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The Uncomplemented Subspace K(X,Y )

Ioana Ghenciu

Abstract. A vector measure result is used to study the complementation of the space K(X,Y )

of compact operators in the spaces W (X,Y ) of weakly compact operators, CC(X,Y ) of completely

continuous operators, and U (X,Y ) of unconditionally converging operators. Results of Kalton and

Emmanuele concerning the complementation of K(X,Y ) in L(X,Y ) and in W (X,Y ) are generalized.

The containment of c0 and ℓ∞ in spaces of operators is also studied.

Throughout this paper X and Y denote Banach spaces. Notation is consistent with

that used in Diestel [2]. Let P be the power class of the positive integers. Let (en) be

the canonical base of c0, (e∗n ) be the canonical base of ℓ1, and (e
p
n) be the canoni-

cal base of ℓp, p > 1. The set of all bounded linear operators from X to Y will

be denoted by L(X,Y ), and the compact, weakly compact, unconditionally converg-

ing, resp. completely continuous operators will be denoted by K(X,Y ), W (X,Y ),

U (X,Y ), resp. CC(X,Y ). An operator T : X → Y is unconditionally converging if T

maps weakly unconditionally converging series into unconditionally converging se-

ries. An operator T : X → Y is called completely continuous (or Dunford-Pettis) if

T maps weakly Cauchy sequences to norm convergent sequences. The w∗ − w con-

tinuous maps from X∗ to Y (resp. w∗ − w continuous compact) will be denoted by

Lw∗(X∗,Y ) (resp. Kw∗(X∗,Y )). The bounded subset A of X is called a limited subset

of X if each w∗-null sequence in X∗ tends to 0 uniformly on A. If every limited subset

of X is relatively compact, then we say that X has the Gelfand-Phillips property.

Numerous authors have studied the complementation of the spaces W (X,Y ) and

K(X,Y ) in the space L(X,Y ). See Bator and Lewis [1], Kalton [12], Emmanuele

[4, 5], Emmanuele and John [7], Feder [8, 9], and John [11]. Kalton [12] proved

that if ℓ1 is complemented in X and Y is infinite dimensional, then K(X,Y ) is not

complemented in L(X,Y ). Emmanuele [6] showed that if ℓ1 embeds in X and there

is an operator T : ℓ2 → Y such that (T(e2
n)) is basic and normalized, then K(X,Y ) is

not complemented in W (X,Y ).

In this note we want to extend the previous results and provide sufficient condi-

tions for K(X,Y ) to be uncomplemented in W (X,Y ), U (X,Y ), and CC(X,Y ).

Emmanuele [5] and John [11] proved that if c0 embeds in K(X,Y ), then K(K,Y )

is not complemented in L(X,Y ). Emmanuele provided a useful tool for identifying

copies (even complemented copies) of c0 in spaces of operators in [5, Theorem 3]. A

generalization of this theorem will be helpful in our study ([10, Theorem 20]).

We recall the following well-known isometries [14]:

(i) Lw∗(X∗,Y ) ≃ Lw∗(Y ∗,X), Kw∗(X∗,Y ) ≃ Kw∗(Y ∗,X) (T → T∗)

(ii) W (X,Y ) ≃ Lw∗(X∗∗,Y ), and K(X,Y ) ≃ Kw∗(X∗∗,Y ) (T → T∗∗).
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Theorem 1 ([10, Theorem 20]) Let X and Y be Banach spaces satisfying the following

assumption: there exists a Banach space G with an unconditional basis (gn), biorthog-

onal coefficients (g∗n ), and two operators R : G → Y and S : G∗ → X such that (R(gi))

and (S(g∗i )) are seminormalized sequences and either (R(gi)) or (S(g∗i )) is a basic se-

quence. Then c0 →֒ Kw∗(X∗,Y ).

Moreover, if (R(gi)) and (S(g∗i )) are basic and Y (or X) has the Gelfand–Phillips

property, then Kw∗(X∗,Y ) contains a complemented copy of c0.

The following result of Lewis and Schulle [13] plays an important role in the proof

of Theorem 3 which in turn strengthens results in [6, 10, 12].

