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1. Introduction

A famous theorem of Hopkins stated that a right artinian ring is right noetherian (see
e.g. [1, Theorem 15.20] or [12, Theorem 18.13]). Motivated by this fact, Camillo and
Krause raised an interesting question: Is a ring R necessarily right noetherian if for each
non-zero right ideal A of R, the right /^-module R/A is artinian? (See [16, Open
Problems].) This question still remains unanswered.

By a standard argument, this problem of Camillo and Krause can be reduced to the
following form:

(Q,) Is a domain D necessarily right noetherian if every cyclic right D-module is
projective or artinian?

From this one might also ask the question:
(Q2) Is a ring R necessarily right noetherian if every cyclic right R-module is injective

or noetherian?
On the other hand, Chatters showed in [3, Theorem 3.1] that a ring R is right

noetherian if and only if every cyclic right R-module is a direct sum of a projective
module and a noetherian module. Dually, it is obtained in [7, Theorem 1.1] that a ring
R is right artinian if and only if every cyclic right R-module is a direct sum of an
injective module and a finitely cogenerated module. If we "combine" the assumptions on
cyclic modules from these two results for a ring R, then R has right Krull dimension as
established in [10] (see (1.1) in the next section). However the following question
remains open:

(Q3) Is a ring R necessarily right noetherian if every cyclic right i?-module is a direct
sum of a projective module and a noetherian module or it is a direct sum of an injective
module and a finitely cogenerated module?

Clearly (Q3) includes (QJ and (Q2).
The purpose of this paper is to provide an affirmative answer for a part of (Q3).

Precisely we shall prove the following theorem:

253

https://doi.org/10.1017/S0013091500022987 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022987


254 D. VAN HUYNH

Theorem. A ring R is right noetherian if and only if every cyclic right R-module is
injective or a direct sum of a projective module and a noetherian module.

We are unable to derive this result from the above mentioned theorems of [3] and
[7], respectively, or from the techniques of their proofs. The following result is an
immediate consequence of the theorem and it gives a positive answer to (Q2):

Corollary. A ring R is right noetherian (resp. artinian) if and only if every cyclic right
R-module is injective or noetherian (resp. of finite length).

Concerning this corollary we note that in general, a ring R is not necessarily right
noetherian if every cyclic right R-module is a direct sum of an injective module and a
noetherian module (see [8, Example 11]). Furthermore, we notice that a ring R is right
noetherian if every cyclic right R-module is a direct sum of a projective module and an
injective module ([17, Proposition 2]). Such a ring is called a right CDPI-ring (cf.[18]).
CDPI-rings form an interesting class of noetherian rings whose structure has been
described completely in the forthcoming paper of J. K. Park and the author "Structure
of CDPI-rings".

2. Preliminaries

Throughout this paper, rings will mean associative rings with identity and all modules
are unitary. For a module M over a ring R we write MR to indicate that M is a right
R-module. The socle of M is denoted by Soc(M). If M = Soc(M), we say that M is a
semisimple module. For a ring R, R = Soc(RR) if and only if R is right (or left) artinian
with zero Jacobson radical. In this case R is called a semisimple ring.

A submodule N of a module M is defined to be an essential submodule of M if
iVnL#0 for each non-zero submodule L of M. Otherwise N is said to be non-essential.
A non-zero module M is called uniform if every non-zero submodule of M is essential in
M. To say that a module M has finite uniform dimension means that M does not contain
an infinite direct sum of non-zero submodules. Every module with Krull dimension and
also every factor module of it has finite uniform dimension (for modules and rings with
Krull dimension we refer to Godon and Robson [14]).

A module M is defined to be completely injective if every factor module of M is
injective.

General background materials can be found in Anderson and Fuller [1], Chatters and
Hajarnavis [4], Faith [12], Kasch [15] and Wisbauer [20].

The investigation in this paper is based on the following result which is obtained in
[10, Corollary 2.11].

