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SPECTRALLY NEGATIVE LÉVY PROCESSES
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RUNNING SUPREMUM
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Abstract

In the setting of the classical Cramér–Lundberg risk insurance model, Albrecher
and Hipp (2007) introduced the idea of tax payments. More precisely, if X =
{Xt : t ≥ 0} represents the Cramér–Lundberg process and, for all t ≥ 0, St := sups≤t Xs ,
then Albrecher and Hipp studied Xt − γ St , t ≥ 0, where γ ∈ (0, 1) is the rate at
which tax is paid. This model has been generalised to the setting that X is a spectrally
negative Lévy process by Albrecher, Renaud and Zhou (2008). Finally, Kyprianou and
Zhou (2009) extended this model further by allowing the rate at which tax is paid with
respect to the process S = {St : t ≥ 0} to vary as a function of the current value of S.
Specifically, they considered the so-called perturbed spectrally negative Lévy process,
Ut := Xt −

∫
(0,t] γ (Su) dSu, t ≥ 0, under the assumptions that γ : [0,∞) → [0, 1) and∫ ∞

0 (1 − γ (s)) ds = ∞. In this article we show that a number of the identities in
Kyprianou and Zhou (2009) are still valid for a much more general class of rate functions
γ : [0,∞) → R. Moreover, we show that, with appropriately chosen γ , the perturbed
process can pass continuously (i.e. creep) into (−∞, 0) in two different ways.
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1. Introduction

Let X = {Xt : t ≥ 0} be a spectrally negative Lévy process defined on a filtered probability
space (�,F ,F = {Ft }t≥0,P) satisfying the natural conditions (cf. Section 1.3 of [5, p. 39]);
that is to say, a one-dimensional process which has stationary and independent increments, and
càdlàg paths with only negative discontinuities, but which does not have monotone paths. For
x ∈ R, denote by Px the probability measure under which X starts at x and write P0 = P.
It is well known that a spectrally negative Lévy process X is characterised by its Lévy triplet
(b, σ,�), where σ ≥ 0, b ∈ R, and � is a measure on (−∞, 0) satisfying the condition∫
(−∞,0)(1 ∧ x2)�(dx) < ∞. By the Lévy–Itô decomposition, X may be represented in the

form
Xt = σBt − bt +X

(1)
t +X

(2)
t ,

where {Bt : t ≥ 0} is a standard Brownian motion, {X(1)t : t ≥ 0} is a compound Poisson process
with discontinuities of magnitude bigger than or equal to 1, and {X(2)t : t ≥ 0} is a square-
integrable martingale with discontinuities of magnitude strictly smaller than 1, with the three
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processes mutually independent. In particular, ifX is of bounded variation, the decomposition
reduces to

Xt = dt − ηt , (1.1)

where d > 0 and {ηt : t ≥ 0} is a driftless subordinator. Furthermore, let

ψ(θ) := log E[eθX1 ], θ ≥ 0,

be the Laplace exponent ofXwhich is known to be a strictly convex and infinitely differentiable
function on [0,∞). The asymptotic behavior of X is characterised by ψ ′(0+), so that X drifts
to ±∞ or oscillates according to whether ±ψ ′(0+) > 0 or, respectively, ψ ′(0+) = 0.

Denote by S = {St : t ≥ 0} the running supremum, that is, St := sups≤t Xs for each t ≥ 0.
We are interested in perturbing X by some functional of its running supremum S. Motivated
by the results in [7], our primary object of study is given by U = {Ut : t ≥ 0}, where

Ut := Xt −
∫
(0,t]

γ (Su) dSu, t ≥ 0,

for some locally integrable function γ : [0,∞) → R. Such processes have appeared in the
context of insurance risk models with tax, where X plays the role of the so-called surplus
process (the wealth of an insurance company) and γ characterises the rate at which tax is paid
with respect to the running maximum. One may also think of the process U as a spectrally
negative Lévy process perturbed by a functional of its maximum in the spirit of [9]. In the
special case that γ : [0,∞) → [0, 1) and

∫ ∞
0 (1 − γ (s)) ds = ∞, our process U agrees with

the process studied in [7]. Under the even stronger assumption that γ is a constant in (0, 1), the
resulting process has been considered in [1] and [2]. In the simple case that γ = 0 we are back
to the process X, the so-called Lévy insurance risk process in the context of ruin theory. The
main objective of this article is to show that all of the identities in [7] carry over to the setting
where γ belongs to the general class of locally integrable functions. Moreover, we will show
that, for some choices of γ , it is possible for the process U to enter (−∞, 0) continuously in
two different ways.