Lemma 2 ([13]) If µ : P → X is bounded and finitely additive, µ({n}) = 0 for all

n, and there are countably many functionals in X∗ separating the points in µ(P), then

there is an infinite subset M of N such that µ(B) = 0 for all B ⊆ M.

We remark that if X is separable and Y is the dual of a separable space, then there

are countably many functionals separating the points of L(X,Y ).

Theorem 3 Let X and Y be Banach spaces with the following properties.

There exists a Banach space G with an unconditional basis (gi), coefficient functionals

(g∗i ), and operators R : G → Y and S : X → G such that (R(gi)) is a seminormalized

basic sequence in Y and (S∗(g∗i )) has no norm convergent subsequence. Suppose that

R (or S) is weakly compact. If (PA) is the family of projections associated with (gi) and

T : W (X,Y ) → K(X,Y ) is an operator, then there is an N ∈ N so that

TRP{n}S 6= RP{n}S

for n > N. Thus K(X,Y ) is not complemented in W (X,Y ). Further, c0 embeds in

K(X,Y ) and ℓ∞ embeds in W (X,Y ).

Proof Suppose (PA) is the family of projections associated with (gn), R and S are

as in the hypothesis, R is weakly compact, and define µ : P → W (X,Y ) by µ(A) =

RPAS, A ⊆ N. Let X0 be a separable subspace of X such that ‖x∗‖ = ‖x∗|X0
‖ for all

x∗ ∈ [S∗(g∗n ) : n ≥ 1].

Let (y∗n ) be the sequence of biorthogonal coefficients corresponding to (R(gn))

and let ( f ∗n ) be a sequence of Hahn-Banach extensions to Y ∗. Note that µ(A)|X0
is

compact if and only if A is finite. Indeed, (µ(A)∗( f ∗n )) = (S∗(g∗n ))n∈A, which is

relatively compact if and only if A is finite.

Now suppose that T : W (X,Y ) → K(X,Y ) is an operator and B = {n ∈ N :

Tµ({n}) = µ({n})} is an infinite set. Let J : Y → ℓ∞ be an operator that is an

isometry on [R(gn) : n ≥ 1]. Identify P with P(B) in the obvious way, and define

ν : P(B) → W (X0, ℓ∞) by

ν(A) = ( JTµ(A) − Jµ(A))|X0
, A ⊆ B.

Apply Lemma 2 to obtain an infinite subset M of B so that JTµ(M) = Jµ(M) on

X0. Since J is an isometry on [R(gn) : n ≥ 1] and JTµ(M)|X0
is compact, µ(M)|X0

is
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compact, a contradiction. Therefore, there does not exist a projection P : W (X,Y ) →
K(X,Y ).

Since (S∗(g∗i )) is w∗-null and has no norm convergent subsequence, ‖S∗(g∗i )‖ 6→
0, and we may assume that (S∗(g∗i )) is seminormalized. Apply Theorem 1 and the

preceding isometries to conclude that c0 →֒ K(X,Y ). Further, note that µ : P →
W (X,Y ) is bounded and finitely aditive and ‖µ({n})‖ = ‖S∗(g∗n )‖‖R(gn)‖ 6→ 0.

Apply the Diestel–Faires theorem to obtain that ℓ∞ →֒ W (X,Y ).

Remark If one assumes in the preceding theorem that R : G → Y (or S : X → G)

is completely continuous (resp. R (or S) is unconditionally converging) and that

T : CC(X,Y ) → K(X,Y ) (resp. T : U (X,Y ) → K(X,Y )) is an operator, then the

same proof shows that K(X,Y ) is not complemented in CC(X,Y ) (resp. K(X,Y ) is

not complemented in U (X,Y )), c0 embeds in K(X,Y ), and ℓ∞ embeds in CC(X,Y )

(resp. ℓ∞ embeds in U (X,Y )).

The following result contains [6, Lemma 3].

Corollary 4 If ℓ1 is complemented in X and Y does not have the Schur property, then

K(X,Y ) is not complemented in W (X,Y ) and ℓ∞ →֒ W (X,Y ).