Lemma 1.1. Let R be a ring such that every cyclic right R-module is a direct sum of
an injective module and a finitely cogenerated module or it is a direct sum of a projective
module and a noetherian module. Then R has right Krull dimension.
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The following type of cyclic modules will be used repeatedly in this paper.
A cyclic module M is called a special module (cf. [8]) if the following conditions are

satisfied:

(i) M is uniserial, i.e. the set of submodules of M is linearly ordered under inclusion,
(ii) M is non-noetherian but every proper submodule of the maximal submodule N

of M is noetherian.
(iii) For any non-zero proper submodule H of N, M/H is injective.

In [8, Example 11] it is shown that there exists a ring which contains an injective
special right ideal. However by the same argument as that of proving [8, Lemma 9] we
obtain the following result:

Lemma 1.2. For a ring R, RR is not a special module.

For convenience we say that a ring R has property (P) if every cyclic right /^-module
is injective or a direct sum of a projective module and a noetherian module.

In advance to the proof of Theorem we state the following two claims (1.3) and (1.4).

Lemma 1.3. Let R be a ring satisfying (P). Assume that there is a cyclic non-
noetherian indecomposable right R-module M such that every cyclic proper submodule of
M is noetherian. Then

(a) M/Soc(M) is a special module,
(b) if M is injective, then M is a special module.

Proof. Let N denote the sum of all noetherian submodules of M. Then M^N and
moreover, N is the unique maximal submodule of M, i.e. M is a local module. Let U be
a non-zero noetherian submodule of M. By (P), M/U is injective or M/U = P ® H where
PR is projective and HR is noetherian. In the second case, let H denote the inverse
image of H in M. Then M/H s P, implying M s P © H. Since M is indecomposable, we
must have F = 0, i.e. M/U is noetherian. However this implies that M is noetherian, a
contradiction. Thus M/U is injective. From this we can follow the last part of proving
[8, Lemma 6] to see that M is special if M is injective, completing the proof of (b).

Now let S = Soc(M). By Lemma 1.1 we see that SR is noetherian. Suppose that S#0.
Then M/S is injective by the previous argument. Put M = M/S. Then the image N of N
in M is the unique maximal submodule of M. Since for every noetherian submodule T
of M, M/T is injective, we can follow the last part of proving [8, Lemma 6] to see that
A? is a special module. This completes the proof of (a) in case Soc(M)#0.

Now consider the case Soc(M) = 0. Let H and K be two non-zero finitely generated
submodules of N. Then H and K are noetherian. If HnK = 0, since Soc(M) = 0, we can
pick two non-zero elements x,y with xeH, yeK such that xR^H, yR^K, and
consider the factor module M/(xR+yR). By the above this module is an injective local
module. But M/(xR + yR) contains a non-trivial direct sum H/xR © K/yR, a contradic-
tion. Hence l = HnK^0. By the same observation about M/I we obtain I = H or I = K,
i.e. H^K or H^K. From this it is easy to see that M is uniserial. Let L be a proper
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submodule of N. Then there is an xeN with x$L. Hence xR=>L, proving that L is
noetherian.

The proof of Lemma 1.3 is complete.

Lemma 1.4. Let R be a ring satisfying (P). / / RR is not noetherian and indecompos-
able, then:

(i) For any cyclic non-noetherian submodule X of RR, XR = RR.
(ii) If there exists a non-zero noetherian submodule A of RR, then R/A is the direct sum

of an injective special module and a completely injective noetherian module.
Moreover, in this case, there exists a uniform noetherian submodule U of RR such
that R/U is special.

Proof. Let X be a cyclic non-noetherian submodule of RR. If XR is injective, then
X = R, since RR is indecomposable. Assume that XR is non-injective. Then by (P),
XR = P ®Q where PR is a non-zero projective module and QR is a noetherian module.
Since PR is cyclic and RR is indecomposable we must have PR^RR. This together with
the fact that RR has finite uniform dimension (cf. Lemma 1.1) shows that Q = 0. It
follows XR^RR, proving the statement (i) of Lemma 1.4.

