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Abstract

Simultaneous localization and mapping (SLAM) is the task of building a map representation of an unknown
environment while at the same time using it for positioning. A probabilistic interpretation of the SLAM task allows
for incorporating prior knowledge and for operation under uncertainty. Contrary to the common practice of
computing point estimates of the system states, we capture the full posterior density through approximate Bayesian
inference. This dynamic learning task falls under state estimation, where the state-of-the-art is in sequential Monte
Carlo methods that tackle the forward filtering problem. In this paper, we introduce a framework for probabilistic
SLAM using particle smoothing that does not only incorporate observed data in current state estimates, but it also
backtracks the updated knowledge to correct for past drift and ambiguities in both the map and in the states. Our
solution can efficiently handle both dense and sparse map representations by Rao-Blackwellization of conditionally
linear and conditionally linearized models. We show through simulations and real-world experiments how the
principles apply to radio (Bluetooth low-energy/Wi-Fi), magnetic field, and visual SLAM. The proposed solution is
general, efficient, and works well under confounding noise.

Impact statement

Simultaneous localization and mapping (SLAM) methods constitute an essential part of the backbone for
autonomous robots, vehicles, and aircraft that operate in an environment with only on-board sensing, without
external sensor support. The methods proposed in this paper help characterize the uncertainty of the pose and the
map representation, and contribute to making SLAM methods capable of handling unexpected real-world
conditions such as changing weather and lighting, signal attenuation, and confounding artifacts in sensor data.

1. Introduction

In ego-motion estimation, simultaneous localization and mapping (SLAM) is a ubiquitous approach of
simultaneously estimating the time-varying pose of a robot, person, or object and a map of the
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environment (Bailey and Durrant-Whyte, 2006; Durrant-Whyte and Bailey, 2006; Cadena et al., 2016;
Stachniss et al., 2016). SLAM is widely used for autonomous robots, vehicles, and aircraft. The wide
adoption is due to the general nature of the concept behind SLAM, which makes it applicable across
different sensor modalities and use case scenarios. Still, different setups for SLAM typically motivate
different representations of the map data structure, thereby constraining how inference and learning is
done under the SLAM paradigm.

In visual SLAM, the map is traditionally represented by a set of sparse landmark points which are
observed as projections by a camera rigidly attached to the moving coordinate frame (e.g., Hartley and
Zisserman, 2004; Davison et al., 2007). Alternatively, dense representations are used, which can take the
form of continuous surfaces (e.g., Kerl et al., 2013; Whelan et al., 2015; Bloesch et al., 2018). These two
extremes motivate the alternative views we bring into the map representation also in other sensor
modalities. Inmagnetic SLAM (e.g., Kok and Solin, 2018), themap is inherently dense as it characterizes
the anomalies of the Earth’s magnetic vector field which are observed by a three-axis magnetometer. In
radio-based SLAM (e.g., Ferris et al., 2007), the map can either represent point-wise radio emitter
sources (typically Wi-Fi base stations or Bluetooth low-energy (BLE) beacons) or a dense anomaly map
of receiver signal strength indicator (RSSI) values. To this end, dense maps of these anomaly fields have
been constructed using Gaussian process (GP) regression (Ferris et al., 2007). In this work we consider
both sparse and dense SLAM, as illustrated in Figure 1, with the intent of presenting general principles for
SLAM that extend across sensor modalities. Our interest lies in settings where the map is static (not
changing over time), but initially unknown.

The SLAM problem is inherently nonlinear. To perform inference and learning under the SLAM
paradigm, all approaches resort to approximate inference of some kind. Typically, methods either
approximate the estimation problem using linearization and Gaussian approximations or using Monte
Carlo sampling methods. More specifically, when considering online recursive algorithms, the former
approximation results in extended Kalman filter (EKF)-SLAM (Bailey et al., 2006; Mourikis and
Roumeliotis, 2007; Barrau and Bonnabel, 2015), while the latter results in particle filter-based SLAM.
The most well-known particle filter SLAM algorithm is FastSLAM (Montemerlo et al., 2002). An
extension of this algorithm is FastSLAM 2.0 (Montemerlo et al., 2003), which recognizes that the
bootstrap particle filter implementation from Montemerlo et al. (2002) suffers from particle degeneracy,
and hence it does not capture the full posterior distribution. In this work, we will instead overcome this
limitation using particle smoothing.

In recent years, it has become more common to consider smoothing problems for SLAM, where all
information acquired up to the current time is backtracked through the model to ensure better global

(a) Visual SLAM (b) Radio SLAM (c) Magnetic SLAM

Figure 1. Illustration of the different SLAMmodalities used throughout this paper. (a) Visual SLAMuses a
sparse map representation of distinctive corner points observed as projections onto the camera frustum,
(b) radio SLAM either uses a sparse map of the radio emitter locations or models the RSSI anomalies as a

dense field, and (c) magnetic SLAM leverages anomalies in the local magnetic vector field.
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consistency of the map and the past movement. This is closely related to graphSLAM (Thrun and
Montemerlo, 2006; Grisetti et al., 2010) which turns the problem into a global (sparse) optimization task.
Even though, these smoothing approaches allow for updated knowledge to correct for past drift and
ambiguity in the map and path (bundle-adjustment), they are currently almost exclusively linearization-
based as opposed to sampling-based. This means that rather than characterizing the full posterior, only point
estimates are considered. In this work, we present a new approach for particle smoothing, that is, smoothing
using sequential Monte Carlo (SMC) sampling. We show that it outperforms both particle filtering and
extendedKalman filtering approaches. It is specificallymore robust to unexpected real-world conditions, for
instance, the case that the initial map estimates are quite off or that the sensors are not properly calibrated.

We develop a solution with similarities to FastSLAM and speed up the computations of our particle
smoother by exploiting the conditionally linear substructure in the problem using Rao-Blackwellization
(Doucet et al., 2000; Gustafsson et al., 2002; Schön et al., 2005). To this end, we leverage progress in the
field of Rao-Blackwellized particle smoothing (Svensson et al., 2014, 2015). For these existing algorithms,
however, it is not possible to assume a constantmap that prevents using these algorithms for standardSLAM
problems. To the best of our knowledge, the only existingwork on particle smoothing for SLAM isBerntorp
and Nordh (2014), which assumes that the map is slowly time-varying. This can, however, deteriorate the
map quality, and have a negative effect on the estimation accuracy, especially in challenging applications.
Our algorithm overcomes these limitations by explicitly assuming a constant map. An alternative inter-
pretation of our SLAMproblem is therefore in terms of joint state and parameter estimation, seeWigren et al.
(2022) for a recent tutorial on the parameter estimation problem. This problem has traditionally been
handled using maximum likelihood estimation (Schön et al., 2011), and a bit more than a decade ago, an
interesting Bayesian solutionwas derived byAndrieu et al. (2010).We will derive a fully Bayesian solution
to the SLAM problem, which allows for prior information to be included also on the map. This becomes
particularly important when building GPmaps. Our algorithm can be seen as a special case ofWigren et al.
(2019), where for the specific form of the SLAM problem turns out to take a particularly nice form.

The contributions of this paper can be summarized as follows: (i) we present a general framework for
SLAMwhich is agnostic to themap representation, (ii)we derive a Rao-Blackwellized particle smoothing
method for SLAM, which exploits the conditionally linear or conditionally linearized substructure and
circumvents typical pitfalls in particle filtering approaches, and (iii) we demonstrate the applicability of
the proposed SLAM method in a range of simulated and real-world examples. A reference implemen-
tation of our method and code to reproduce the experiments can be found on https://github.com/
manonkok/Rao-Blackwellized-SLAM-smoothing.

2. Background

In this work, we introduce a framework for probabilistic SLAM using particle smoothing. As our
approach extends existing work on SMC methods—specifically particle filters—for localization and
SLAM, we will introduce this concept in Section 2.1. We consider both sparse (feature-based) as well as
dense maps. In terms of dense maps, we specifically focus on maps represented using GPs. Because of
this, we briefly introduce the concept of GPs and their use to construct maps of the environment in
Section 2.2.