The key observation which, with the help of excursion theory, leads to all our results is that
we may write U in the form

Ut = At − (St −Xt), t ≥ 0, (1.2)

where the process A = {At : t ≥ 0} is given by

At := St −
∫
(0,t]

γ (Su) dSu, t ≥ 0.

Assuming that X0 = x, we may write At = γ̄ (St ), where

γ̄ (s) := s −
∫ s

x

γ (y) dy, s ≥ x.

Note that A is a process of bounded variation and accordingly we may think of dA as a signed
measure whose support, say A, is contained in the support of the measure dS. Suppose now
that B consists of the countable union of open intervals of time which correspond to the
epochs that the process S − X spends away from 0. Then A ∩ B = ∅. As a consequence,
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Figure 1: A symbolic realisation of the trajectory of U up to the moment it first enters (−∞, 0), with
its corresponding trace in the (x, s)-plane. The dashed u-shaped curves are schematic representations of

excursions of X away from its maximum or, put differently, excursions of U away from A.

we may interpret (1.2) as a path decomposition in which excursions of X from its maximum
(equivalently, excursions of S −X away from 0) are ‘hung’ off the trajectory of A between its
increment times (see Figure 1 for a symbolic representation). A more detailed description of
this excursion-theoretic decomposition will follow in due course.

We conclude this section by introducing the so-called scale functions (cf. [6] and/or [8])
which will henceforth play an important role and are defined as follows. For each given q ≥ 0,
we haveW(q)(x) = 0 whenx < 0, and otherwise on [0,∞),W(q) is the unique right-continuous
function whose Laplace transform is∫ ∞

0
e−θxW(q)(x) dx = 1

ψ(θ)− q
, θ > �(q),

where �(q) is the largest solution to the equation ψ(θ) = q (there are at most two). For
notational convenience, we will write W(0) = W . It is shown in Lemma 2.3 of [6] that, for
any q ≥ 0, W(q) is absolutely continuous with respect to the Lebesgue measure and strictly
increasing. If X is of unbounded variation, it is additionally known that W(q) is continuously
differentiable on (0,∞) (cf. Lemma 2.4 of [6]). In either case we will denote by W(q)′ the
associated density whenever it appears in a Lebesgue integral. Finally, the behavior of W(q)

and its right derivative, written W(q)′
+ , at 0 are known. Specifically, for all q ≥ 0, we have

W(q)(0+) =
{
d−1 if X is of bounded variation,

0 if X is of unbounded variation,
(1.3)

and

W
(q)′
+ (0+) =

⎧⎪⎨
⎪⎩
q +�(−∞, 0)

d2 if σ = 0 and �(−∞, 0) < ∞,
2

σ 2 if σ > 0 or �(−∞, 0) = ∞,

where we understand the second case to be +∞ when σ = 0 (cf. Lemmas 3.1 and 3.2 of [6]).

2. Results

Let us introduce

σa := inf{t > 0 : St = a} and T −
0 := inf{t > 0 : Ut < 0},

where we use the usual convention that inf ∅ := ∞.
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Theorem 2.1. (One-sided and two-sided exit formulae.) Let x > 0 be given, and define
a∗(x) := inf{s ∈ [x,∞) : γ̄ (s) < 0} ∈ (x,∞], the maximal value S can possibly attain up to
time T −

0 . Then, for any q ≥ 0 and x ≤ a < a∗(x), the following statements hold.

(a)

Ex[e−qσa 1{σa<T −
0 }] = exp

(
−

∫ a

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

)
. (2.1)

(b)

Ex[e−qT −
0 1{T −

0 <σa}] =
∫ a

x

exp

(
−

∫ t

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

)
f (γ̄ (t)) dt,

where

f (z) = Z(q)(z)W(q)′(z)
W(q)(z)

− qW(q)(z)

and Z(q)(z) := 1 + q
∫ z

0 W
(q)(y) dy.

(c) Suppose that a∗(x) = ∞. Then

Ex[e−qT −
0 1{T −

0 <∞}] =
∫ ∞

x

exp

(
−

∫ t

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

)
f (γ̄ (t)) dt. (2.2)