Now assume that RR contains a non-zero noetherian submodule A. Then by
assumptions about R, R/A can not be a direct sum of a projective module and a
noetherian module. Hence R/A is injective by (P). Since, by (1.1), R/A has finite uniform
dimension, we have

R/A = Xl®---®Xn, (1)

where each Xi is a cyclic injective indecomposable module. It is clear that at least one of
the X{S is not noetherian. We may assume that A', is not noetherian and aim to show
first that X\ is special.

Let Y be an arbitrary non-zero cyclic proper submodule of Xv Clearly, Y is not
injective. By (P) and since Xt is uniform, it follows that Y is projective or noetherian.
Suppose that Y is projective. Since RR is indecomposable, we have YR^RR, proving the
fact that RR is embedded in Xx and hence RR is uniform. Let ueR such that the image
M of u in R/A generates Y. Then

RR ^ YR = (uR + A)/A s uR/(uRnA).

It follows uR = L(&(uRnA) where L is a submodule of uR with L^RR. Since RR is
uniform, we must have uRnA = 0. But this is impossible because uR^O, 4 # 0 and RR is
uniform. Thus YR can not be projective and hence YR must be noetherian. Then using
Lemma 1.3 for Xt we see that Xt is a special module.

Let yeR such that y + A generates Xx. Then yR has a noetherian submodule
H = yRnA such that yR/H is special. In particular, yR is not noetherian. Hence yR = RR

by the statement (i) of Lemma 1.4. It follows that RR contains a noetherian submodule
K such that R/K is special. Then R/(A + K) is also a special module, since (A + K)/K is
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a noetherian submodule of R/K and, as we easily see from the definition, factor modules
of a special module by its noetherian submodules are again special. But R/(A + K)^(R/
A)/{{A + K)/A), whence R'/K' is special where R': = R/A and K' denotes the image of K
in R'.

On the other hand, from the fact that X^K' is noetherian we see that (Xi + K')/K' is
a special submodule of R'/K'. From the definition of special modules it is easily seen
that any special module does not contain proper special submodules. Hence we have
R'/K' = (Ar

1 + K')/K', implying R' = X1 + K' and hence R'/Xl is noetherian. This shows
that in (1), X2©---©Xtt is noetherian. Put X = X2@---@Xa. Let Z be an arbitrary
submodule of X and denote by C the inverse image of Z in R. Then CR is noetherian.
By the same reason as that for R/A we see that R/C is also injective. This together with
R/C=z(R/A)/(C/A) = {R/A)/Z^Xl@(X/Z) shows that X/Z is injective. This means that
X is completely injective. Since by (1), R/A=Xl@X, the first statement of (ii) in
Lemma 1.4 is therefore verified.

In the above consideration if we choose A to be uniform then H = yRnA is also
uniform. Since yR s RR, RR contains a uniform noetherian submodule U such that R/U
is special. This completes the proof of (ii) in Lemma 1.4.

3. Proof of the theorem

One direction of the statement is clear. Suppose now that R is a ring satisfying (P).
Then every factor ring of R satisfies (P), too. The fact that by Lemma 1.1 a ring
satisfying (P) has right Krull dimension will be used repeatedly.

We assume on the contrary that R is not right noetherian.
By Lemma 1.1, R has finite right uniform dimension. Hence

RR = Rl®---®Rk@Rk + 1@--Rn (1)

where each R, is an indecomposable right R-module, Rl,...,Rk are not noetherian,
Rk+l,...,Rn are noetherian. By assumption we have k^.1.