2.1 SMC for localization and SLAM

In SMC, a posterior distribution is approximated using samples, also referred to as particles. Assuming for
simplicity that we are interested in estimating the posterior p x1:t jy1:tð Þ of a set of time-varying states
x1:t ¼ðx1,x2,…,xtÞ given a set of measurements y1:t, the posterior is approximated as

bp x1:t jy1:tð Þ¼
XN
i¼1

wi
tδxi1:t x1:tð Þ, (1)
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where N denotes the number of particles, wi
t denotes the importance weight of each particle xi1:t at time t

and δxi1:t denotes the Diracmeasure at xi1:t. Using SMC to approximate the posterior distribution p x1:t jy1:tð Þ
is also synonymously called particle filtering. The idea was proposed in the beginning of the 1990s
(Stewart andMcCarty, 1992; Gordon et al., 1993; Kitagawa, 1993) and there are by now several tutorials
(Doucet and Johansen, 2011; Naesseth et al., 2019) and textbooks (Särkkä, 2013; Chopin and Papaspi-
liopoulos, 2020) available on the subject. The use of a particle filter for localization in a known magnetic
field map is illustrated in Figure 2 (estimated magnetic anomaly map to the left, localization result to the
right). Here, a map of the strongly position-dependent indoor magnetic field is used to give information
about how likely each particle is. The approach illustrated in the figure follows Solin et al. (2016), where
the idea ofmap matching is cast as positioning in a vector-valued magnetic field map. As can be seen, the
posterior is highly multimodal to start with, but becomes unimodal when time passes and a unique
trajectory through the magnetic map can be reconstructed. The fact that SMC can handle multimodal
distributions makes it especially well-suited for both localization and SLAM problems.

The challenge in SMC is to ensure that the particles represent the full posterior distribution. Because of this,
the particles are regularly resampled, discarding the particleswith lowweight and replicating the particleswith
high weights. This, however, results in the phenomenon of particle degeneracy, where all particles at a certain
time t descend from the same ancestor some time t� s in the past. To overcome this issue, a number of particle
smoothing algorithms have been developed—see Lindsten and Schön (2013) for a tutorial.

Using SMC for higher-dimensional state spaces typically requires a larger number of particles and
hence increases the computational complexity. Because of this, a number of algorithms have been
developed to exploit a conditionally linear substructure in the models and treat this using a Kalman filter
(Chen and Liu, 2000; Andrieu and Doucet, 2002; Schön et al., 2005). This has resulted in the so-called
marginalized or Rao-Blackwellized particle filters (RBPFs). The current work is inspired by these
approaches and develops a Rao-Blackwellized particle smoothing algorithm for SLAM.

2.2. Representing maps using GP priors

GPs (Rasmussen andWilliams, 2006) represent distributions over functions. A GP h xð Þ is fully specified
by its mean function μ xð Þ and covariance function κ x,x0ð Þ as

Figure 2.Left: Amagnetic anomalymapmapped by a robot (smartphone for scale) equippedwith a three-
axis magnetometer. Map opacity follows the marginal variance (uncertainty), and mapping (training)
paths shown by dashed lines. Right: Localization bymapmatching. Current estimate is characterized by a
particle cloud, the dashed line shows the ground-truth, and the solid line the weighted mean path.
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h xð Þ�GP μ xð Þ,κ x,x0ð Þð Þ: (2)

The covariance function (kernel) can encode prior information about the properties of the function, such
as continuity, smoothness, or physical properties of a random field. Observational dataD¼ xt,ytð Þf gTt¼1 is
coupled with the GP prior through a likelihood model. The Gaussian likelihood model reduces to
observing noise-corrupted versions of the GP

yt ¼ h xtð Þþ εt, (3)

where yt ∈ℝny , and εt �N 0,σ2ℐny

� �
denotes zero-mean Gaussian independent and identically distrib-

uted (i.i.d.) measurement noisewith covariance σ2ℐny , withℐny being an identitymatrix of size ny. Under
a Gaussian (conjugate) likelihood, GP regression can be conducted in closed form.

In recent years, GPs have been used to construct dense maps of the magnetic field or of theWi-Fi/BLE
RSSI field to be used for localization (Ferris et al., 2007; Vallivaara et al., 2010; Kok and Solin, 2018;
Coulin et al., 2021; Viset et al., 2022). In these approaches, the field is modeled as a GP and the input to the
GP, x, is in this case the position. The GPmap is used tomake predictions of the field at previously unseen
locations. Since the GP map also provides information about the uncertainty of these predictions, such
approaches are suitable to handle situations of uninformative maps at certain locations. In Figure 2, we
visualize the magnitude of the magnetic field predicted using a GP that has learned the magnetic field
based on measurements along the visualized path. The transparency visualizes the marginal variance,
where larger transparency indicates a more uncertain prediction.

One of the main challenges with GPs is their computational complexity, which scales cubically with
the number of data points. Because of this, there is a large literature dedicated to the construction and use
of computationally efficient GP regression (see, e.g., Quiñonero-Candela and Rasmussen, 2005; Hens-
man et al., 2013). One method that is particularly relevant for our work is the reduced-rank GP regression
approach proposed by Solin and Särkkä (2020), which rewrites the GP model in terms of a Hilbert space
representation. This approach approximates the covariance function in terms of an eigenfunction
expansion of the Laplace operator in a confined domain as follows:

κ x,x0ð Þ≈
Xm
j¼1

S
ffiffiffiffi
λj

p� �
ϕj xð Þϕj x0ð Þ ¼ΦΛΦΤ , (4)

where ϕj xð Þ denotes the orthonormal eigenfunctions and λj denotes the corresponding eigenvalues.
Furthermore, S �ð Þ is the spectral density function of the kernel. For rectangular domains, the expressions
for the eigenfunctions and eigenvalues can be computed in closed form (Solin and Särkkä, 2020). For
more general domains, they can be approximated numerically (see, e.g., Solin and Kok, 2019). The
spectral density of the kernel can be computed in closed form for any stationary kernel (Rasmussen and
Williams, 2006; Solin and Särkkä, 2020). The approximation in Eq. (4) has been shown to converge to the
exact GP solution when the number of eigenfunctions and the size of the domain tend toward infinity.
However, it is typically a good approximation for a relatively small number of eigenfunctions as long as
we do not come too close to the boundary.

Using the approximation in Eq. (4), allows us to write the measurement model Eq. (3) as

yt ≈Φ xtð Þθþ εt, (5)

with Φ xtð Þ¼ ϕ1 xtð Þ ϕ2 xtð Þ ⋯ ϕm xtð Þð ÞΤ, and to write the GP prior in terms of a mean θ0 and covariance

P0 ¼ diag S λ1ð Þ S λ2ð Þ ⋯ S λmð Þð Þ: (6)

The posterior can be computed recursively as new data arrives as (Särkkä, 2013)

bθt ¼bθt�1þKt yt�bytð Þ, byt ¼Φ xtð Þbθt�1, (7a)
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Pt ¼Pt�1�KtStK
Τ
t , Kt ¼Pt�1 Φ xtð Þð ÞΤS�1

t , St ¼Φ xtð ÞPt�1 Φ xtð Þð ÞΤþσ2ℐ: (7b)

In Eq. (7), we can recognize that the recursive map updating is now posed as a recursive linear parameter
estimation problem. We will use this representation for our SLAM approach with dense maps.

3. Models

We are interested in jointly estimating time-varying states x1:T at times t¼ 1,2,…,T and a constant map,
which we denote in terms of constant parameters θ. The sensor pose, xt at least consists of the sensor’s
position pnt and its orientation qnbt . The superscript n in pnt specifically indicates that we represent the
position in a fixed navigation frame n. We focus both on planar localization where pnt ∈ℝ2 and on full 3D
localization, that is, pnt ∈ℝ3. The double superscript on qnbt specifically indicates that we consider a
rotation from a body-fixed frame b to the navigation frame n. The origin of this body-fixed frame b
coincides with that of the sensor triads and the axes of the body-fixed frame are aligned with the sensor
axes. We represent the orientation qnbt using unit quaternions when considering full 3D localization while
we represent it using a single heading angle when considering planar localization. Additional states can be
included in xt such as the sensor’s velocity or sensor biases.