In particular,

Px[T −
0 < ∞] = 1 − exp

(
−

∫ ∞

x

W ′(γ̄ (s))
W(γ̄ (s))

ds

)
. (2.3)

Remark 2.1. If we assume that γ : [0,∞) → [0, 1) with
∫ ∞

0 (1 − γ (s)) ds = ∞, then γ̄ is
continuous, strictly increasing, and has a well-defined inverse on [x,∞) which we will denote
by γ̄−1. Then, for a ≥ x, if we write T +

a := inf{t > 0 : Ut > a} = σγ̄−1(a), Theorem 2.1 reads

Ex[e−qT +
a 1{T +

a <T
−
0 }] = exp

(
−

∫ γ̄−1(a)

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

)

= exp

(
−

∫ a

x

W(q)′(y)
W(q)(y)(1 − γ (γ̄−1(y)))

dy

)
, (2.4)

which agrees with Theorem 1.1 of [7]. Similarly, if γ = 0 then Ut = Xt and τ+
a :=

inf{t > 0 : Xt > a}, and Theorem 2.1 reduces to

Ex[e−qτ+
a 1{τ+

a <T
−
0 }] = exp

(
−

∫ a

x

W(q)′(s)
W(q)(s)

ds

)
= W(q)(x)

W(q)(a)

and

Ex[e−qT −
0 1{T −

0 <τ
+
a }] =

∫ a

x

W(q)(x)

W(q)(t)
f (t) dt

= −W(q)(x)

∫ a

x

(
Z(q)

W(q)

)′
(t) dt

= Z(q)(x)−W(q)(x)
Z(q)(a)

W(q)(a)
,

where Z(q)(x) := 1 + q
∫ x

0 W
(q)(y) dy. This agrees with Equations (8.8) and (8.9) of [8].

Also, by a straightforward calculation we see that (2.2) and (2.3) reduce to Equations (8.6) and
(8.7) of [8].
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Remark 2.2. Fix x > 0, and suppose that γ (s) ≡ γ ∈ (1,∞). It follows that γ̄ (s) =
s(1 − γ )+ γ x and a∗(x) = γ x/(γ − 1). Then, for q ≥ 0 and x ≤ a < a∗(x), the expression
in (2.1) simplifies to

Ex[e−qσa 1{σa<T −
0 }] = exp

(
1

1 − γ

∫ x

a(1−γ )+γ x
W(q)′(u)
W(q)(u)

du

)

=
(
W(q)(a(1 − γ )+ γ x)

W(q)(x)

)1/(γ−1)

.

Moreover, if γ (s) ≡ γ ∈ (0, 1), we may recover the first formula in Remark 1.1 of [7] by a
similar computation or an application of (2.4).

Remark 2.3. Let x > 0 be given, and assume that X drifts to +∞ or, equivalently, that
ψ ′(0+) > 0. Moreover, suppose that γ (s) ≡ γ ∈ (0, 1) and, hence, γ̄ (s) = s(1 − γ ) + γ x.
Then, using the fact that lims→∞W(s) = 1/ψ ′(0+) (cf. Lemma 3.3 of [6]), it follows from (2.3)
that

Px[T −
0 < ∞] = 1 − exp

(
− 1

1 − γ

∫ ∞

x

W ′(s)
W(s)

ds

)
= 1 − (ψ ′(0+)W(x))1/(1−γ ).

This is analogous to Equation (8.7) of [8].

The proof of Theorem 2.1 makes heavy use of excursion theory for the process S −X. We
refer the reader to [4, Chapters 6 and 7] for background reading. We will spend a moment
setting up some necessary notation which will be used throughout the remainder of the paper.
The process Lt := St − x serves as a local time at 0 for the Markov process S − X under Px .
Write L−1 := {L−1

t : t ≥ 0} for the right-continuous inverse of L. The Poisson point process
of excursion indexed by the local time will be denoted by {(t, εt ) : t ≥ 0}, where

εt := {εt (s) := X
L−1
t

−X
L−1
t− +s : 0 < s < L−1

t − L−1
t− }

whenever L−1
t − L−1

t− > 0. Accordingly, we refer to a generic excursion as ε(·) (or just ε
for short) belonging to the space E of canonical excursions. The intensity measure of the
process {(t, εt ) : t ≥ 0} is given by dt × dn, where n is a measure on the space of excursions
(the excursion measure). A functional of the canonical excursion which will be of interest is
ε̄ := sups<ζ ε(s), where ζ(ε) = ζ is the length of an excursion. A useful formula for this
functional that we will make use of is (cf. [8, Equation (8.18)])

n(ε̄ > x) = W ′(x)
W(x)