By (P), for each non-zero submodule U of Rt, RJU is noetherian or injective, since
each /?, is indecomposable. For each i = 1,2,...,k there exists a non-zero submodule [/,•
in Rj such that /?,-/!/,- is not noetherian, hence injective. We fix these (/,, i=l,2,...,k,
and consider factor modules of Rj with y # l . Let U be an arbitrary submodule of Rj
w i t h ; # l . Then by (1)

R/(Ul©U)^(Rl/Ul)©R2®---@Rj-l©(Rj/U)@Rj+l©---®Rn. (2)

From this there exists a submodule R\ of /?/(£/1 ® U) which is isomorphic to RJU y.
Hence for each proper submodule C of R\, R'JC is not projective, since Rt is
indecomposable. If R/(Uy © U) = P©Q with projective PR and noetherian QR, we have
R'i£Q and I = R\nQ is noetherian. Hence R'JI is not noetherian, therefore it is
injective. On the other hand, it is easy to see that R'JI can be embedded isomorphically
in P. It follows that R'JI is a non-zero projective module, a contradiction. Hence, by
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(P), R/(Ui © U) must be injective. Hence by (2) we see that
R2,--,Rj-i,Rj/U,RJ+l,...,Rn are injective. In other words, every Rj for y # l is
completely injective.

Case 1: fe^2. Using the same argument for R/(U2(&U'), being isomorphic to
(RJU1) @ (R2/U 2) @ R3 ® • • • © Rn, where U' is a submodule of/?, we see that RJV is
injective. Combining this with the above facts we see that Rh for i=l,2,...,n, is
completely injective. Now let M be an arbitrary maximal submodule of RR. Then there
exists an /?, in (1) such that R,£M. Hence R/M = (Ri + M)/M^Ri/(RinM) and so R/M
is injective. This shows that every simple right R-module is injective, i.e. by definition, R
is a right V-ring. Since R has right Krull dimension, R is then right noetherian by [2].
This is a contradiction to our assumption.

Case 2: k = 1. First we have that R t is not noetherian and, as shown above, that the
noetherian modules R2,R3,...,Rn are all completely injective. However, in this case, Rl

may be not injective. For each 0#xe /? , , consider the R-homomorphism $,: /?,-»/?[
defined by <pj(rj) = xr} (r^eRj,2,3,...,n). Then Rj/ker<j)j is isomorphic to a proper
submodule of Rt. Since Rj/kercfrj is injective, we must have Rj = ker<j>j, i.e. xRj = 0. This
shows

Rl(R2@ •@Rn) = 0,

or equivalently, R2 © • • • © Ra is an ideal of R. Hence we may restrict ourself on the
factor ring R/(R2 © • • • © Rn) which is i?-isomorphic to Rt. This means, from now on we
may assume that R is a ring satisfying (P), RR is indecomposable but not noetherian.
Hence we have Lemma 1.4 at our disposal.

(a) Assume that there exists a non-zero element a of R such that aR is noetherian. By
the last part of statement (ii) of Lemma 1.4, the uniform dimension d of RR is at most 2.

Next we show that d = \, i.e. RR is uniform. For this purpose we first verify that the
right socle S of R is zero. Suppose that S^O. Then SR is noetherian by Lemma 1.1.
From this and Lemma 1.4, R/S is a right self-injective ring such that

where DR is a special module and BR is a completely injective noetherian module. For
an arbitrary non-zero element 3 of D consider the homomorphism (f> from BR to DR

defined by 4>{b~) = 3.E for all 5eB. If 3.B is non-zero, then 3.B is a non-zero injective
noetherian submodule of D, since J.B = B/fcer<£. This is a contradiction to the fact that
DR is special. Hence 3.B = 0. It follows that D.B = O, or equivalently, B is a (two-sided)
ideal of R/S. Since (R/S)/B^DR, (R/S)/B is a special module, a contradiction to Lemma
1.2. Thus the right socle of RR must be zero.