We model the dynamics of the state as

xtþ1 ¼ f xt,ut,wtð Þ, (8)

where wt denotes the process noise and ut denotes a possible input to the dynamic model which can be
used to incorporate available odometry. Note the generality of the model Eq. (8) which can contain both
nonlinearities as well as non-Gaussian noise. Hence, all dynamic models that are commonly used in
SLAM can be written in the form of Eq. (8).

We additionally assume that we have prior information on the map θ as

p θð Þ¼N θ; μθ,Pθð Þ: (9)

This prior information is particularly crucial when doing SLAM with GP-based maps, since the prior on
the map is equal to the GP prior. Other examples are prior information available from previous data
collections.

We furthermore assume that if the states x1:T would be known, inferring θwould be a linear or an almost
linear estimation problem. In other words, we assume that there is a conditionally linear substructure or a
conditionally approximately linear substructure in the measurement model

yt ¼C xtð Þθþ εt, or yt ≈C xtð Þθþ εt, (10)

and that the measurement noise εt is Gaussian i.i.d. white noise with εt �N 0,Σð Þ. The model Eq. (10) is
fairly general and diverse measurement models typically considered in SLAM scenarios can be written in
this form. In Section 4, we will present our smoothing algorithm for SLAM that will assume the model
structures in Eqs. (8)–(10). To highlight the generality of the method, or, in other words, to highlight the
generality of Eq. (10) in the context of SLAM, in this work, wewill focus on three types of models: visual,
radio, and magnetic SLAM. We will introduce specific measurement models for these three cases in
Sections 3.1–3.3. In Section 3.1, we will first introduce a measurement model for magnetic field SLAM
that we have used in our previous work (Kok and Solin, 2018). In Section 3.2, we will then show that for
dense radio SLAM a similar model structure can be obtained. Both the measurement models in Sections
3.1 and 3.2 are conditionally linear. In Section 3.3, we will subsequently introduce a widely used model
for visual SLAM that has a conditionally approximately linear substructure.

3.1. Dense magnetic SLAM

In magnetic SLAM, at each time instance t, we receive a three-dimensional measurement ym,t of the
magnetic field. These three dimensions are not independent since the ambient magnetic field follows laws
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of physics captured by Maxwell’s equations. One way to take this into account is to model the magnetic
field measurements as (Kok and Solin, 2018)

φ pð Þ�GP 0,κlin: p,p
0ð ÞþκSE p,p0ð Þð Þ, (11a)

ym,t ¼R qbnt
� �

∇φ pð Þ��p¼pnt
þ εm,t, (11b)

where εm,t �N 0,σ2mℐ3
� �

and

κlin: p,p
0ð Þ ¼ σ2lin:p

Τp0, κSE p,p0ð Þ ¼ σ2f exp �∥p�p0∥22
2ℓ2

� �
: (12)

In Eq. (11a), φ �ð Þ denotes a scalar potential field, the GP depends on the position p and κ p,p0ð Þ represents
the covariance function (Rasmussen and Williams, 2006). The linear term κlin: p,p0ð Þ in the covariance
function models the local Earth’s magnetic field while the squared exponential term κSE p,p0ð Þmodels the
magnetic field anomalies. The GP in Eq. (11a) has three hyperparameters: the lengthscale ℓ, the
magnitude of the squared exponential term σf , and the magnitude of the linear term σlin:. The measure-
ments ym,t of the magnetic field in Eq. (11b) are the gradient of the scalar potential field, expressed in the
body frame b. We use the notation R qnbt

� �
to denote the rotation matrix representation of the state qnbt and

R qnbt
� �¼ R qbnt

� �� �Τ
.

Making use of the reduced-rank GP regression introduced in Section 2.2, via Eq. (5), we can write
Eq. (11b) as

ym,t ¼R qbnt
� �

∇Φ pnt
� �

θþ εm,t, (13)

whereΦ pnt
� �

∈ℝmþ3 consists ofmþ3 basis functions evaluated at pnt , and θ represents theweight of each
of these basis functions. The first three basis functions model the linear kernel, while the other m basis
functions approximate the squared exponential kernel. The prior Eq. (9) on the weights θ is in this case
given by μθ ¼ 0mþ3, with 0mþ3 being an m-dimensional zero-vector, and Pθ given by

Pθ ¼ diag σ2lin:,σ
2
lin:,σ

2
lin:,SSE λ1ð Þ,SSE λ2ð Þ,…,SSE λmð Þ� �

: (14)

For more background concerning the model, we refer to Kok and Solin (2018). Note the conditionally
linear structure is in line with the more general measurement model Eq. (10).

3.2. Dense radio SLAM

In dense radio SLAM, a map of the RSSI values is constructed. Representing this map using a GP, the
measurements can be modeled as (Ferris et al., 2007)

h pð Þ�GP 0,κ p,p0ð Þð Þ, (15a)

yr,t ¼ h pð Þ��p¼pnt
þ εr,t, (15b)

where εr,t �N 0,σ2r
� �

. Note that yr,t ∈ℝ although in practice it is common to receive RSSI measurements
from multiple Wi-Fi access points, resulting in multiple maps of the form of Eq. (15).

Similarly to Section 3.1, using Eq. (5), we can write Eq. (15b) as

yr,t ¼Φ pnt
� �

θþ εr,t, (16)

where Φ pnt
� �

∈ℝm consists of m basis functions evaluated at pnt , and θ represents the weight of each of
these basis functions. The prior Eq. (9) on the weights θ is in this case given by μθ ¼ 0m, and Pθ given by
Eq. (6). Note that Eq. (16) is again conditionally linear as in the more general measurement model
Eq. (10).
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3.3. Sparse visual SLAM

In sparse visual SLAM, the map is represented in terms of a number of landmark locations which we
denote by p1:L. Using a pinhole camera model (Hartley and Zisserman, 2004), a measurement
yj,t, j¼ 1,2,…,L (tracked feature points in images) of landmark pj can be modeled as

yj,t ¼
1
ρ

lu,t
lv,t

� �
þ εv,t, (17)

where the points are based on the intrinsic and extrinsic camera matrices such that

lu,t
lv,t
ρ

0
B@

1
CA¼

f x 0 cx
0 f y cy
0 0 1

0
B@

1
CA R qbnt

� � �R qbnt
� �

pnt
� � pj

1

� �
: (18)

Here, yj,t ∈ℝ2 denote the pixel coordinates of landmark pj, f x and f y denote the focal lengths in the two
different directions, cx and cy denote the origin of the image plane, and εv,t �N 0,σ2vℐ2

� �
. Note that the

model in Eq. (18) is linear in pj conditioned on pnt and qbnt . The projection in Eq. (17) makes the model
conditionally approximately linear.

4. Methods

We derive a particle smoothing algorithm for SLAM to jointly estimate the time-varying pose x1:T of the
sensor and the static but initially unknown map θ it is navigating in. We assume that the (possibly
nonlinear, non-Gaussian) dynamics of the state is modeled according to Eq. (8) and that the measurement
model is nonlinear, but it is (approximately) linear when conditioned on the state, as modeled in Eq. (10).
Furthermore, we assume that the map is constant and that prior map information is available according to
Eq. (9). The SLAMproblem is inherently unobservable, since it is possible to shift or rotate the entire map
and trajectory (Gustafsson, 2012). To resolve this ambiguity, we assume that the initial pose is known, as
is common practice in any SLAM formulation.

