,Y).

In this note we want to extend the previous results and provide sufficient condi-
tions for K(X,Y) to be uncomplemented in W(X,Y), U(X,Y), and CC(X,Y).

Emmanuele [5] and John [11] proved that if ¢y embeds in K(X,Y), then K(K,Y)
is not complemented in L(X,Y). Emmanuele provided a useful tool for identifying
copies (even complemented copies) of ¢y in spaces of operators in [5, Theorem 3]. A
generalization of this theorem will be helpful in our study ([10, Theorem 20]).

We recall the following well-known isometries [14]:

(1) Ly(X*Y) =Ly (Y*,X), K (X*Y) = K (Y*, X) (T — T*)
(i) WX,Y) ~L,(X*,Y),and K(X,Y) ~ K« X**,Y) (T — T**).
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Theorem 1 ([[10} Theorem 20]) Let X andY be Banach spaces satisfying the following
assumption: there exists a Banach space G with an unconditional basis (g,), biorthog-
onal coefficients (g ), and two operators R: G — Y and S: G* — X such that (R(g;))
and (S(g)) are seminormalized sequences and either (R(g;)) or (S(g")) is a basic se-
quence. Then ¢y — K« (X*,Y).

Moreover, if (R(g;)) and (S(g")) are basic and Y (or X) has the Gelfand—Phillips
property, then K« (X*,Y) contains a complemented copy of .

The following result of Lewis and Schulle [13] plays an important role in the proof
of Theorem Blwhich in turn strengthens results in [[6,10}12].

Lemma 2 ([13]) If p: P — X is bounded and finitely additive, u({n}) = 0 for all
n, and there are countably many functionals in X* separating the points in 1(P), then
there is an infinite subset M of N such that ji(B) = 0 for all B C M.

We remark that if X is separable and Y is the dual of a separable space, then there
are countably many functionals separating the points of L(X,Y).

Theorem 3 Let X andY be Banach spaces with the following properties.

There exists a Banach space G with an unconditional basis (g;), coefficient functionals
(g"), and operators R: G — Y and S: X — G such that (R(g;)) is a seminormalized
basic sequence in' Y and (S*(g")) has no norm convergent subsequence. Suppose that
R (or S) is weakly compact. If (P4) is the family of projections associated with (g;) and
T: W(X,Y) = K(X,Y) is an operator, then there isan N € N so that

TRPnS #* RP;)S

forn > N. Thus K(X,Y) is not complemented in W(X,Y). Further, ¢y embeds in
K(X,Y) and £, embeds in W (X,Y).

Proof Suppose (P4) is the family of projections associated with (g,), R and S are
as in the hypothesis, R is weakly compact, and define p: P — W(X,Y) by u(A) =
RP4S, A C N. Let X; be a separable subspace of X such that ||x*|| = ||x*|,|| for all
x* € [S*(gr):n> 1]

Let (y}) be the sequence of biorthogonal coefficients corresponding to (R(g,))
and let (f¥) be a sequence of Hahn-Banach extensions to Y*. Note that u(A)|x, is
compact if and only if A is finite. Indeed, (u(A)*(f,))) = (8*(g;))nea, which is
relatively compact if and only if A is finite.

Now suppose that T: W(X,Y) — K(X,Y) is an operator and B = {n € N :
Tu({n}) = u({n})} is an infinite set. Let J: Y — { be an operator that is an
isometry on [R(g,) : n > 1]. Identify P with P(B) in the obvious way, and define
v: P(B) = W(Xy, lso) by

v(A) = (JTpu(A) — Ji(A))|x,, A C B.

Apply Lemma [2] to obtain an infinite subset M of B so that JTu(M) = Ju(M) on
Xo. Since J is an isometry on [R(g,) : n > 1] and JTu(M)|x, is compact, p1(M)|x, is
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compact, a contradiction. Therefore, there does not exist a projection P: W(X,Y) —
K(X,Y).

