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Summary

Explicit formulae are given for the effects of a barrier to gene flow on random fluctuations in

allele frequency; these formulae can also be seen as generating functions for the distribution of
coalescence times. The formulae are derived using a continuous diffusion approximation, which is
accurate over all but very small spatial scales. The continuous approximation is confirmed by
comparison with the exact solution to the stepping stone model. In both one and two spatial
dimensions, the variance of fluctuations in allele frequencies increases near the barrier; when the
barrier is very strong, the variance doubles. However, the effect on fluctuations close to the barrier
is much greater when the population is spread over two spatial dimensions than when it occupies a
linear, one-dimensional habitat: barriers of strength comparable with the dispersal range (B~ o) can
have an appreciable effect in two dimensions, whereas only barriers with strength comparable with
the characteristic scale (B~ L=0/+/2u ) are significant in one dimension (u is the rate of mutation
or long-range dispersal). Thus, in a two-dimensional population, barriers to gene flow can be
detected through their effect on the spatial pattern of genetic marker alleles.

1. Introduction

Natural populations are not distributed uniformly:
even a continuous habitat will usually be subdivided
by local reductions in density or dispersal. On a larger
scale, a biological species may be split into a mosaic
of geographic races, separated by narrow zones of
hybridization. The flow of genes between these races
will be impeded by the reduced fitness of hybrids, or
by adaptation to different environments: even if an
allele is not itself disadvantageous in the new popu-
lation, it will be associated with alleles at selected loci,
and so will tend to be eliminated with them (Barton &
Bengtsson, 1986).

The effects of such barriers to gene flow are of
interest from several points of view. Local adap-
tations tend to be swamped by dispersal from differ-
ent environments: divergence may be made possible
by barriers (Slatkin, 1973 ; Nagylaki, 1976). Conversely,
populations may persist in marginal habitats only
if they are sustained by immigration, which directly
increases population size (Pulliam, 1988), and also
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introduces genetic variation. Geographic races often
remain distinct, despite the continual exchange of
genes across hybrid zones. Thus, although they are
members of the same biological species, it is not clear
to what extent they evolve independently. The chance
that favourable alleles that become established in one
race arose as mutations in the other will depend on
barrier strength, as will the degree of neutral molecu-
lar differentiation.

The strength of a barrier to gene exchange, whether
due to a physical obstacle or to genetic incompati-
bility, can be measured by a quantity B. This has the
dimensions of distance, and can be thought of as the
length of habitat which would pose the same obstacle
to the steady flow of a neutral allele. The effect of
the barrier on gene flow depends on the ratio between
barrier strength and dispersal rate (B/o, where o2 is
the variance in distance between parent and off-
spring); (B/o)? has the dimensions of time. A neutral
allele will be delayed by ~(B/0)? generations, whilst an
allele with advantage s will only be delayed signifi-
cantly if (B/o)? is much greater than the timescale
characteristic of selection, 1/s (Barton & Bengtsson,
1986; Pialek & Barton, 1997).
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The rate of gene exchange between populations
can, in principle, be measured directly, from the
movements of individuals, and from the fitness of
them and their offspring. However, such measure-
ments are laborious, even with the most suitable
organisms. Barrier strength can also be measured in-
directly, from the shape of clines at selected loci: a
barrier will produce a sharp step in allele frequency,
whose size is the product of barrier strength and the
gradient in gene frequency (Ap = B(dp/0x)) (Nagylaki,
1976; Barton & Bengtsson, 1986). However, such
clines will only be found at a limited number of loci: a
more general method for measuring barrier strength
would be to use the pattern of random fluctuations in
the frequencies of polymorphic marker alleles that are
inevitably generated by random drift. Such measure-
ments could be based on variation detected by enzyme
electrophoresis or by DNA sequencing; since the
effect of drift and dispersal on additive polygenic
characters is formally identical to that on allele
frequencies, morphological traits might in principle
also be used (Felsenstein, 1986).

The aim of this paper is to develop theoretical
predictions for the effect of a local barrier on fluc-
tuations produced by random sampling drift. The
results give the covariance between allele frequencies
at different spatial positions; however, these can be
interpreted in terms of the distribution of pairwise
coalescence times, or the pattern of identity by
descent.

An absolute barrier to gene flow is equivalent to
a range boundary. Wilkins (2004) reviews earlier
work on the effects of such absolute boundaries in
allele frequencies in two-dimensional populations,
and shows how this is related to the distribution
of coalescence times. Nagylaki (1988) and Nagylaki
& Barcilon (1988) have modelled the effects of a
partial barrier on geographic patterns in a linear, one-
dimensional population. However, most natural
populations are distributed over two spatial dimen-
sions; the effects of drift are then qualitatively dif-
ferent. In one dimension, drift produces smooth
fluctuations, so that allele frequencies at points a few
dispersal distances apart are strongly correlated.
In two dimensions, however, frequencies can differ
substantially even over short distances (Wright, 1943
Malecot, 1948 ; Kimura & Weiss, 1964).