The joint smoothing distribution p x1:T ,θjy1:Tð Þ for the SLAM problem cannot be computed in closed
form due to the nonlinear nature of the models Eqs. (8) and (10). Using a similar strategy as in Svensson
et al. (2015) and Wigren et al. (2019), we instead approximate the joint smoothing distribution
p x1:T ,θjy1:Tð Þ using Markov Chain Monte Carlo (MCMC). This approach has been shown to avoid the
problem of particle degeneracy typically occurring in particle filters (Svensson et al., 2015) and has been
shown to be equivalent to backward simulation strategies commonly used for particle smoothing
(Lindsten et al., 2014). Contrary to Doucet et al. (2000) and Svensson et al. (2015), we assume that the
conditionally linear parameter vector (themap) is not time-varying. The case of static, conditionally linear
parameters is also studied byWigren et al. (2019) and our algorithm can be considered to be a special case
of their development. However, we will show that, contrary to Wigren et al. (2019), the specific structure
of our model Eqs. (8)–(10) for SLAM allows us to compute certain terms in closed form.

In Section 4.1, we first introduce our MCMC smoothing algorithm for SLAM. This algorithm makes
use of two specific implementations of the particle filter, which will subsequently be introduced in
Sections 4.2 and 4.3. For notational simplicity, throughout this section we assume that the measurement
model Eq. (10) is conditionally linear and we omit the explicit dependence of the dynamic model Eq. (8)
on the inputs u1:T . Note that the extension to a conditional approximately linear model is straightforward.

4.1. MCMC smoother for SLAM

Using a similar approach to Svensson et al. (2015) and Wigren et al. (2019), we approximate the joint
smoothing distribution p x1:T ,θjy1:Tð Þ by generating K (correlated) samples using MCMC. In Svensson
et al. (2015), each iteration of the MCMC algorithm used a conditional particle filter with ancestor
sampling (AS). To also exploit the linear substructure in our problem, similar to Wigren et al. (2019), we
use a conditional RBPF (CRBPF) with AS to generate samples x1:T k½ �,θ k½ �, k¼ 1,2,…,K. Our MCMC
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smoother is presented in Algorithm 1. It starts with an initial state trajectory x1:T 0½ � and then draws K
samples from the Markov chain by running the CRBPF-AS for SLAM provided in Algorithm 2. This
algorithm makes use of the previously sampled state trajectory as an input, and outputs a new sampled
state trajectory and its corresponding map. A natural choice for the initial state trajectory is the trajectory
from aRBPF-AS. In Section 4.2, wewill first describe our RBPF-AS for SLAM.Wewill then describe the
extension to a CRBPF-AS in Section 4.3.

Algorithm 1: MCMC smoother for SLAM.

Input: Initial state trajectory x1:T 0½ � from the RBPF-AS described in Section 4.2.
Output: K samples from the Markov chain with state trajectories x1:T 1½ �,…,x1:T K½ � and the correspond-
ing maps θ 1½ �,…,θ K½ �.

1. for k¼ 1,2,…,K do
2. Run the CRBPF-AS from Algorithm 2 conditional on x1:T k�1½ � to obtain x1:T k½ � and θ k½ �.
3. end for

4.2. RBPF-AS for SLAM

In this section, we will first focus on deriving an RBPF-AS for SLAM that approximates the joint
smoothing distribution p x1:T ,θjy1:Tð Þ. We use a similar Rao-Blackwellization approach as Schön et al.
(2005) and Wigren et al. (2019) and write the joint smoothing distribution at time t as

p x1:t,θjy1:tð Þ¼ p θjx1:t,y1:tð Þp x1:t jy1:tð Þ: (19)

Contrary toWigren et al. (2019), the specific form of our model for SLAMEqs. (9) and (10) opens up for
computing the distribution p θjx1:t,y1:tð Þ in the closed form

p θjx1:t,y1:tð Þ¼N θ;bθt,Pt

� 	
: (20)

More specifically, bθt and Pt can be computed recursively as

bθt ¼bθt�1þKt yt�C xtð Þbθt�1

� 	
, Kt ¼Pt�1 C xtð Þð ÞΤ C xtð ÞPt�1C

Τ xtð ÞþΣ
� ��1

,

Pt ¼Pt�1�KtC xtð ÞPt�1,
(21)

with bθ0, P0, respectively, equal to μθ, Pθ from Eq. (9).
In line with Wigren et al. (2019), we compute the distribution p x1:t jy1:tð Þ from Eq. (19) using SMC as

(cf., Lindsten et al., 2014)

bp x1:t jy1:tð Þ¼
XN
i¼1

wi
tδxi1:t x1:tð Þ: (22)

Note that the Rao-Blackwellization allows us to use the particles in the SMC approach Eq. (22) to only
represent the nonlinear states xt. The Dirac delta in Eq. (22) implies that for each particle, xt is
deterministic and due to the conditionally linear structure of our model the map can be computed in
closed form using Eq. (20). Hence, our approximation of the joint smoothing distribution p x1:t,θ jy1:tð Þ
makes use ofN particles to represent the state trajectory x1:t, where each particle carries its ownmap that is
updated at each time step using Eq. (21). By writing p x1:t jy1:tð Þ as

p x1:t jy1:tð Þ¼ p yt jx1:t,y1:t�1ð Þp xt jx1:t�1,y1:t�1ð Þ
p yt jy1:t�1ð Þ p x1:t�1 jy1:t�1ð Þ, (23)

it can be seen that also the particles can be updated recursively. Using the Markov property of the state and
the fact that our model Eq. (8) assumes that the dynamics of the state is independent of the map θ,
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p xt jx1:t�1,y1:t�1ð Þ¼ p xt jxt�1ð Þ (note again that for notational simplicity we omitted the explicit condition-
ing on the input ut�1). Furthermore, contrary to, for example, Svensson et al. (2015) and Wigren et al.
(2019), the measurement model Eq. (10) for SLAM can be used to compute p yt jx1:t,y1:t�1ð Þ in closed
form as

p yt jx1:t,y1:t�1ð Þ ¼
Z

p yt jx1:t,y1:t�1,θð Þp θjx1:t,y1:t�1ð Þdθ

¼
Z

p yt jxt,θð Þp θjx1:t�1,y1:t�1ð Þdθ

¼N yt;C xtð Þbθt�1,C xtð ÞPt�1 C xtð Þð ÞΤþΣ
� 	

:

(24)

Note that if the measurement model is only approximately linear, Eq. (24) will be an approximation.
Similar to the commonly used approach of bootstrap particle filtering (Doucet et al., 2001), in our RBPF-
AS, we propagate the particles using the dynamicmodel Eq. (8), compute their weights using Eq. (24) and
resample the particles using systematic resampling. Specifically implementing this filter in terms of
ancestor sampling (Lindsten et al., 2014) allows us to keep track of the history of each particle. TheRBPF-
AS for SLAM can be found in lines 1, 3, 4, 8–10, 12, 14, and 15 of Algorithm 2.

Algorithm 2: Conditional Rao-Blackwellized particle filter with ancestor sampling for SLAM.

Input: Reference state trajectory x01:T ¼ x1:T k�1½ �, prior map mean and covariance μθ, Pθ, and initial
pose x0.
Output: Sampled state trajectory x1:T k½ � and its corresponding map θ k½ �.

1. Initialize N�1 particles at initial pose as xi1 ¼ x0 for i¼ 1,…,N�1.
2. Add reference state trajectory by setting xNt ¼ x0t for t¼ 1,…,T.

3. Initialize parameters using the prior p θð Þ as bθi0 ¼ μθ and Pi
0 ¼Pθ for i¼ 1,…,N.

4. Set the initial weights equal to wi
1 ¼ 1=N for i¼ 1,…,N.

5. Optionally, precompute C x0t
� �

for t¼ 2,…,T.
6. for t¼ 1,2,…,T do
7. if t > 1 then
8. Resampling and time update:
9. Draw ait with ℙ ait ¼ j

� �¼wj
t�1 for i¼ 1,…,N�1.

10. Draw xit by sampling xit � p xit jxa
i
t

t

� 	
for i¼ 1,…,N�1.