Since (§*(g;)) is w*-null and has no norm convergent subsequence, ||S*(g)|| 4
0, and we may assume that (S*(g)) is seminormalized. Apply Theorem [I] and the
preceding isometries to conclude that ¢¢ — K(X,Y). Further, note that y: P —
W(X,Y) is bounded and finitely aditive and [|u({n})|| = [IS*(€)|IR(g.)] # O.
Apply the Diestel-Faires theorem to obtain that /o, — W(X,Y). [ |

Remark If one assumes in the preceding theorem that R: G — Y (or S: X — G)
is completely continuous (resp. R (or S) is unconditionally converging) and that
T: CC(X,Y) — K(X,Y) (resp. T: U(X,Y) — K(X,Y)) is an operator, then the
same proof shows that K(X,Y) is not complemented in CC(X,Y) (resp. K(X,Y) is
not complemented in U(X,Y)), ¢, embeds in K(X,Y), and £, embeds in CC(X,Y)
(resp. £, embeds in U(X,Y)).

The following result contains [6, Lemma 3].

Corollary 4 If ¢, is complemented in X and Y does not have the Schur property, then
K(X,Y) is not complemented in W(X,Y) and o, — W(X,Y).

Proof Let G = ¢; andlet P: X — ¢, be a projection. Since P is a projection, P* is an
isomorphism, and thus (P*(e,)) has no norm convergent subsequence. Let (y,) be a
normalized weakly null basic sequence in Y. Define R: ¢; — Y by R(b) = >_ b, yu,
b = (by) € {,. Since (R(e})) = (y,) is weakly null, R is weakly compact. Apply
Theorem[3 [ |

Corollary 5 ([6,10]) Ifco — Y and X* does not have the Schur property, then
K(X,Y) is not complemented in W(X,Y) and o, — W(X,Y). Further, K(X,Y) is
not complemented in U(X,Y) and oo — U(X,Y).

Proof Let G = ¢y and R: ¢¢ — Y be an embedding. Let (x}) be a weakly null
normalized sequence in X* and define S: X — ¢ by S(x) = (x}(x)). Note that
(8*(e)) = (x;) has no norm convergent subsequence. Further, since (5*(e})) is
weakly null, S*, thus S, is weakly compact. Since every weakly compact operator is
unconditionally converging, S is unconditionally converging. Apply Theorem[3l ®

The following result contains [12, Lemma 3].

Corollary 6 If {, is complemented in X and Y is infinite dimensional, then K(X,Y)
is not complemented in CC(X,Y) and K(X,Y) is not complemented in U(X,Y ). Con-
sequently, K(X,Y) is not complemented in L(X,Y). Further, {oc — CC(X,Y) and
loo — UX,Y).

Proof Let P: X — /{; be a projection. As in Corollary [ (P*(e,)) has no norm
convergent subsequence. Let (y,) be a normalized basic sequence in Y. Define
R: 4, - YbyR(b) = > byyn, b = (b,) € {,. Note that R is completely con-
tinuous and unconditionally converging, since ¢, has the Schur property. Apply The-
orem[3] ]
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We remark that in the previous proof both operators P and R are completely con-
tinuous. Further, RP: X — Y is completely continuous and non-compact, hence
K(X,Y) # CC(X,Y). Thus Corollary[@strictly extends [12}, Lemma 3].

Corollary 7 If X is infinite dimensional, L(X, ¢y) = CC(X, ), and ¢co — Y, then
K(X,Y) is not complemented in CC(X,Y) and { . — CC(X,Y).

Proof Let G = ¢y and R: ¢¢ — Y be an embedding. Use the Josefson—Nissenzweig
theorem to obtain a normalized and w*-null sequence (x}}) in X* and define S: X —

co by S(x) = (x}(x)). Note that (§*(e})) = (x) has no norm convergent sub-
sequence. The hypothesis assures that S is completely continuous. Apply Theo-
rem[3 ]

We remark that in the previous argument S is completely continuous, and thus
RS: X — Y is completely continuous. Further, RS is not compact and K(X,Y) #
CC(X,Y).

If1 < p < o0, then we say that p’ is conjugate to p if% + ﬁ = lie, (£,)" =,

The following result extends and complements [13, Theorem 3.3].