Previous analyses of the effects of barriers to gene
flow have assumed that individuals move along a
line, in a one-dimensional habitat. However, the
effects of random drift are qualitatively different when
individuals can move in two dimensions, as iS more
usual in nature. In this paper, I extend previous
results to the two-dimensional case, and show that
because fluctuations are localized, barriers have
effects which can be detected more readily than in a
linear habitat. The existence of local fluctuations
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in two dimensions complicates the mathematical
formulation, since the diffusion approximation breaks
down over small scales (Nagylaki, 1978; Barton ef al.,
2002). In the first part of the paper, I ignore this
difficulty, and derive analytic results which apply
over all but the shortest scales. In the Appendix,
I derive exact results for this discrete model, and
show how these converge to the continuous diffusion
approximation.

2. Summary of results for a
one-dimensional population

Nagylaki (1988, eq. 14) gives a differential equation
for the effects of mutation, drift and dispersal on the
probability of identity F(x, x’). This is the chance that
two genes at positions x and x’ in a linear habitat are
identical in state; it increases as a result of inbreeding,
and decreases as a result of mutation to new alleles.
This quantity can also be interpreted as the stan-
dardized covariance between fluctuations in allele
frequency at x, x" (i.e. E[(p(x) —p)(p (x) —p)I/p(1 —P),
where E(p)=p is the expected allele frequency, as-
sumed to be everywhere the same). Nagylaki’s equa-
tion allows for smooth variations in dispersal and
density; he also gives formulae for the effects of dis-
continuous changes in density or dispersal, and of
local regions of reduced density or dispersal (i.e. of
local barriers). This paper only considers the simple
case where the density of diploid individuals (p) and
the dispersal rate (0?) are uniform everywhere apart
from a barrier at x=0. Then, for non-zero x, x’:

(1—=F)o(x—x")
2p '

2 2 2
OF o {GF PF ()

3= g o] 2

The terms on the right represent dispersal,
mutation and drift, respectively. ¢? is the variance in
distance between parent and offspring, and u is the
rate of mutation to new alleles, assuming the infinite
alleles model. The equation also describes the effects
of long-distance migration at a rate u from a popu-
lation with frequency p; it approximates balancing
selection towards an equilibrium at p, provided that
fluctuations are small enough that changes due to
selection are roughly linear in p(Ap~—u(p —p)). The
Dirac delta function 6(x —x’) represents the gener-
ation of uncorrelated fluctuations by random drift,
with variance inversely proportional to the density of
genes, 1/2p.

Equation (1a) describes changes in identity across a
plane with axes x, x’ (Fig. 1a); this represents the re-
lation between pairs of individuals that live in a linear,
one-dimensional habitat. The third term, representing
sampling drift, increases F on a ridge along the diag-
onal x=x". As a consequence, F is continuous across
this diagonal, but its gradient changes abruptly from
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Fig. 1. (a) The probability of identity, F(x, x’), against x, x’, for a population in a one-dimensional habitat.

Values are calculated from equation (2). F is standardized relative to its value far from the barrier, 1/(4po+\/2u ),

and distance is scaled relative to L=0/y/2u ). The barrier strength is twice the characteristic scale (B=2L=20/\/2u).
The height of the ridge along the diagonal (x =x’) represents the probability of identity of nearby genes; this is 50 %
greater near the barrier than far away, as can be seen from the increased height of the ridge towards the centre
(F(0,0)=(1+B/(2L+ B))/(4pa\/2u ) vs F(oco,00)=1/(4pa+\/2u ); equation 2a). The probability of identity falls abruptly
when the two genes are separated by the barrier; this is shown by the sharp drop in F across the axes x=0, x'=0.

For this example, the probability of identity of two nearby genes, just separated by the barrier, is one-third that of two
nearby genes on the same side (F(0—,0+)=(Q2L/(2L+ B))/(4po\/2u) vs F(0+,0+)=(1+B/2L+ B))/(4po\/2u);
equation 2b). (b) The analogous graph for a two-dimensional population. Values are calculated from equation (5).