11. Compute ancestor weights reference trajectory:

Draw aNt with ℙ aNt ¼ i
� �

∝wi
t�1p yt:T jxi1:t�1,x

0
t:T ,y1:t�1

� �
p x0t jxit�1

� �
,

where p yt:T jxi1:t�1,x
0
t:T ,y1:t�1

� �
is computed using Eq. (28).

12. Set xi1:t ¼ xa
i
t

1:t�1,x
i
t

n o
, bθit�1 ¼bθaitt�1, and Pi

t�1 ¼Pait
t�1 for i¼ 1,…,N.

13. end if
14. Compute weights:

Set wi
t∝ p yt jxi1:t,y1:t�1

� �
using Eq. (21) for i¼ 1,…,N and normalize to

PN
i¼1w

i
1 ¼ 1.

15. Update parameters:

Compute bθit and Pi
t using Eq. (21).

16. end for
17. Sample a state trajectory and its corresponding map as x1:T k½ � ¼ xJ1:T and θ k½ � ¼ θJT with

ℙ J¼ jð Þ¼wj
T .

e15-10 Manon Kok et al.

https://doi.org/10.1017/dce.2024.12 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.12


4.3. CRBPF-AS for SLAM

During each iteration of the MCMC smoother from Algorithm 1, we run a CRBPF-AS to obtain a sample
of p x1:T ,θjy1:Tð Þ using the weights of the trajectories and maps at time T . This sampled trajectory will be
used as a so-called reference trajectory in the next iteration of theMCMC smoother (Andrieu et al., 2010).
In practice, thismeans that we run an RBPF-AS as described in Section 4.2withN�1 particles and assign
the reference trajectory to particleN for each time t¼ 1,…,T (Svensson et al., 2015;Wigren et al., 2019).
At each time instance, a history (ancestor index aNt ) of this reference trajectory is sampled. In other words,
we find a history for x0t, where x

0
t denotes the reference trajectory at time instance t. The ancestor index is

drawn with probability (Svensson et al., 2014; Wigren et al., 2019)

ℙ aNt ¼ i
� �

∝ p xi1:t�1 jx0t:T ,y1:T
� �

∝ p yt:T ,x
0
t:T jxi1:t�1,y1:t�1

� �
p xi1:t�1 jy1:t�1

� �
,

(25)

where p xi1:t�1 jy1:t�1

� �
is equal to the importance weight wi

t�1 of particle i, i¼ 1,…,N. For our model, the
term p yt:T ,x

0
t:T jxi1:t�1,y1:t�1

� �
can be rewritten according to

p yt:T ,x
0
t:T jxi1:t�1,y1:t�1

� �¼ p yt:T jxi1:t�1,x
0
t:T ,y1:t�1

� �
p x0t:T jxi1:t�1,y1:t�1

� �
¼ p yt:T jxi1:t�1,x

0
t:T ,y1:t�1

� �
p x0t jxit�1

� � YT
τ¼tþ1

p x0τ jx0τ�1

� �
∝ p yt:T jxi1:t�1,x

0
t:T ,y1:t�1

� �
p x0t jxit�1

� �
:

(26)

Note that the Markovian structure of the dynamics in the second line of Eq. (26) is due to the specific
structure of our dynamic model Eq. (8). If the dynamic model would also depend on the map θ, as, for
instance, assumed byWigren et al. (2019), the marginalized dynamic model would not be Markovian or,
in other words, in that case p x0t:T jxi1:t�1,y1:t�1

� �
would not be equal to p x0t jxit�1

� �QT
τ¼tþ1p x0τ jx0τ�1

� �
. Note

also that in line 3 of Eq. (26)we have omitted the term
QT

τ¼tþ1p x0τ jx0τ�1

� �
because it is equal for all particles

and hence irrelevant for computing Eq. (25). The interpretation of Eqs. (25) and (26) is that the probability
of drawing the ancestor index i depends on (i) the importance weight wi

t�1, (ii) the probability of
transitioning from xit�1 to the reference trajectory state xt0 according to the dynamic model in Eq. (8),
and (iii) how well the map learned from xi1:t�1,y1:t�1 can predict the current and future measurements yt:T
at locations x0t:T . The latter can be seen more clearly when writing p yt:T jxi1:t�1,x

0
t:T ,y1:t�1

� �
as

p yt:T jxi1:t�1,x
0
t:T ,y1:t�1

� �¼Z
p yt:T jxi1:t�1,x

0
t:T ,θ

� �
p θjxi1:t�1,x

0
t:T ,y1:t�1

� �
dθ

¼
Z

p yt:T jx0t:T ,θ
� �

p θjxi1:t�1,y1:t�1

� �
dθ,

(27)

where the explicit dependence on θ is introduced to write this probability distribution in terms of the
measurement model p yt:T jx0t:T ,θ

� �
and the map estimate p θjxi1:t�1,y1:t�1

� �
. Note that the conditioning of

the first term inside the integral on xi1:t�1,y1:t�1 is dropped since given θ all history is contained in xt and
that the conditioning of the second term inside the integral on xi1:t�1 is dropped since locations without
measurements do not affect the map estimate. For our state-space model Eqs. (8)–(10), it is possible to
compute p yt:T jxi1:t�1,x

0
t:T ,y1:t�1

� �
in closed form as

p yt:T jxi1:t�1,x
0
t:T ,y1:t�1

� �¼N yt; C x0t:T
� �bθit�1, C x0t:T

� �
Pi
t�1 C x0t:T

� �� �ΤþΣ
� 	

, (28)

with

yt ¼ yΤt yΤtþ1 … yΤT
� �Τ

, C x0t:T
� �¼ C x0t

� �� �Τ
C x0tþ1

� �� �Τ
… C x0T

� �� �Τ� 	Τ
, Σ¼ℐT�t⊗Σ, (29)
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where⊗ denotes a Kronecker product. Note that if the measurement model is only approximately linear,
Eq. (28) will be an approximation. Using Eq. (28) in Eq. (26), we can now sample ancestor indices for the
reference trajectory at time t¼ 1,2,…,T . Combining these steps with the RBPF-AS described in
Section 4.2, the resulting conditional RBPF-AS for SLAM can be found in Algorithm 2.

5. Results

To validate and study the properties of our approach, we present simulation and experimental results. We
first study the properties of our smoothing algorithm in terms of particle degeneracy and by analyzing the
shape of the estimated trajectories for a simulated radio SLAM example in Section 5.1. Subsequently, we
compare our estimation results for simulated magnetic SLAM with results from a particle filter and from
an EKF in Section 5.2. In a third simulation experiment, we compare our estimation results for visual
SLAMwith results from a particle filter, an EKF and an extended Kalman smoother (EKS) in Section 5.3.
Finally, in Section 5.4, we illustrate the efficacy of our algorithm to estimate a trajectory using magnetic
SLAM based on real-world experimental data collected using a smartphone.

5.1. Simulation results for radio SLAM

To study the properties of Algorithm 1, we first simulate RSSI measurements and consider planar
localization to estimate a time-varying position pt ∈ℝ2 and a heading angle qnbt ∈ℝ. We model the
measurements according to the model Eq. (15) and the GP approximation Eq. (16), with a measurement
noise covariance of σ2r ¼ 0:01. We define the GP prior through a squared exponential covariance function
given by Eq. (12) that encodes a smoothness assumption on the model function. We use 128 basis
functions, and fix the model hyperparameters to σ2f ¼ 2 (magnitude) and ℓ¼ 0:25 (lengthscale). Further-
more, we use a square domain to ensure that the eigenfunctions for the GP approximation, see Section 2.2,
can be computed in closed form (Solin and Särkkä, 2020). To avoid boundary effects, we ensure that all
ground-truth positions are at least two lengthscales from the boundary of the domain.