Proof Let G = ℓ1 and let P : X → ℓ1 be a projection. Since P is a projection, P∗ is an

isomorphism, and thus (P∗(en)) has no norm convergent subsequence. Let (yn) be a

normalized weakly null basic sequence in Y . Define R : ℓ1 → Y by R(b) =

∑
bn yn,

b = (bn) ∈ ℓ1. Since (R(e∗n )) = (yn) is weakly null, R is weakly compact. Apply

Theorem 3.

Corollary 5 ([6, 10]) If c0 →֒ Y and X∗ does not have the Schur property, then

K(X,Y ) is not complemented in W (X,Y ) and ℓ∞ →֒ W (X,Y ). Further, K(X,Y ) is

not complemented in U (X,Y ) and ℓ∞ →֒ U (X,Y ).

Proof Let G = c0 and R : c0 → Y be an embedding. Let (x∗n ) be a weakly null

normalized sequence in X∗ and define S : X → c0 by S(x) = (x∗n (x)). Note that

(S∗(e∗n )) = (x∗n ) has no norm convergent subsequence. Further, since (S∗(e∗n )) is

weakly null, S∗, thus S, is weakly compact. Since every weakly compact operator is

unconditionally converging, S is unconditionally converging. Apply Theorem 3.

The following result contains [12, Lemma 3].

Corollary 6 If ℓ1 is complemented in X and Y is infinite dimensional, then K(X,Y )

is not complemented in CC(X,Y ) and K(X,Y ) is not complemented in U (X,Y ). Con-

sequently, K(X,Y ) is not complemented in L(X,Y ). Further, ℓ∞ →֒ CC(X,Y ) and

ℓ∞ →֒ U (X,Y ).

Proof Let P : X → ℓ1 be a projection. As in Corollary 4, (P∗(en)) has no norm

convergent subsequence. Let (yn) be a normalized basic sequence in Y . Define

R : ℓ1 → Y by R(b) =

∑
bn yn, b = (bn) ∈ ℓ1. Note that R is completely con-

tinuous and unconditionally converging, since ℓ1 has the Schur property. Apply The-

orem 3.
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We remark that in the previous proof both operators P and R are completely con-

tinuous. Further, RP : X → Y is completely continuous and non-compact, hence

K(X,Y ) 6= CC(X,Y ). Thus Corollary 6 strictly extends [12, Lemma 3].

Corollary 7 If X is infinite dimensional, L(X, c0) = CC(X, c0), and c0 →֒ Y , then

K(X,Y ) is not complemented in CC(X,Y ) and ℓ∞ →֒ CC(X,Y ).

Proof Let G = c0 and R : c0 → Y be an embedding. Use the Josefson–Nissenzweig

theorem to obtain a normalized and w∗-null sequence (x∗n ) in X∗ and define S : X →
c0 by S(x) = (x∗n (x)). Note that (S∗(e∗n )) = (x∗n ) has no norm convergent sub-

sequence. The hypothesis assures that S is completely continuous. Apply Theo-

rem 3.

We remark that in the previous argument S is completely continuous, and thus

RS : X → Y is completely continuous. Further, RS is not compact and K(X,Y ) 6=
CC(X,Y ).

If 1 < p < ∞, then we say that p ′ is conjugate to p if 1
p

+ 1
p ′

= 1, i.e., (ℓp)∗ ≃ ℓp ′ .

The following result extends and complements [13, Theorem 3.3].

Theorem 8 Suppose that 1 < p < ∞, p ′ is conjugate to p, and S : X → ℓp ′ is

a non-compact operator. Suppose 1 < p ≤ q < ∞. For p ′ ≤ p ≤ q or p ≤
p ′ ≤ q, if R : ℓq → Y is a non-compact operator, then K(X,Y ) is not complemented

in W (X,Y ) and K(X,Y ) is not complemented in U (X,Y ). Further, c0 →֒ K(X,Y ),

ℓ∞ →֒ W (X,Y ), and ℓ∞ →֒ U (X,Y ).