Assume now that d =2. By Lemma 1.4, RR contains a uniform noetherian submodule
U such that R/U is special. Let V denote a complement of U in RR. Then by
assumption, ^ # 0 and since KR is embedded in R/U, VR contains a non-zero noetherian
submodule Kj. By Lemma 1.4 we have
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R/Vx=S®t (3)

where S is special, injective and T is noetherian, completely injective. Since the right
socle of R is zero, we may assume V^V, and therefore the right K-module R/Vl has
uniform dimension at least 2. This shows that in (3), t is non-zero. Let 0 denote the
image of U in R/Vx and Vt the image of Vt in R/U. Since Pi is noetherian and

(R/VJU must be special. Since (T+OyU^TftTnU), and T is completely injective, it
follows that (T + U)/U is an injective noetherian submodule of the special module
(R/VJ/U. Then by the properties of special modules we must have T + U^U, or
equivalently, Ts t ? . Since UR is uniform, we must have U = T. But U = U, UR has to be
injective. This is a contradiction since RR is indecomposable.

Thus d = 1, i.e. RR is uniform. If the prime radical N of R is zero, then R is semiprime
and since R has right Krull dimension, R is right Goldie (see [14]). It follows that R is
a right Ore domain, in particular, R does not contain non-zero zerodivisors. On the
other hand, by assumption, RR contains a non-zero cyclic noetherian submodule aR for
some a in R. Since aR^R/r(a) where r{a) = {seR, as = 0} = 0, it follows that R is right
noetherian, a contradiction.

Thus we must have N^O. In this case the Jacobson radical J of R is non-zero. Recall
that J is the intersection of all maximal submodules of RR. Since RR is uniform and RR

contains a non-zero noetherian submodule, JR contains a non-zero noetherian sub-
module H, too. Then by Lemma 1.4 we have

R/H = S'@T

where S'R is special and T'R is noetherian. Since f / £ j we easily see that J/H is also the
intersection of all maximal submodules of R/H, i.e. J/H is the Jacobson radical of the
right K-module R/H. Therefore J/H = ((J/H)nS')@((J/H)nT'). Hence every finitely
generated submodule of JR is noetherian and (J/H)nS' is exactly the maximal
submodule of the special module S'. Let X be a cyclic submodule of RR such that
(X + H)/H = S'. Then Xl = Xr\J is not noetherian and X/Xl is simple. Let Y be an
arbitrary non-zero cyclic submodule of X v Then YR is noetherian. By Lemma 1.4, we
have X^RR and, if we denote the factor module X/Yby X, then

where HR is injective, special and KR is injective, noetherian. Let K be the inverse image
of K in X. Then KR is noetherian. If K£Xt, then K + Xt = X, implying the fact that
Xi/(XlnK) is cyclic. Since ^ , n K is noetherian, in particular finitely generated, it
follows that Xi is finitely generated, too. This together with Xt^J shows that Xt is
noetherian, a contradiction. Hence KcXt. If K£Y then, since K/Y( = K) is injective,
K/Y is a non-zero direct summand of R/Y, i.e. there exists a right ideal L of R such that
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L 2 7 and R/Y = K/Y@L/Y. From this there is a maximal right ideal L' of R with
L'£K, a contradiction to K c X ^ J . Hence KsY, or equivalently, K is zero, i.e. X/Y
is a special module. Thus we have shown that for each non-zero cyclic submodule Y of
Xu X/Y is special. From this and since XR is uniform it is easy to see that every cyclic
proper submodule of X is noetherian. By Lemma 1.3, XR or X/SociX^ is special. But
Soc(XR) = 0, since we have shown above that Soc(RR) = 0. Hence RR, being isomorphic
to XR, is a special module, a contradiction to Lemma 1.2. This last contradiction shows
that (a) cannot happen. It remains to consider the final possibility:

(b) For each O^xeR, xR is not noetherian. Then, by Lemma 1.4 we must have

xR ^ RR for all 0 # x e R.

From this and from the fact that RR is indecomposable it follows that R has no
non-zero zerodivisors. Since R has right Krull dimension, R is then a right Ore domain.
In particular, RR is uniform.