Fis now standardized relative to the dimensionless parameter 1/(47wpo?); it is given for points opposite each other

(that is, y=y"). In a two-dimensional population, the continuous approximation breaks down for nearby genes; the value
near the diagonal (x=x’, y=)") is calculated with the aid of exact results for the stepping stone model, with m=0-4,
u=5x10"4
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+(1—=F)/(4pa®) to —(1—F)/(4po?). A barrier at zero
introduces discontinuities in F along the axes x=0
and x'=0, representing the decrease in identity
between genes that are separated by the barrier.
Although the gradient of F is continuous across the
barrier, F itself drops by B(0F/dx) at x=0, and by
B(0F/dx") at x'=0 (from eq. 54, Nagylaki, 1988).
Formally, these conditions give

F(x,0+)— F(x,0—) = Ba—F,

g0 ax'=0. (1b)

F(0+,x/)—F(0—,x’)=Ba—F

o at x=0. (1c)

Nagylaki & Barcilon (1988) give equilibrium
solutions to this equation for the case of an im-
penetrable barrier. The exact solution for arbitrary B
is a complicated integral (Nagylaki & Barcilon, 1988,
eqgs. 4.1, 4.4). However, when density and dispersal
are large enough that fluctuations are small
(4po\/2u>>1), the term (1—F) in (la) can be
approximated to 1, and the equation can be solved
explicitly:

For x, x" on the same side of the barrier (x<0, x'<0
or x>0, x'>0):

v B .
F(x,x)= {e—x—.x/L+2L—i_Be—|A+x|/L}.

(22)

1
4po\/2u

For x, x’ on different sides of the barrier (x <0, x'>0
or x>0, x'<0):

F(x,x")=

1 2L ,
b/, 2b
4po~/2u (2L +B> ¢ (20)

Here, L=0/\/2u is the characteristic scale, which
is determined by the balance between mutation and
dispersal (Slatkin, 1973). When mutation is rare
(u<<1), then L>>o. This separation between the
characteristic scale, L, and the scale of local dispersal,
o, plays a central role in the analysis.

3. The effect of a barrier in two dimensions

Nagylaki (1988) derived his differential equation
by writing a recurrence equation for F in a discrete
stepping stone model, with deme size N and a rate of
exchange m/2 between adjacent demes. (Nagylaki
et al., 1993, and Ayatia et al., 1999, deal directly with
the diffusion limit). If the distance between demes is &,
then this corresponds to a continuous model with
o?=me?, and density p= N/e in one dimension, N/&?
in two dimensions. In his one-dimensional model,
Nagylaki (1988) took the limit u—0, N—, keeping m
and N,/u fixed; this gives a continuous solution which
applies over all scales. Unfortunately, this procedure

https://doi.org/10.1017/5S0016672307009081 Published online by Cambridge University Press

142

fails in two dimensions. This is because the magnitude
of random fluctuations then depends on the dimen-
sionless parameter, neighbourhood size, which is the
product of density and dispersal: Nb=4mpo®=
4aNm. If m is kept fixed, and N—oo, then Nb—o, and
fluctuations vanish. In contrast, fluctuations in one
dimension depend on the dimensionless combination
4p0o+\/2u=4N+/2mu. This can remain of order one as
N—w, and u—0 (see Fleming & Su, 1974; Nagylaki,
1978; Barton et al., 2002).

In this section, I ignore these difficulties, and use the
obvious two-dimensional analogue of equation (1) to
obtain an analytic expression for F, which applies in
the limit where fluctuations are small (F<<1). The
Appendix shows that though this expression diverges
over small scales, it converges to the exact solution
of the stepping stone model over scales larger than
the deme spacing or dispersal range (e, o). Numerical
results show that accurate predictions can be made by
splicing together analytic results for small and large
scales.

In a two-dimensional population, the probability
of identity depends on the two coordinates of each of
the two genes: F(x,y,x’,»"). The two-dimensional
analogue of equation (1) is

OF o [PF FF _OPF OF
ot 2 |0xt Ox? 0y? 8);’2
s (PO =¥00—p) -
2p
F(x,y,0+,y)*F(x,y,0—,y)=Bgf: at x'=0
for all y, (3b)
F
F(0+,y,x’,y)—F(O—,y,x’,y)zB% at x=0
for all y. (3¢)

The barrier is assumed to run along the line x=0;
dispersal occurs at the same rate ¢® along the x- and
y-axes. In the following, we only consider the case
where the probability of identity between nearby
genes is small (F(x, y, x, y)<<1), and so neglect the
factor (1 —F) in (3a).

Equation (3) can be solved by taking the Fourier
transform along the y-axis. The method can be
understood by thinking of the way fluctuations
in allele frequency propagate across the barrier.
Fluctuations which do not vary in the y direction will
follow the one-dimensional solution given above.
Fluctuations which vary sinusoidally in the y direc-
tion will propagate across the barrier, in the x direc-
tion, according to equation (1); however, as well as
decaying at a rate u as a result of mutation, they will
also decay as a result of dispersal in the y direction.
The net rate of decay will be (u+02Y?/2), where Y
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is the spatial frequency along the y-axis. Thus, the
covariance of fluctuations with a given frequency can
be found simply by modifying equation (2) to include
the extra decay due to transverse dispersal. Random
drift produces uncorrelated fluctuations, and so gen-
erates all frequencies with equal intensity: it produces
‘white noise’. Summing over frequencies gives the
complete solution.