However, if 1 < p < q < p ′ < ∞, then there exist Banach spaces X and Y and

appropriate operators R and S such that K(X,Y ) = L(X,Y ) and c0 6 →֒ K(X,Y ).

Proof Case 1. Suppose p ′ ≤ p ≤ q. Since S∗ : ℓp → X∗ is non-compact, we can find

a δ > 0 and a sequence (xn) in the unit ball of ℓp such that ‖S∗(xn) − S∗(xm)‖ > δ if

n 6= m. Since ℓp is reflexive (1 < p < ∞), without loss of generality we may assume

that (an) = (xn−xn+1) is weakly null. Note that (an) 6→ 0. By the Bessaga–Pelczyinski

Selection Principle, (an) has a subsequence (ani
) that is equivalent to a block basic

sequence of (e
p
n). Note that ℓp is perfectly homogeneous, since 1 < p < ∞. Thus we

may assume that (an) is equivalent to (e
p
n).

Since p ′ ≤ p, there is a natural injection J : ℓp ′ → ℓp such that an = J(e
p ′

n ) for

all n. Then (S∗(an)) = (S∗ J(e
p ′

n )) is weakly null and not norm null. The Bessaga–

Pelczyinski Selection Principle also applies to (S∗(an)), and without loss of generality

(S∗(an)) is a seminormalized basic sequence. Note that since both ℓp ′ and ℓp are

reflexive, J is w∗-w∗ continuous, and thus an adjoint operator. Suppose that J = T∗

for some operator T : ℓp ′ → ℓp. Hence (S∗(an)) = (S∗T∗(e
p ′

n )) is a seminormalized

basic sequence.

Similarly, since R : ℓq → Y is non-compact, we can find a weakly null, seminor-

malized sequence (bn) equivalent to (e
q
n) in ℓq such that (R(bn)) is a seminormalized

basic sequence. Since p ≤ q, there is a natural injection U : ℓp → ℓq such that

bn = U (e
p
n) for all n. Hence (R(bn)) = (RU (e

p
n)) is basic and seminormalized. Let

G = ℓp. Note that RU is weakly compact and (S∗(an)) = (S∗T∗(e
p ′

n )) has no norm

convergent subsequence. Further, since c0 6 →֒ ℓp, RU is unconditionally converging.

Apply Theorem 3 to TS : X → ℓp and RU : ℓp → Y .
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Case 2. Suppose p ≤ p ′ ≤ q. The argument is similar to that in Case 1. Apply

Theorem 3 for G = ℓp ′ .

Case 3. Suppose 1 < p < q < p ′ < ∞. Since q < p ′, L(ℓp ′ , ℓq) = K(ℓp ′ , ℓq).

Further, this space of compact operators is reflexive [12], and thus c0 6 →֒ K(ℓp ′ , ℓq).

In this case, let X = ℓp ′ , Y = ℓq, and let S : ℓp ′ → ℓp ′ and R : ℓq → ℓq be the identity

operators.

Corollary 9 Suppose that 2 ≤ q < ∞. If ℓq ′ is a quotient of X and there is a

non-compact operator T : ℓq → Y , then K(X,Y ) is not complemented in W (X,Y ) and

K(X,Y ) is not complemented in U (X,Y ). Further, c0 →֒ K(X,Y ), ℓ∞ →֒ W (X,Y ),

and ℓ∞ →֒ U (X,Y ).

Proof If 2 ≤ q < ∞, then 1 < q ′ ≤ q. Let Q be a quotient map from X to ℓq ′ . Then

Q is non-compact. Let p = q. Apply Theorem 8.

Corollary 10 If ℓ1 →֒ X and there is 2 ≤ q < ∞ and a non-compact operator

T : ℓq → Y , then K(X,Y ) is not complemented in W (X,Y ) and K(X,Y ) is not comple-

mented in U (X,Y ). Further, c0 →֒ K(X,Y ), ℓ∞ →֒ W (X,Y ), and ℓ∞ →֒ U (X,Y ).

Proof Since ℓ1 →֒ X, X has a quotient isomorphic to ℓ2, by a result of [3]. Apply

Theorem 8.
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