,

provided that x is not a discontinuity point in the derivative ofW , which is only a concern when
X is of bounded variation, in which case there are at most countably many such discontinuities.
Another functional of ε that we will also use is ρk := inf{s > 0 : ε(s) > k}, the first passage
time above k of the canonical excursion ε. Note that, for a ≥ x, it follows that, under Px , the
event that St = a coincides with the event that the process St climbs from x to a for the first
time. Consequently, L−1

a−x = τ+
a .

Proof of Theorem 2.1. (a) For a ≥ x, we have {σa < T −
0 } = {ε̄s ≤ γ̄ (x + s) for all

0 ≤ s ≤ a − x}. Recall that, for each q ≥ 0, we have the exponential change of measure

dP�(q)

dP

∣∣∣∣{Xs : s≤t} = e�(q)Xt−qt , t ≥ 0.
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Then, recalling that, for each t ≥ 0, L−1
t is a stopping time, we have, for x > 0,

Ex[e−qσa 1{σa<T −
0 }] = Ex[e−qL−1

a−x 1{ε̄s≤γ̄ (x+s) for all 0≤s≤a−x}]
= e−(a−x)�(q) E�(q)x [1{ε̄s≤γ̄ (x+s) for all 0≤s≤a−x}]
= e−(a−x)�(q) exp

(
−

∫ a−x

0
n�(q)(ε̄ > γ̄ (x + s) ds)

)

= exp

(
−

∫ a−x

0

W(q)′(γ̄ (x + s))

W(q)(γ̄ (x + s))
ds

)
. (2.5)

Here, n�(q) is the excursion measure of S −X under P�(q), which is known to satisfy

n�(q)(ε̄ > x) = W(q)′(x)
W(q)(x)

−�(q);

see, for example, Formula (2.7) of [7]. Now changing variables in (2.5) gives (2.1).
(b) An application of the compensation formula yields

Ex[e−qT −
0 1{T −

0 <σa}]

= Ex

[ ∑
0<t≤a−x

e−qL−1
t− −qργ̄ (t+x)(εt ) 1{ε̄s≤γ̄ (s+x) for all s<t} 1{ε̄t>γ̄ (t+x)}

]

= Ex

[∫ a−x

0
e−qL−1

t 1{ε̄s≤γ̄ (s+x) for all s<t}
∫

E
e−qργ̄ (t+x)(ε) 1{ε̄>γ̄ (t+x)} n(dε) dt

]

= Ex

[∫ a−x

0
e−qL−1

t 1{ε̄s≤γ̄ (s+x) for all s<t} f (γ̄ (t + x)) dt

]

=
∫ a−x

0
e−t�(q) E�(q)x [1{ε̄s≤γ̄ (s+x) for all s<t}]f (γ̄ (t + x)) dt

=
∫ a−x

0
e−t�(q) exp

(
−

∫ t

0
n�(q)(ε̄ > γ̄ (s + x)) ds

)
f (γ̄ (t + x)) dt

=
∫ a−x

0
exp

(
−

∫ t

0

W(q)′(γ̄ (s + x))

W(q)(γ̄ (s + x))
ds

)
f (γ̄ (t + x)) dt,

where in the first equality the time index runs over local times and the sum is the usual shorthand
for integration with respect to the Poisson counting measure of excursions, and

f (z) :=
∫

E
e−qρz(ε) 1{ε̄>z} n(dε) = Z(q)(z)W(q)′(z)

W(q)(z)
− qW(q)(z)

is an expression taken from Theorem 1 (Equation (18)) of [3]. The proof is completed by a
straightforward change of variables.

(c) The first part follows by letting a → ∞ in (b), and the second part follows by looking at
the complement and then using a similar argument as in (a).

3. Creeping

In principle, there are two ways for U to enter (−∞, 0) continuously; either it goes below 0
by creeping during an excursion away from the curve γ̄ or it creeps over 0 whilst moving along
the curve γ̄ at the moment that γ̄ = 0 (see Figure 2). This leads to the next definition.
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Figure 2: Two different ways for U to creep into (−∞, 0).