The Fourier transform of d%g/0y? is — Y?¢. (The
transform of g(y), denoted by g(Y), is defined in the
Appendix). Applying the transform to equation (3a)
with respect to y and y’, we have

OF o [aZF 8217“] o*

- _Z | Z= el 2\ I
=2 o T ox?l 2 (Y + YOF—2uF
N O(x—x"No(Y + Y')' @)
2p

This has the same form as equation (1), with 2u
being replaced by 2u+(0%/2)(Y*>+ Y'?). The solution
will be proportional to d(Y + Y’), which ensures that
F depends only the displacement along the y-axis,
(y—y"), and that we need only consider Y= —Y". The
solution for F is given by equation (2), with 2u
replaced by 2u+0?Y? and L replaced by L*=
0/+/2u+0® Y2, Taking the inverse transform gives:

For x, x’ on the same side of the barrier (x <0, x'<0
or x>0, x'>0):

. I eo-rgy
F(x,y,x,y)=/

—|x—=x'|/L*
e
8mpo/2u+ o? YZ{

B —|x+x'|/L*
Tyt } (52)

For x, x" on different sides of the barrier (x <0, x">0
or x>0, x'<0):

[ gy 2L*
F ! ! —
e, »,x%") / 87p0 /72‘“4_02),2(211*_}_3)
x g TR =YILT, (5b)

Though I can find no explicit form for these integrals,
they can easily be calculated numerically.

In the case of two coincident genes (x=x', y=)’),
the contribution of high-frequency components only
decreases with 1/4/14+ Y% = 1/7, so that the integral
diverges logarithmically. Thus, in two spatial dimen-
sions, most of the variation in allele frequencies is due
to short-lived, local fluctuations. Since the continuous
approximation does not describe the local structure of
the population, it breaks down when the genes are
very close together: F'is in fact finite. The problem is
to combine the local structure with the continuous
approximation, so as to get predictions valid over all
scales.
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In the stepping stone model, with no barrier, F is
given by an expression of the form

e el =y o —|x—x|/L h(Y)dY

F*(x,y,x,y)= /

8mpo/2u+0*Y?

—m/e

(6)

Since the population is confined to a discrete grid with
spacing ¢, fluctuations with frequency greater than
/e do not contribute. High-frequency fluctuations
are also damped by the term /(Y), which tends to 1 as
Ye tends to zero (see Appendix). When the separation
between the genes is large compared with the deme
spacing (r>>¢), F* converges to the continuous ap-
proximation, given by equation (5a) with B=0. The
probability of identity of nearby genes (and hence the
standardized variance of allele frequency) depends on
the local structure, and takes the form log(L/k)/
(47po?) (Slatkin & Barton, 1990; Barton et al., 2002).
Here, k is a small distance, of the same order as the
deme spacing, which summarizes the complications
of local structure. In the stepping stone model, k=
&/+/32 for small m, and decreases as m approaches its
maximum of 1/2. An exact expression for k can be
derived from Kimura & Weiss (1964).

The model with a barrier converges to the same
form for high frequencies, so that for genes on the
same side of the barrier, F, can be calculated as:

o0

el =Y
Flx,y,x,y)=F*x,y,x,y)+
(6, 0, X5, 0 ) =F*(x, 5, X', ) Smpo /o F ot T
B ,
—|x+x'|/L* dy. 7
X {2L*+Be } (72)

This formula breaks down when the two genes are
close together, and are close to the barrier. Then, the
barrier influences local fluctuations. A barrier with
strength B~ L appears impenetrable to localized fluc-
tuations, with a high spatial frequency Y>> 1/L, and
we have:

2L
FO+,y,04,y)=2F*0,0,0,0) - ———
VB —4I2
2L
X arccos (;) + C[m). (7b)

The function C[m] is calculated in the Appendix; it is
7t/2 for small m, ~—3 for m=0-4, and becomes large
and negative as m approaches 1/2.