Theorem 8 Suppose that 1 < p < oo, p’ is conjugate to p, and S: X — £, is
a non-compact operator. Suppose 1 < p < g < oo, Forp’ < p < qorp <
p' < q if R: by — Y is a non-compact operator, then K(X,Y) is not complemented
in W(X,Y) and K(X,Y) is not complemented in U(X,Y). Further, c¢ — K(X,Y),
loo &> W(X,Y), and b, — U(X,Y).

However, if 1 < p < q < p’ < oo, then there exist Banach spaces X and Y and
appropriate operators R and S such that K(X,Y) = L(X,Y) and ¢y ++ K(X,Y).

Proof Case 1. Suppose p’ < p < q. Since §*: £, — X* is non-compact, we can find
ad > 0and a sequence (x,) in the unit ball of £, such that [|S*(x,) — S* (x;,)|| > ¢ if
n # m. Since ¢, is reflexive (1 < p < 00), without loss of generality we may assume
that (a,) = (x, —x,+1) is weakly null. Note that (a,) /4 0. By the Bessaga—Pelczyinski
Selection Principle, (a,) has a subsequence (a,,) that is equivalent to a block basic
sequence of (ef). Note that ¢ p is perfectly homogeneous, since 1 < p < oc. Thus we
may assume that (a,) is equivalent to (eh).

Since p’ < p, thereis a natu/ral injection J: £, — £, such that a, = ](eﬁl) for
all n. Then (S*(a,)) = (S*J(eh)) is weakly null and not norm null. The Bessaga—
Pelczyinski Selection Principle also applies to (S*(a,)), and without loss of generality
(§*(a,)) is a seminormalized basic sequence. Note that since both ¢,/ and ¢, are
reflexive, ] is w*-w* continuous, and thus an adjoint operator. Suppose that ] = T~
for some operator T: £,» — {,. Hence (S*(a,)) = (S* T*(eh )) is a seminormalized
basic sequence.

Similarly, since R: £, — Y is non-compact, we can find a weakly null, seminor-
malized sequence (b,) equivalent to (e}) in £4 such that (R(b,)) is a seminormalized
basic sequence. Since p < g, there is a natural injection U: £, — ¢, such that
b, = U(eh) for all n. Hence (R(b,)) = (RU(e?)) is basic and seminormalized. Let
G = £,. Note that RU is weakly compact and (S*(a,)) = (8" T*(eﬁl)) has no norm
convergent subsequence. Further, since ¢y &+ £,, RU is unconditionally converging.
Apply Theorem[Blto TS: X — £, and RU: £, — Y.
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Case 2. Suppose p < p’ < g. The argument is similar to that in Case 1. Apply
Theorem[Blfor G = £,.

Case 3. Suppose 1 < p < g < p’ < oco. Since q < p’, L(£yr,4y) = K(lpr,4y).
Further, this space of compact operators is reflexive [[12], and thus ¢y % K(£,/, £,).
In this case, let X = £,/,Y = {,,and let S: £;,; — £, and R: £, — £, be the identity
operators. |

Corollary 9 Suppose that 2 < q < oo. If £, is a quotient of X and there is a
non-compact operator T: £y, — Y, then K(X,Y) is not complemented in W(X,Y) and
K(X,Y) is not complemented in U(X,Y). Further, c¢ — K(X,Y), loo — W(X,Y),
and o — U(X,Y).

Proof If2 < g < oo,then1 < g’ < q. Let Q be a quotient map from X to £,/. Then
Q is non-compact. Let p = q. Apply Theorem[8l ]

Corollary 10 If¢; — X and thereis 2 < q < oo and a non-compact operator
T: 4y — Y, then K(X,Y) is not complemented in W(X,Y) and K(X,Y) is not comple-
mented in U(X,Y). Further, coc — K(X,Y), boo — W(X,Y), and loc — U(X,Y).

Proof Since ¢; — X, X has a quotient isomorphic to ¢, by a result of [3]. Apply
Theorem[8] [ |
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