Definition 3.1. We say that the process U exhibits type-I creeping under Px if Px(UT −
0

= 0;
σa∗(x) > T −

0 ) > 0. We say that the process U exhibits type-II creeping under Px if a∗(x) < ∞
and Px[σa∗(x) = T −

0 ] > 0. Note that necessarily UT −
0

= 0 on the event {σa∗(x) = T −
0 }.

In Section 4 we will make some remarks regarding type-I creeping. However, for the present,
let us dwell on type-II creeping, for which there exists an integral test.

Corollary 3.1. Fix x > 0, and recall that a∗(x) = inf{s ∈ [x,∞) : γ̄ (s) < 0}. Assume that
a∗(x) < ∞. We have, for all q ≥ 0,

Ex[e−qT −
0 1{σa∗(x)=T −

0 }] = exp

(
−

∫ a∗(x)

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

)
.

If X is a compound Poisson process then the time X spends at the maximum has strictly
positive Lebesgue measure and, hence, we would intuitively expect that type-II creeping occurs.
In fact, under some assumptions on the behavior of γ̄ , it turns out that only spectrally negative
Lévy processes of bounded variation possess the type-II creeping property.

Corollary 3.2. Fix x > 0, and assume that γ : [0,∞) → (1,∞) is continuous. Furthermore,
suppose that a∗(x) < ∞. Then X exhibits type-II creeping under Px if and only if X is of
bounded variation.

Proof. First observe that the assumptions on γ imply that γ̄ : (x, a∗(x)) → (0, x) is a
continuously differentiable bijection. Furthermore, letC1 := min0≤s≤a∗(x) |1 − γ (s)| > 0 and
C2 := max0≤s≤a∗(x) |1 − γ (s)| < ∞.

If X is of bounded variation, and, hence, takes the form (1.1), we have, by a change of
variables and (1.3), ∫ a∗(x)

x

W ′(γ̄ (s))
W(γ̄ (s))

ds =
∫ x

0

W ′(t)
W(t)|1 − γ (γ̄−1(t))| dt

≤ 1

C1

∫ x

0
log(W)′(t) dt

= 1

C1

[
log(W(x))− log

(
1

d

)]
,

and, hence, type-II creeping follows. On the other hand, if X is of unbounded variation, it
follows similarly that∫ a∗(x)

x

W ′(γ̄ (s))
W(γ̄ (s))

ds ≥ 1

C2

∫ x

0
log(W)′(t) dt ≥ 1

C2
[log(W(x))− log(W(0+))].

The last expression equals ∞ sinceW(0+) = 0 (see (1.3)) and, consequently, type-II creeping
cannot occur.
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We conclude this section with an example of type-II creeping for a processX which includes
a Gaussian component σ > 0 in the case that γ̄ has infinite gradient when hitting 0. This shows
that relaxing the conditions on γ can lead to type-II creeping in the unbounded variation case.
To this end, we need some auxiliary quantities. Let a > 0 be fixed, and define, for y ∈ [0, a],

f (y) := y − (a − y)1/2.

Clearly, f (0) < 0 and f (a) > 0. Since f is strictly increasing on [0, a] and continuous, by the
intermediate value theorem, there exists a unique x∗ ∈ (0, a) such that f (x∗) = 0. This x∗ will
now serve as a starting point for X. Additionally, let γ ∈ (1,∞) and define, for s ∈ [0,∞),

γ (s) :=
{

1 + 1
2 (a − s)−1/2, s ≤ a,

γ, s > a.

Hence, using the definition of x∗, we see that

γ̄ (s) =
{
(a − s)1/2, s ≤ a,

(1 − γ )(s − a), s > a.

In particular, a∗(x∗) = a. Changing variables and using the fact that σ > 0 (which implies
that W ∈ C1(0,∞) and limu↓0 uW(u)

−1 = σ 2/2) yields∫ a

x∗
W ′(γ̄ (s))
W(γ̄ (s))

ds = 2
∫ x∗

0

uW ′(u)
W(u)

du ≤ 2x∗ sup
0<u≤x∗

uW ′(u)
W(u)

< ∞.

Hence, type-II creeping occurs under Px∗ .