4. Results for two dimensions

The analytic results apply when dispersal and popu-
lation density are high enough that F is small
(F<<1). This is the case of most interest, since
natural populations usually show low levels of spatial
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Fig. 2. The probability of identity between two nearby
genes as a function of distance, X=x/L, from a barrier of
strength B=2L. The lower line gives results for one
dimension, and the upper line for two dimensions. As
before, F'is scaled relative to the dimensionless parameter
1/(4po+/2u) in one dimension, and to 1/(4po?) in two
dimensions ; distance is scaled relative to L =0/\/2u. The
dots show exact calculations from the stepping stone
model, with m=0-4, u=10"9, L=447.

variation, at least for molecular markers (Fg7~/0-1,
say; Slatkin, 1987; Rieseberg et al., 2003). (Higher
values of Fgr may be found in species-wide surveys,
but such large-scale patterns are formed over very
wide long times. Thus, it is doubtful that there is an
equilibrium between drift, mutation and dispersal).
I will therefore present the analytic results scaled
relative to the dimensionless parameters 4po+/2u
in one dimension and Nb=4mpc® in two dimensions
(Note that for a given neighbourhood size (pro-
portional to pa, or Ny/m in one dimension, po® or Nm
in two), random drift causes a much larger variance in
allele frequencies in one dimension than in two, by a
factor ~1/,/u. This is because fluctuations are dissi-
pated less effectively by dispersal in one dimension
than in two. However, throughout this paper results
are scaled relative to the variance in the absence of the
barrier, which is inversely proportional to 4po+/2u in
one spatial dimension, and to 4mpc? in two).

The overall form of the results is summarized in
Fig. 1a and 1/ for one and two dimensions, respect-
ively. Fig. 2 shows how the probability of identity
between nearby genes (and hence the variance of
allele frequency fluctuations) increases near a barrier
(B=2L), where gene flow is less effective. The effect is
much more pronounced and more localized in two
dimensions than in one: for these parameters, identity
increases by 50 % near the barrier in both one and two
dimensions, but this increase occurs much closer to
the barrier in two dimensions than in one (compare
upper curve and lower curves). In this and the
following figures, the continuous approximation
(curves) agrees closely with exact results for the
stepping stone model (dots).
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Fig. 3. The probability of identity between nearby

genes on the same side of a barrier, and on different
sides, as a function of scaled barrier strength, B/L
Scaling is as in Figs 1, 2. (@) One-dimensional population.
(b) Two-dimensional population. Dots show exact results
for the stepping stone model with m=0-4, u=10"¢ and
hence L=447.

Fig. 3 shows how barrier strength influences the
probability of identity for two genes near the barrier,
and either on the same side (upper curves) or on dif-
ferent sides (lower curves). Fig. 3a show that in one
dimension, only barriers with strength comparable to
the characteristic scale, B ~ L=0/+/2u, have a sig-
nificant effect. In contrast, weak barriers have much
more influence in two dimensions (Fig. 35, left). In
Fig. 3b, the upper curve shows the approximation
of equation (7b) for the identity between nearby
genes that are both at the barrier. This applies only
for B~L; for weaker barriers, this approximation
underestimates the effect of the barrier.

We can understand the qualitative difference be-
tween one and two dimensions by developing simple
analytical formulae for the probability of identity
between nearby genes. First, consider one dimension.
From equation (2):

1
F =
(00,000 = 1o
for genes far from the barrier, (8a)
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1 2(L+B)
4po\/2u 2L+ B)
for genes near the barrier, on the same side, (8b)

FO+,0+)=

1 2L
4p0+/2u (2L+ B)

for genes near the barrier, on opposite sides. (8c)

FO0—,0+)=

A barrier much stronger than the characteristic scale
(B>> L) will increase the probability of identity near
the barrier by twofold (equation 8b).

In two dimensions, integration of equation (7a)
gives:

_log(L/x)

F(co,y,00,y)= 4rp0?

for genes far from the barrier, (9a)
F(0 0 =

(0+,,0+,) dmpot

2L 2L
x | 2log(L/Kx) — ———= arccos| — +Cm>
for genes on the same side, (9b)
1 2L 2L

FO—,y,0+,y)= Inpot VB4l arccos (§>

for genes just separated by the barrier. (9¢)

When B<2L, arccos(2L/B) is replaced by arccosh
(2L/B), and v B2 —4L? by V/4L2— B2. As in the one-
dimensional case, the probability of identity approxi-
mately doubles near an impenetrable barrier: in the
limit of large B, the second term in equation (9b)
becomes negligible, and C[m] will be small relative
to the first term when mutation rates are low and
m is not close to 0-5. (Note that in two dimensions,
m=0-5 implies that a// individuals migrate in each
generation —a pathological case.) However, much
weaker barriers can cause a substantial increase.
When mutation is weak, so that L >> k, the first term
in equation (9b) is much larger than the second, even
for small B, and so F almost doubles. This can be
understood by seeing it as a mixture of contributions
from different spatial frequencies (Y). The effect of a
barrier on the component with frequency Y depends
on its strength relative to the ‘effective scale’,
L*=L/+/1+L*Y?, which is small for high frequen-
cies. Thus, even a weak barrier can prevent the
propagation of high-frequency components. Since
these dominate in two dimensions, barriers much
weaker than the characteristic scale can have signifi-
cant effects.