We simulate odometry measurements Δpt,Δqt that provide information about the change in position
and heading at each time instance t, respectively, and model the discrete-time dynamics according to

pntþ1 ¼ pnt þR qnbt
� �

Δpt, (30a)

qnbtþ1 ¼ qnbt þΔqtþwt, wt �N 0,ΔTQtð Þ: (30b)

Here, ΔT ¼ 1 and R qnbt
� �

denote the 2× 2 rotation matrix representing a rotation around the z-axis with an
angle qnbt . This model reflects the fact that odometrymeasurements are typically measured in a body-fixed
frame while navigation is typically done in an earth-fixed frame. For illustrational purposes, we assume
that the position odometry measurements Δpt are noiseless, but model a noise wt representing the error in
the heading odometry measurements. More specifically, we simulate trajectories with Qt ¼ 1 �10�6 rad2

for all time instances where the user is moving straight. For the samples where a turn occurs, we modelQt

to be significantly larger (Qt ¼ 0:12 andQt ¼ 0:32 for the examples in Figures 3 and 4, respectively). Such
a model represents, for instance, a visual odometry where straight lines can be tracked very accurately but
the odometry accuracy can have large uncertainties during fast turns.

For illustrative sanity-checks, we consider two different scenarios. First, we focus on a square
trajectory where Qt ¼ 0:12 rad2 in the three 90° turns. This scenario is visualized in Figure 3a where
both the true trajectory and the true RSSI field map are displayed. We then run the RBPF-AS from
Section 4.2. Figure 3b visualizes the history of the 100 particles at time T as well as the RSSI map
estimated by the particle with the highest weight at this time instance. The transparency of the map
indicates its estimation uncertainty. Finally, we generate K ¼ 50 samples x1:T 1½ �,…,x1:T K½ �,θ 1½ �,…,θ K½ �
using Algorithm 1 and visualize these 50 trajectories as well as the RSSI map estimated during iterationK
in Figure 3c. Again, the transparency of the map indicates the predictive marginal standard deviation
(estimation uncertainty). In Figure 3b, it can be seen that the filter suffers from particle degeneracy as all
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particles at time T descend only from a small number of ancestors in the past. Please note that even though
all particles seem to have a common ancestor at time t¼ 1, this is not due to particle degeneracy but due to
how we initialize our SLAM problem: To overcome inherent unobservability in the problem, we use a
standard approach in which we assume that the initial pose is known (Gustafsson, 2012). Nevertheless,
there is clear particle degeneracy as all particles at time T descend from only five ancestors in the upper left
corner and only seven ancestors in the upper right corner. The posterior as visualized by MCMC samples
in Figure 3c can be seen to have amuchwider spread representing possible trajectories. Note that the large
spread is due to the large odometry uncertainty in each corner, and that this uncertainty decreases only
when revisiting previous locations. This reduction of uncertainty will be illustrated in the next scenario.

Figure 3. Highlight of the non-degeneracy of the particle smoothing approach with (a) the simulation
setup, and simulation results for radio SLAM with (b) filtering samples showing that the filter is

degenerate and (c) nondegenerate samples of the smoother.

Figure 4. (a) Illustrative example of a back and forth path on an RSSI map; (b) the only source of
uncertainty in the odometry is the turn angle at the farthest most point, which leads to spread; (c, d)

Particle filtering SLAM reduces the spread, but does not backtrack the smooth odometry information; and
(e) Our particle smoothing solution gives a tighter estimate and backtracks the smoothness along the

sample paths.
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In a second scenario, we assume that a user moves straight, turns and returns to the starting point as
visualized in Figure 4a. We run 100 Monte Carlo simulations where for each simulation we sample both
the measurements of the field as well as the odometry. The 100 odometry trajectories as well as the true
RSSI map are visualized in Figure 4b.We run the filter from Section 4.2 with 100 particles and for each of
theMonte Carlo simulations we run 50 iterations of the smoother fromAlgorithm 1. At each time instance
of the filter, we save both the highest weight particle and the weighted mean particle. The resulting
trajectories from the filter are shown in Figure 4c,d. In Figure 4c–e, we also visualize the estimated field
for one of the Monte Carlo samples. The transparency again indicates the estimation uncertainty. For the
smoother we visualize the field estimated by theKth sample. As can be seen, the sampled trajectories from
Algorithm 1 are significantly more smooth than the estimates of the filter from Section 4.2. Furthermore,
the estimates from the filter include some trajectories which significantly deviate from the true path while
this is not the case for the samples from the particle smoother.

5.2. Simulation results for magnetic SLAM

We also study the properties of our algorithm for magnetic field SLAM. For this, we simulate a magnetic
field using 512 basis functions and σ2lin: ¼ 650, σ2m ¼ 10, ℓ¼ 1:3, and σ2f ¼ 200. These hyperparameters
are equal to the ones that we used previously in Kok and Solin (2018) and in line with values we found by
estimating the hyperparameters from experimental data (Solin et al., 2018).We again use a square domain
for the GP approximation and to avoid boundary effects, we ensure that the simulated trajectory, as shown
in Figure 5a is at least two lengthscales from the boundary of the domain.We simulate the odometry using
the following dynamic model

ptþ1 ¼ ptþΔptþ ep,t, (31a)

qnbtþ1 ¼ qnbtþ1⊙Δqt⊙expq eq,t
� �

, (31b)

where ep,t �N 0,ΔTQp

� 	
and eq,t �N 0,ΔTQq

� 	
, with ΔT ¼ 0:01 s, Qp ¼ diag 0:25,0:25,0:01ð Þ and

Qq ¼ diag 0:012π2=1802, 0:012π2=1802, 0:32π2=1802
� �

.We compare the results of our particle smoother
with a particle filter similar to the one presented in Kok and Solin (2018) and an EKF similar to the one
presented in Viset et al. (2022). To study the three algorithms for nonideal, real-world scenarios, we add a
constant, unmodeled magnetometer bias of varying magnitude o to the y-axis of the measurements.
Because we are not interested in the true magnetic field map but only in one that aids in obtaining a correct
position, an incorrect bias estimate would not have any negative effect on the localization performance if
the sensor would not rotate. However, rotating the sensor results in measuring the bias in a different
direction in the navigation frame and hence inconsistencies in themap. The sensitivity of the algorithms to
erroneous magnetometer calibration therefore depends on the shape of the trajectory. We use the
trajectory shown in Figure 5a, which is not that sensitive for erroneous calibration, for example, because
the same path is not traversed twice in opposite directions. Because of this, we simulate large calibration
errors of o¼ 0,1,5,10. For each of these cases, we run 20 Monte Carlo simulations and sample K¼ 10
sample trajectories from our Rao-Blackwellized particle smoother. One of the maps is visualized in
Figure 5a. The resulting RMSE can be found in Figure 5b. As can be seen, the RMSE of the particle
smoother from Algorithm 2 is smaller than that of the particle filter and remains consistently low, while
that of the EKF increases for larger calibration errors.

5.3. Simulation results for visual SLAM

In a final set of simulations, we consider a visual SLAM problem. The previous experiments considered
the case where our model was conditionally linear, whereas the sparse visual model is conditionally
linearized (see Section 3.3). For simulation purposes, we consider the two-dimensional setup from
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Figure 1. In two spatial dimensions, the pinhole camera observations become one-dimensional and the
observation model becomes

yj,t ¼
lt
ρ
þ εv,t, with

lt
ρ

� �
¼ f c

0 1

� �
R qbnt
� � �R qbnt

� �
pnt

� � pj
1

� �
, (32)

denotes the origin of the image line, and εv,t �N 0,σ2v
� �

. The task is to learn both the sparse map of
θ¼ pj


 �L

j¼1
and the 3-DoF trajectory of the camera. In the experiment, we use f ¼ 1:5, c¼ 0 (the field-of-

view is ~67°), and σ2v ¼ 0:12. The dynamical model for the camera movement follows the setup in Eq.
(31) withΔT ¼ 1 and a total of T ¼ 197 time steps. To corrupt the odometry signal, we add a constant drift
of 1 cm/s and Gaussian noise with covariance Qp ¼ 0:042ℐ2/s to the spatial increments Δpt, and add a
small amount of noise (Qq ¼ 10�12/s) to the orientation increments. This setup corresponds to a typical
visual–inertial odometry setup, where tracking orientation with the help of a gyroscope is easier than
tracking the twice-integrated accelerometer signal. In the simulation setup, the camera traverses around
the space two times, which means that learned landmark points are revisited and should improve the
tracking.