4. Additional results relevant to risk theory

Let us return to the setting of the stochastic perturbationU in the setting of insurance risk. It
is also possible to obtain the analogous statements to Theorems 1.2 and 1.3 of [7]. The analogue
of the first of these two theorems concerns the expectation of a path functional which can be
interpreted as the net present value of tax paid until ruin and reads as follows.

Theorem 4.1. Let x > 0, and recall that a∗(x) = inf{s ∈ [x,∞) : γ̄ (s) < 0} ∈ (0,∞]. For
q ≥ 0, we have

Ex

[∫ T −
0

0
e−quγ (Su) dSu

]
=

∫ a∗(x)

x

exp

(
−

∫ t

x

W(q)′(γ̄ (s))
W(q)(γ̄ (s))

ds

)
γ (t) dt.

Proof. For t ≥ 0, let S−1
t := inf{u > 0 : Su > t} be the right inverse of S and note that, with

probability 1, the functions t �→ S−1
t and t �→ σt agree almost everywhere. Then, similarly to

the proof of Theorem 1.2 of [7], changing variables and applying Fubini’s theorem gives

Ex

[∫ T −
0

0
e−quγ (Su) dSu

]
= Ex

[∫ ∞

0
1{u<T −

0 } e−quγ (Su) dSu

]

= Ex

[∫ ∞

0
1{S−1

t <T −
0 } e−qS−1

t γ (t) dt

]

= Ex

[∫ ∞

0
1{σt<T −

0 } e−qσt γ (t) dt

]

=
∫ a∗(x)

x

Ex[−qσt 1{σt<T −
0 }]γ (t) dt.

Replacing the expectation with the expression in Theorem 2.1(a) completes the proof.
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Remark 4.1. Fix x > 0, and suppose that γ (s) = γ ∈ (1,∞). A computation as in Remark 2.2
shows that

Ex

[∫ T −
0

0
e−quγ (Su) dSu

]
= γ

γ − 1

∫ x

0

(
W(q)(t)

W(q)(x)

)1/(γ−1)

dt.

Similarly, if we assume that γ (s) ≡ γ ∈ (0, 1), it is straightforward to recover the second
formula in Remark 1.1 of [7].

Although unnecessary, for the sake of presentational convenience, we will restrict ourselves
to the case that γ : [0,∞) → (1,∞) in order to state an analogue of Theorem 1.3 of [7]. In
that case, γ̄ is a strictly decreasing function and accordingly has an inverse, γ̄−1. Note that in
[7] it was assumed that γ : [0,∞) → [0, 1) such that

∫ ∞
0 (1 − γ (s)) ds = ∞. If we refer to

the latter as a light tax regime then we may think of the current setting as a heavy tax regime.
We have the following result, the second part of which addresses the issue of type-I creeping.

Theorem 4.2. Fix x > 0, and suppose that a∗(x) < ∞. Let κ := L−1
L
T

−
0

−, the last moment that

tax is paid before ruin. Denote by ν the Lévy measure of −X. For any z > 0, x > θ ≥ y ≥ 0,
and α, β ≥ 0, we have

Ex

[
e−ακ−β(T −

0 −κ);AT −
0

∈ dθ, UT −
0 − ∈ dy, −UT −

0
∈ dz

]

= 1

γ (γ̄−1(θ))− 1
exp

(
−

∫ x

θ

W(α)′(v)
W(α)(v)(γ (γ̄−1(v))− 1)

dv

)

×
[{
W(β)′(θ − y)− W(β)′(θ)

W(β)(θ)
W(β)(θ − y)

}
ν(y + dz) 1{y<θ} dy

+W(β)(0+)ν(θ + dz)δθ (dy)

]
dθ,

where δθ (dy) is the Dirac measure which assigns unit mass to the point θ . Furthermore, for
0 < θ < x, we also have

Ex[e−ακ−β(T −
0 −κ);AT −

0
∈ dθ, UT −

0
= 0]

= 1

γ (γ̄−1(θ))− 1
exp

(
−

∫ x

θ

W(α)′(y)
W(α)(y)(γ (γ̄−1(y))− 1)

dy

)

× σ 2

2

{
W(β)′(θ)2

W(β)(θ)
−W(β)′′(θ)

}
dθ,

where σ is the Gaussian coefficient in the Lévy–Itô decomposition.

The proof of this theorem is virtually identical to the proof of Theorem 1.3 of [7] once the
obvious adjustments have been made and is thus left as an exercise to the reader.
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