Fig. 4 shows the (scaled) probability of identity
between a gene adjacent to the barrier, and a gene at
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Fig. 4. (a) The probability of identity between a gene just
next to the barrier, and a gene at X'=x//, for a barrier of
strength 2L for two dimensions. The upper curve is for
genes at the same transverse position (y =y’); the lower
curves are for y'—y=0-01L, 0-1L. Scaling and simulation
results are as in previous figures. (b) Detail for genes near
the barrier. The upper curve shows the continuum
approximation (equation 2a). This is accurate even for
adjacent demes (upper dot, k=1), but diverges when the
genes coincide (i.e. both next to the barrier; k=0).

x, in two dimensions; there is a barrier of strength
B=2L at x=0. The upper curve is for points opposite
each other (y=y"), and the lower curves are for dis-
placements Ay=0-01L. 0-1L F falls away rapidly with
distance, reflecting the dominant contribution of local
fluctuations. As in Figs 2 and 3, there is good agree-
ment with the stepping stone model.

The basic solution of equation (2) has the interest-
ing property that the decrease in identity between
genes on either side of the barrier is equal to the
increase in identity between genes on the same side of
the barrier, provided that |x'— x| equals |x + x'| in the
two cases. This is reflected in the symmetry of the
two curves in Fig. 3a and 3b. Another interesting
symmetry is that the identity between two genes
separated by a barrier is independent of where the
barrier lies on the axis between them. In two dimen-
sions, there is only a weak dependence on the angle of
the barrier (Fig. 5).
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Fig. 5. The identity between two genes separated by a
barrier is independent of the location of the barrier, and
depends only weakly on the orientation of the barrier. The
identity does not depend on where the barrier lies along
the axis connecting the genes (i.e. in the vertical direction
on (a). (b) In two dimensions, the identity increases
somewhat with the angle of the barrier (6 in (@)); this is
because when the barrier is close to one or other gene,
local fluctuations are amplified. The barrier strength is
B=2L; the three curves are for a separation 0-2L, 0-5L,
L (top to bottom).

5. Discussion

This paper presents simple formulae for the effect of a
barrier on random allele frequency fluctuations in
one- and two-dimensional populations. A key result is
that the effect of a barrier differs qualitatively between
one and two dimensions. In one dimension, fluc-
tuations are correlated over the characteristic scale,
L=0/y2u, and are only significantly affected by
strong barriers (B~L). In contrast, local fluctuations
dominate spatial patterns in two dimensions and can
be impeded by relatively weak barriers (Bxo). This
makes it possible to use spatial patterns of allele fre-
quencies to detect weak barriers in two-dimensional
populations. Moreover, because the effect of a barrier
depends primarily on short-lived, localized fluctu-
ations, inferences are more robust to historical effects
and to weak selection than would be the case in a
linear habitat.

Since Wright (1931) first emphasized the import-
ance of population structure in evolution, much effort
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has been expended in measurements of spatial pat-
terns of genetic variation (Slatkin, 1987). Quantitative
analysis of such data has mainly consisted of calcu-
lation of some measure of allele frequency variation,
such as Fgr or Slatkin’s (1985) p,, the frequency of
private alleles. This is then used to infer the number
of migrants between demes (Nm), or equivalently,
the, neighbourhood size in a continuous population
(Nb=4mpo*). However, spatial patterns contain
much more information about population structure
than this: in particular, the scale over which re-
lationships decline (Wright, 1943; Malecot, 1948;
Epperson, 2003), and the change in relationship across
a localized barrier to gene flow.

Barton & Gale (1993, fig. 9) show how the pattern
of allele frequencies across a chromosomal hybrid
zone in the alpine grasshopper, Podisma pedestris,
gives an estimate of its strength as a barrier, which
agrees with independent estimates based on the chro-
mosomal cline. A maximum-likelihood algorithm for
estimating barrier strength is implemented within
the package. Analyse (http://www.biology.ed.ac.uk/
research/institutes/evolution/software/). Because a
barrier mainly affects local fluctuations in two
dimensions, its effect equilibrates rapidly. Therefore,
allele frequency fluctuations should give a robust
estimate of the rate of gene flow in the immediate past,
which will not be sensitive to longer-term changes in
population structure. This example shows that it is
feasible to use readily collected data on molecular
polymorphism to make quantitative estimates of the
rate of gene flow across physical or genetic barriers.
As a rough guide, samples that are large enough to
comfortably detect significant variation in allele fre-
quency (as measured by Fg7) should also be able to
detect the reduced correlation in allele frequency that
is caused by a localized barrier. Since the focus is
on recent ancestry, samples should be spread over a
limited region, spanning the barrier and covering
some tens of dispersal ranges.