A recurring issue in visual SLAM problems is the initialization of the feature point locations pj. The
initial guess is typically vague and could be, for example, based on triangulation from only two views,
where errors in the pose of these views translate to large errors in the initialization.We study robustness to
feature point initialization by controlling the initial error of the initialization in a simulated setting. We
follow a similar setup as Solin et al. (2022, Sec. IV.A), where we initialize the points by taking their
ground-truth locations and corrupting them with Gaussian noise (with variance σ2). The visual SLAM
setting follows that visualized in Figure 1a, where we have L¼ 20 feature points—most of which are not
observed at the same time.

As explained in Section 3.3, the sparse visual SLAM model is a conditionally linearized filter/
smoother. Thus, it falls natural to compare Rao-Blackwellized particle filtering/smoothing (denoted
PF/PS) to a vanilla EKF/EKS. For this two-dimensional simulated SLAM problem, we use N ¼ 100
particles for the RBPF-AS and sample K¼ 10 sample trajectories from our Rao-Blackwellized particle
smoother. We repeat the experiment with 20 random repetitions for each noise level σ2. The prior state
covariance corresponding to the feature location is initialized to 42ℐ2, which means that the scale of the
corrupting noise can be considered moderate even for large noise scales.

Figure 5. Robustness study with magnetometer perturbed with a constant bias o. Left: Setup showing the
ground-truth path and one realization of the magnetic field map. Right: Box plots of RMSE in the final
estimated SLAM path. Particle and extended Kalman filtering methods drawn with outlines, particle
smoothing method in solid colors. The EKF performs well under negligible calibration errors, the

particle filter (PF) and smoother (PS) perform well under large calibration errors.
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Figure 6 shows results for controlling the feature point initialization. For each noise level, we show box
plots for the final error of the weighted mean estimates compared to the ground-truth translation of the
moving camera. We apply standard Procrustes correction (rotation, translation, and scalar scaling) based
on the learned map points due to possible lack of scale information in the visual-only observations. The
results in the box plots are as expected: The effect of deviating from the vicinity of the “true” linearization
point is apparent, and the EKF and EKS performance deteriorates quickly as the noise scale grows. The
particle filter appears robust to the initialization when compared to the EKF, and the particle smoother
shows clearly improved robustness over the EKS.

5.4. Empirical results for magnetic field SLAM

To experimentally validate our algorithm, we use experimental data previously used for magnetic field-
based SLAM in Kok and Solin (2018). In this experiment, we collected magnetometer and odometry data
using anApple iPhone 6s. To obtain the odometry data, we used the appARKit which uses IMUand camera
data to provide a 6-DoF (position and orientation) movement trajectory. ARKit visually recognizes
previously visited locations and corrects the trajectory for this, resulting in discontinuities in the trajectories.
We instead removed these discontinuities, resulting in a drifting odometry shown in Figure 7b. The goal of
our SLAMalgorithm is then to remove the drift in this trajectory. To this end, we use the dynamicmodel Eq.
(31) and the measurement model Eq. (11) with the reduced-rank approximation from Eq. (13) and down-
sample the data from the original 100 Hz to 10 Hz. We use the same hyperparameters as in Kok and Solin
(2018): σ2lin: ¼ 650, σ2m ¼ 10, ℓ¼ 1:3 m and σ2f ¼ 200. Furthermore, we have ΔT ≈ 0:1,
Σp ¼ diag 0:12, 0:12, 0:022

� �
, Σq ¼ diag 0:012π2=1802, 0:012π2=1802, 0:242π2=1802

� �
.

Even though,we downsample the data from 100Hz to 10Hz, the computational complexity of both the
particle filter as well as the particle smoother for this example quickly becomes prohibitively large. The
reason for this is not only the large number of data points but also the large area that is covered and the fact
that the number of basis functions that is needed to make a good approximation scales with this (Solin and
Särkkä, 2020). Because of this, similar to our approach inKok and Solin (2018), we use smaller hexagonal
block domains (each with a radius of 5 m, a height of 2 m and 256 basis functions), as visualized in
Figure 7d. Details on the basis functions can be found in Kok and Solin (2018). Note that similar to Kok

Figure 6. Robustness to feature point initialization in visual SLAM. Simulation study with initial feature
locations perturbed with Gaussian noise (variance σ2). Box plots of RMSE in the final estimated SLAM
path. Forward filtering methods drawn with outlines, smoothing methods in solid colors. The EKF/EKS
performwell under negligible perturbation, the particle filter (PF) and smoother (PS) performwell under

large uncertainty.
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and Solin (2018), we model the actual hexagonal blocks to be slightly larger than the area that we use to
reduce boundary effects. In principle, the hexagonal blocks can straightforwardly be included in
Algorithms 1 and 2, except for line 10 in Algorithm 2. In that line, we compute the ancestor weights
of the reference trajectory and hence compute the likelihood of every future measurement yt:T given the
previous measurements y1:t�1, the previous locations of that particle x

i
1:t�1 and the future locations of the

reference trajectory x0t:T. Note that x0t:T can span multiple hexagons. We therefore check for the whole
reference trajectory x0t:T in which hexagon it lies. If a map has been started in this hexagon by any of the
particles, we compute the likelihood according to Eqs. (28) and (29) either using the estimated map or
using the prior (in case that particle has not yet started that hexagon). The part of the reference trajectory
that is in hexagons not created by any of the particles contributes only a constant offset on the weights and
is therefore omitted.

6. Discussion

We have presented a probabilistic approach for SLAM problems under the smoothing setup, that is, for
conditioning the entire trajectory on all observed data. This is a particularly challenging problem as the
state and parameter space become very high dimensional, which makes the general problem largely
intractable. Key to our setup is to leverage the conditionally linear structure—through Rao-
Blackwellization—that separates the map parameters θ from the poses x. The smoothing approach should
in general not be considered a real-time method as the idea is to jointly consider all data over the entire
time-horizon (incorporating knowledge from the future into past states). Compared to real-time filtering
approaches, smoothing also adds to the computational load. Our method (see Algorithm 1) requires
running a conditional particle filter for each sample k, whichwould translate to a cost ofK times the cost of
running a particle filter. However, Line 11 in Algorithm 2 is the most computationally heavy step of our
algorithm as the computation of p yt:T jxi1:t�1,x

0
t:T ,y1:t�1

� �
requires a prediction along the entire future

trajectory at every time instance. As shown in Eq. (28), this distribution is Gaussian with a covariance

C x0t:T
� �

Pi
t�1 C x0t:T

� �� �Τ
. Computing this covariance has a computational complexity in the order of

O mT 2þm2T
� �

as C x0t:T
� �

∈ℝny T�tð Þ×m, where ny is the dimension of the measurement at time t, and
Pi
t�1 ∈ℝm×m. This results in an overall computational complexity of Algorithm 1 of

O KNT 3mþKNm2T2
� �

. Note that this finding is contrary to the linear time complexity O Tð Þ reported
in Wigren et al. (2019) even though our smoothing algorithm for SLAM can be seen as a special case of

Figure 7. Empirical proof-of-concept magnetic indoor SLAM. Panel (a) shows a view through the mobile
phone camera, (b) the drifting odometry, (c) samples of the smoothing distribution, and (d) a 3D view of

these results. The color scaling visualizes the field strength of a learned magnetic map.
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their algorithm. In their work, p yt:T jxi1:t�1,x
0
t:T ,y1:t�1

� �
cannot be computed in closed form and because of

this, they propagate sufficient statistics. We can use a similar strategy by implementing our recursive

linear parameter estimation in information form. In other words, instead of estimating a mean bθt and
covariance Pt, we can equivalently estimate an information vector ιt ¼ Itθt and an information matrix
It ¼P�1

t . The details on how our algorithm can be implemented in information form are available in
Appendix A. This implementation has a computational complexity of O KNTm3

� �
. In other words, our

algorithm either scales cubically with the number of time steps T or cubically with the number of map
parameters m. In practice, the implementation from Appendix A is therefore often preferred over direct
implementation of Algorithm 2. However, in the case where the map is represented using a large number
of basis functions approximating a GP, it highly depends on the exact number of basis functions and time
steps which implementation is most efficient. In Section 5.4, we partially overcame this computational
complexity by only computing this quantity for hexagonal block domains that have previously been
created, avoiding unnecessary computations. In future work, it would be interesting to explore more ways
of reducing the computational complexity, for example, by only doing predictions into the near future, or
by doing independent instead of joint predictions.