Let M be an arbitrary maximal submodule of RR. We aim to show that R/M is an
injective right R-module. Clearly, there is a non-zero cyclic submodule yR of M such
that R/yR is not noetherian. Moreover, since RR is uniform, R/yR can not be
decomposed into a direct sum of a projective module and a noetherian module. Hence
by (P), R/yR is injective. We have

where each /,(/= l,...,n) is an indecomposable injective module. We may, without loss
of generality, assume that / , is not noetherian. Since RR is uniform and Ix is
indecomposable it is easy to see that each cyclic proper non-zero submodule of / , is
neither injective nor projective, it follows from this and (P) that such a submodule of / t

is noetherian. By Lemma 1.3, /x is a special module. Since RR is uniform, / , is not
projective.

Now, since yR^RR there exists a non-zero submodule V of yR such that yR/Vis not
noetherian. Using the same argument as for R/yR we see that yR/V is injective and
contains an injective special submodule, say J\. We have

R/V=yR/V@T (4)

for some submodule T of fi/K Moreover, by (4) it holds that R/yR^T. Hence T is
injective and contains an injective special submodule which we denote by J2. Thus R/V
is injective and we have

where each J, is injective indecomposable, Ju J2 are special modules. Let Mf be a
maximal submodule of J, for each i=l,2,...,h. Then for each i / l we have

,^J1 © J2 © • • • © J,-1 © { J , / M t ) © J 1 + ! © • • • © Jh.
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Since J\ is neither noetherian nor projective, so is (K/F)/JVf,-. By (P) and since RR is
uniform, {R/V)/Mj must be injective. Hence Jt/Mj is injective for every i # l . Further-
more, since J2 is also not noetherian, not projective, by the same observation for
(R/V)/Ml=(JJMl)®J2(BJ3®--®Jh, w e obtain that JJMl is also injective. From
these facts it is easy to see that for each maximal submodule H of R/V the factor
module (R/V)/H is injective. Since Af was a maximal submodule of RR containing V, it
follows that R/M is injective as desired.

In fact we have shown that R is a right K-ring, hence R is right noetherian as
concluded in Case 1. This however is a contradiction to our assumption.

The proof of the theorem is complete.

4. Some remarks

Let R be a ring such that every cyclic right K-module is a direct sum of an injective
module and a noetherian module. Then by [9, Theorem 7] R has right Krull dimension
and if R is semiprime, R is right noetherian by [9, Proposition 8]. In general, such a
ring needs not be right notherian as is shown in [8, Example 11]. Example 11 of [8]
shows also that there exists a cyclic injective and projective module M (over a ring R)
such that cyclic submodules of any factor module of M are injective or noetherian while
M is not noetherian. This shows that in general the statement in our theorem cannot be
carried over to modules. However, Chatters' theorem in [3] can be transferred to
modules as obtained in [19]: A finitely generated module M is noetherian if every factor
module of M is a direct sum of an M-projective module and a noetherian module.

C. Faith called a ring R a right PCI ring if every cyclic right R-module is injective or
isomorphic to RR. By his result in [11] and a result of Damiano in [6] such a ring is
either semisimple or it is a non-artinian, right hereditary, right noetherian, simple
domain. The latter ring is usually called a right PCI domain. The existence of right PCI
domains is established in [5].

Rings R each of whose cyclic right i?-modules is injective or projective have been
studied in [13] and [18]. It is shown that such a ring is a ring-theoretic direct sum of a
semisimple ring and a right PCI domain.

In [18], rings R with the property that every cyclic right K-module is a direct sum of
an injective module and a projective module have been investigated. However it is
shown just recently in [17] that such a ring is right noetherian. Moreover a significant
result has been obtained in [17] which says that a cyclic module M has finite uniform
dimension if each cyclic submodule of any factor module of M is CS. This result provides
a number of applications in the area. In particular, it motivates the investigation in [10]
in which the statement of Lemma 1.1 is obtained. Without Lemma 1.1 it is impossible
for us to establish the theorem in this paper.
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