This paper has followed the classical treatment of
genetic variation in structured populations, by work-
ing in terms of the identity in allelic state. However, if
this identity is regarded as a function of the mutation
rate, then it gives a generating function for the distri-
bution of pairwise coalescence times (Slatkin, 1991;
Barton & Wilson, 1995). Charlesworth et al. (2003)
and Wilkins (2004) use this relation to derive the
long-term distribution of coalescence times from
Maruyama’s (1972) results. Wilkins (2004) gives
analytical approximations for the distribution of co-
alescence times in finite two-dimensional populations,
and shows how these relate to classical dimensional
results on identity in state and allele frequency
fluctuations. This paper treats an infinite population,
in which the mean coalescence time is infinite.
Therefore, it is not helpful to derive the moments of
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the distribution of coalescence time by differentiating
the generating function near u=0. It is, however,
possible to find the distribution of coalescence times
by numerically inverting the generating function.

It would be interesting to investigate the effects of
barriers to gene flow on genealogical structure in more
detail. However, it seems unlikely that genealogies at
single loci (for example, mtDNA) would give much
useful information. This is because in two dimensions,
genealogical structure depends on the deep history of
the population, and is in any case highly variable
(Irwin, 2002 ; Wilkins, 2004). In contrast, the effects of
a localized barrier to gene flow in a two-dimensional
population are mainly on recent ancestry, and so can
best be detected from variations in the frequency of
multiple marker alleles.

Appendix. Convergence of the discrete
and continuous solutions

A continuous approximation for two dimensions was
derived by splitting fluctuations into a spectrum of
frequencies along the y-axis. Fluctuations of different
frequencies are uncorrelated, and have a covariance
F(x,Y,x,Y) of the same form as the one-
dimensional solution for F (equation 4). In this
Appendix, I use the same method to derive the exact
solution for Fin a discrete stepping stone model, and
show that it converges to the continuous approxi-
mation over all but very small scales.

I begin by deriving F in the absence of a barrier;
this is an alternative derivation of the classical results
of Malecot (1948) and Kimura & Weiss (1964). First,
consider a linear chain of demes, spaced ¢ apart. After
migration and mutation, the probability of identity
between demes j and ;' is

F/T =(1 —ﬂ)z ((”1/2)2[F(j+1)(/’+1) +F(j+1)(/'—1)
+ Fj_y 1+ Fi—ng—vl+ m/2)(1 —m)
X [Fisny + Fy—ny + Fig+n + Fig-vl

+(1—m)*Fy). (Ala)

After random sampling of 2NV genes, F must equal its
original equilibrium value:

_0y(1—F)

Fy ON

+Fp. (Alb)

Subtracting F;;/2N from (A1b), and multiplying by
(2N/(2N —1)) gives

(1-Fpdy

Vi (2N— 1) + z

(Alc)

The solution to these equations has the form

Fy=1—F)A A7+ 4,007 (= 1<1,2%<1).
(A2)
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A1, Ay are the eigenvalues of the recurrence equation
(Ala):

where z; = % (ﬁ —(1 —m)) = % (114_ %1)

Ao=zs++/zE—1

1/ —1 1 1
where z, = p” <—1 — —(1 m)) =5 <,12+ 1_2)
(A3b)
When u<<1, 4i=1—2u/m+0), L=2v1—m
—(2—m)]/m+O(u). The coefficients A4,, A, are set by

considering the equations for F;.,, and Fj. This
leads to

(1—w)

Ay = ,
U 20N— ) uu+2m(1—p)
4 (I=p)
2 — B
22N —D/T+2(1—m)(1—p)
A A%
/. 1+A1+A2 .

As u tends to zero Fj tends to exp(—|x—x'|/L)/
(14+2Q2N—1)\2mu), where L=¢e+/m/2u, and x is
defined as je. This tends to the continuous approxi-
mation of equation (2a) (with B=0) as N becomes
large, and hence Fj; small. (Then, the terms in 4, decay
more rapidly than those in A,, and in any case,
A/ Ay ~ Ju. V=1 tends to exp(—|x—x'|/L), where
L=g\/m/2u, and A, tends to 1/4N=/2mu.) These
results are consistent with Kimura & Weiss (1964).

Now, consider the solution along the x-axis for
fluctuations of frequency Y. In continuous space, the
Fourier transform of a function g(y) is defined as

1 [o.¢]

= / s dy,

— 00

(A5)

where Y is the spatial frequency along the y-axis. The
definition of the discrete transform is the same, but
with the integral [ f(y)dy being replaced by ) ¢fk, and
deme, k being at position y=ke. g(Y) is defined for
—mle<Y<uam/e: a discrete grid cannot support high
frequencies, with |Y|>u/e.