When using Algorithm 2 for other SLAM problems than the ones studied in this work, care should be
taken in at least two respects. First, for conditionally approximately linear measurement models, the
performance of Algorithm 2 naturally depends on the quality of the linearization and will therefore be
model dependent. Furthermore, in principle, one would expect that we would have to discard the first
samples of the smoother to allow for convergence of the Markov chain. However, because we did not
observe a clear convergence effect, throughout Section 5 we did not discard any samples of the smoother.
We suspect that we did not observe the convergence effect since the RBPF-AS initializes the Markov
chain close to the smoothing distribution using a RBPF. However, care should be taken when using
Algorithm 2 for other smoothing problems and it should be checked if also in those cases it is not
necessary to discard samples due to burn-in.

There are several promising and more or less straightforward extensions of Algorithm 2 that would be
interesting to explore in future work. First, we use bootstrap particle filtering, in which the proposal
distribution is determined by the dynamic model. Our method can straightforwardly be extended to other
proposal distributions (e.g., the one used inMontemerlo et al., 2003). Second, in the case of approximately
linear models, the updates of the map in Eq. (21) are similar to measurement updates in an EKF. These
updates could be replaced, for example, with measurement updates similar to an unscented Kalman filter.
Unscented Kalman filters have been shown to perform better than EKFs for visual SLAM in Solin et al.
(2022). Further experiments would also be needed for studying how smoothing approaches could
improve the state-of-the-art in filtering-based visual–inertial odometry and SLAM (see Seiskari et al.,
2022).

7. Conclusion

This paper introduced a framework for probabilistic SLAM using particle smoothing that does not only
incorporate observed data in current state estimates, but also backtracks the updated knowledge to correct
for past drift and ambiguities in both the map and in the states. Our solution can handle both dense and
sparse map representations by Rao-Blackwellization of conditionally linear and conditionally linearized
models. We structured the framework to cover a variety of SLAM paradigms, both for dense function-
valued maps (typically used in magnetic and radio RSSI anomaly SLAM) and sparse feature-point-based
maps (typically used in visual and radio RSSI emitter SLAM). The algorithm allows for modeling that the
map is constant over time and for including a priori assumptions regarding the map, for example,
important for magnetic SLAM.

The proposed algorithm alleviates particle degeneracy, results in smooth estimated trajectories, and is
robust against calibration and initialization errors—features that were all demonstrated in the experi-
ments. Interesting directions of future work include exploring ways to reduce the computational
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complexity of the algorithm and changing the proposal distribution of the particle filter or the measure-
ment updates for conditionally approximately linear models.

Data availability statement. We provide proof-of-concept reference implementations and data for replicating the experiments.
This code and data can be found on https://github.com/manonkok/Rao-Blackwellized-SLAM-smoothing.
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Appendix

A. Estimating the parameters in information form
Any recursive least squares or Kalman filter problem can be written in information form (Gustafsson, 2012). It is therefore possible
to slightly adapt the method from Section 4 and estimate an information vector ιt ¼ Itbθt and information matrix It ¼P�1

t rather than
estimating bθt and Pt . The time recursion Eq. (21) to update the parameter estimates in information form is

ιt ¼ ιt�1þ C xtð Þð ÞΤΣ�1yt , It ¼ It�1þ C xtð Þð ÞΤΣ�1C xtð Þ: (33)

To compute p yt jx1:t ,y1:t�1ð Þ using the information vector and matrix, let us first write the Gaussian distribution p θjx1:t ,y1:tð Þ as

p θ jx1:t ,y1:tð Þ¼ exp �1
2 ι

Τ
t I

�1
t ιt

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞmdetI�1

t

q exp �1
2

θΤItθ�2θΤιt
� �� �

, (34)

where we separated the terms that depend on θ from the terms that do not depend on θ. We can then write p yt jx1:t ,y1:t�1ð Þ as

p yt jx1:t ,y1:t�1ð Þ¼
Z

p yt jxt ,θð Þp θjx1:t�1,y1:t�1ð Þdθ

¼
exp �1

2
ιΤt�1I

�1
t�1ιt�1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞmdetI�1

t�1

q exp �1
2
yΤt Σ

�1yt

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞnydetΣ

p
Z

exp �1
2

θΤ It�1þ C xtð Þð ÞΤΣ�1C xtð Þ
� 	

θ�2θΤ ιt�1þ C xtð Þð ÞΤΣ�1yt
� 	� 	� �

dθ

¼
exp �1

2
ιΤt�1I

�1
t�1ιt�1
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð ÞmdetI�1
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q exp �1
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yΤt Σ

�1yt
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2πð ÞmdetI�1
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q
exp �1

2
ιΤt I

�1
t ιt

� � ,

(35)

where we used the definition of the update equations from Eq. (33), the fact that the term in the integral in the second step of Eq. (35)
has the same form as Eq. (34) except for the terms that are independent of θ, and the fact that probability distributions integrate to one.

To compute the ancestor weights of the reference trajectory, we can compute p yt:T jxi1:t�1,x
0
t:T ,y1:t�1

� �
as

p yt:T jxi1:t�1,x
0
t:T ,y1:t�1

� �¼YT
τ¼t

p yτ jxi1:t�1,x
0
t:τ ,y1:τ�1

� �

∝
exp �1

2
ιit�1

� �Τ
Iit�1

� ��1
ιit�1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þmdet Iit�1

� ��1
� 	r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þmdet IiT

� ��1
� 	r

exp �1
2

ιiT
� �Τ

IiT
� ��1

ιiT

� � ,

(36)

where we used Eq. (35) and omitted the terms that only depend on yt and Σ since they are the same for each particle i. Note that the
particularly elegant expression Eq. (36) is due to the cancellation of terms because of the special structure in Eq. (35). Furthermore,
note that

ιiT ¼ ιi0þ
Xt�1

τ¼1

C xiτ
� �Τ

Σ�1yτ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ιiT

þ
XT
τ¼t

C x0τ
� �Τ

Σ�1yτ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ι0T

, (37a)
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IiT ¼ Ii0þ
Xt�1

τ¼1

C xiτ
� �Τ
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� �
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T

, (37b)

where ι0T and I
0
T are independent of the particles and their parameters estimates. Because of this, it is possible to precompute each

term in the sum and only add them once per iteration of the particle filter.

The computational complexity of both Eq. (35) and Eq. (36) is dominated by the inversion of the information matrix and is of
orderO m3ð Þ. It is possible to avoid this cubic computational complexity in Eq. (35) by not only estimating ιt and It but also Pt since
this directly gives I�1

t with only a complexity O m2ð Þ and since

detI�1
t ¼ 1

det It�1þ C xtð Þð ÞΤΣ�1C xtð Þ
� 	¼ 1

det ΣþC xtð ÞI�1
t�1 C xtð Þð ÞΤ

� 	
det Σ�1

� �
det It�1ð Þ

¼ det Σð Þdet Pt�1ð Þ
det ΣþC xtð ÞPt�1 C xtð Þð ÞΤ

� 	 : (38)

It is, however, not possible to avoid the cubic complexity in Eq. (36) without introducing additional scaling with T as computing PT

from Pt�1 is of order O Tm2
� �

for every particle and every time instance.
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