The recursion for F;(Y, Y') is

Ff=(1—w)’ x ((m/2'[Fys1¢+1 + Fyrng—n
+Ej g e+ Fong -] +(m/2)
x (1—m—2msin® (e Y/2)[Fy 1y +Fy_1y
+ Fyj 0y + Fig—pl+ (1 —m—2msin® (e Y/2))*Fy ),
(A6a)
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(1 — Ekjk)séljfé( Y+ Y’)
2N—1)

Fy= +E. (A6b)

Since the solution must be proportional to
o(Y+7Y'), Y'is replaced by Y in (A6a). Equations
(A6) have the same form as equation (Al): m
is replaced by m/(1—2m sin*(¢Y/2)), and (1—u) by
(I —p)(1 —2m sin*(eY/2)). The exact solution to the
two-dimensional case is therefore given by making
these replacements in equations (A3), (A4), and
taking the inverse Fourier transform. This leads to
equation (7a).

As in the one-dimensional case, the Fourier
transform given by these replacements converges to
the continuous approximation (the integrand of (5)
with B=0) as u tends to zero, and N becomes large.
However, for given u, the exact and approximate
transforms diverge at high frequencies: the discrep-
ancy is of order 1/Ye for large Y. In two dimensions,
these high frequencies do not affect F for genes sep-
arated by distances r > > ¢, but do make a substantial
contribution to F for nearby genes: for coincident
genes, the continuous approximation diverges.

In the presence of a barrier, the one-dimensional
solution takes a form analogous to equation (2). The
barrier is between demes 0 and 1, and reduces gene
flow by a factor y. This is equivalent to a barrier of
strength B=(1/y —1)e (Nagylaki, 1976). Because Fj
now increases near the barrier, rather than being
uniform, an explicit solution for small Nm and large F
would be complex. (However, one could set bounds
on the solution by using a uniform factor (1 — Fy;,) or
(1 —=Fpax), Fmin and Fp., being the minimum and
maximum of Fj.) For F<<1:

Fyp=A M7+ 4,007 4 (4, — DA

+(Ay— DA (5>0,7>0), (A7a)
Fy= A7 4 4,071 (4, — DA
+(Ay— DAY (<0, j'<0), (A7b)
F}]' = Dll]{{'*j/‘ + D2112j7j/|
(7<0,j>0 or j>0,j'<0). (A7c)

The terms |j+/|—1 in (A7a) ensure that Fyo=Fy;. A4,
and A, have the same values as before, while D;, D,
are determined by the barrier:

_ Aie(1+1;)
" e(14+A)+B(1—1)

(A8)

Consider the limit where u tends to zero and B/L=
(B/e)y/2u/m remains finite. Then, (1—A4;) tends
to \/2u/m, while (1 —2,) remains between 1 and 1-17
for m between 0 and 0-5 (equation A3). Then, terms
involving A, become negligible relative to those
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involving 4,, and the solution converges to that of
equation (2).

The solution extends to two dimensions in the same
way as in the uniform case. The solution for F,—,—( YY)
is obtained by replacing m by m/(1 —2m sin*(eY/2)),
and (1—u) by (1—w)(1—2msin*(eY/2)) in Eqs A3,
A4, A7, A8. Over low frequencies (Y <<1/¢e), 2m
sin*(e Y/2)~me*Y?/2 =u(Y/L)?. Hence, F converges to
the continuous approximation given by the integrand
of equation (5a) for Y<<l1/e. As Y approaches
its upper limit of 7/, the exact value of F falls below
the continuous approximation, ensuring that Fj
remains finite.

Finally, we must find the function, C[m], which
describes the effects of fluctuations near a barrier of
strength B~L. Recall that F* is the exact solution
with no barrier. To justify equation (7b), we must
show that the difference (F—2F*) converges to the
continuous approximation over all scales with a suit-
able choice of the constant C. This is assured, since
the Fourier transforms F and F* both decrease as 1/Y
for large Y. We can therefore find some a such that
(F—aF*) decreases faster than 1/Y (in this case, as
1/Y?), so that the high-frequency region makes a
negligible contribution. This allows us to replace
(F—aF*) by the continuous approximation, and cal-
culate the residual effect of local population structure
as a function C[m] that is independent of u, B. Some
tedious integration gives

2(1_2m)H m ;arcsin I=m ;
1—m 1—m m

m? 3m % m?
<1—m>2>‘m <‘1—2m>} (A9)

where K, IT are elliptic integrals.

Clm] = g +Re
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