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PROJECTIONS ON TREE-LIKE BANACH SPACES
A.D. ANDREW

1. In this paper, we investigate the ranges of projections on certain
Banach spaces of functions defined on a diadic tree. The notion of a
“tree-like” Banach space is due to James [4], who used it to construct the
separable space JT which has nonseparable dual and yet does not contain
[,. This idea has proved useful. In [3], Hagler constructed a hereditarily ¢
tree space, HT, and Schechtman [6] constructed, for each 1 = p = oo,
a reflexive Banach space, ST, with a 1-unconditional basis which does not

n
contain /,, yet is uniformly isomorphic to (Z © STP)/,, for each n.
i=1 »

In [1] we showed that if U is a bounded linear operator on JT, then there
exists a subspace W C JT, isomorphic to JT such that either Uor (I — U)
acts as an isomorphism on W and UW or (I — U)W is complemented in
JT. In this paper, we establish this result for the Hagler and Schechtman
tree spaces.

By arguments of Casazza and Lin [2], this implies that if X is either the
Hagler or one of the Schechtman tree spaces, X = Z © W, and either Z or
W is isomorphic to its square, then either Z or W is itself isomorphic to X.
Although in both this paper and in [1] and [2], great use is made of the
symmetry properties of the unit vector basis, the arguments of [1] are not
sufficient for analyzing the Hagler or Schechtman tree spaces. The new
idea which is used is that of a banded subtree (see Definition 1), and in the
case of these spaces, we show that the unit vector basis is equivalent to any
subsequence of it which is supported on a banded subtree. Roughly
speaking, bandedness means that for each n, when levels in the original
tree are considered, the n-th subtree level is completed before the
(n + 1)-st subtree level is begun.

In Section 2, we present the terminology and elementary lemmas
concerning trees, as well as the definitions of the tree-like spaces of
Hagler and Schechtman. We analyze the spaces in Sections 3 and 4,
respectively.

Our notation is standard in Banach space theory, as may be found in [S].
If 4 is a subset of a Banach space, we denote the closed linear span of 4 by
[A]. The greatest integer function is also denoted by [-]. Standard results
concerning perturbations of Schauder bases are used in several places.
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2. The standard tree is
T ={(ni)0=n<oo,0=i<2"}.

The points (n, i) are called nodes, and we say (n, i) is on the n-th level of
J. We denote the level of a node ¢ by lev t. We say that (n+ 1, 2i)
and (n + 1, 2i+ 1) are the successors of (n, i). A segment is a finite set

S = {1, 15, ..., 1, } of nodes such that for each, 1, ,  is a successor of 7. If
lev(t;) = m and lev(t,) = n, we say the segment {¢,,..., ¢, }isanm — n
segment. A family of segments {S,, ..., S,} is admissible if the segments

are mutually disjoint and there exist integers m and » such that each S, is
an m — n segment. J is partially ordered by the relation << defined by
t; < t, if and only if ¢, # 1, and there is a segment with first element ¢,
and last element ¢,. If 1, = 1|, we say 1, is a follower of t,. A sequence of
nodes {1, } is strongly incomparable provided i # j implies 7, and 1; are not
comparable and no more than two of the ¢, are contained in the
segments of any admissible family. An n-branch is a totally ordered set
{(m, 1)}, and a branch is a set which is an n-branch for some n.

A tree is a partially ordered set & which is order isomorphic to I If A
and ¥ are trees with & C %, we say that & is a subtree of %. If Lis a
tree and Y. — J is an order isomorphism, we may use y to carry the
above terminology from J to ¥ In particular, for s € %, we define

levy(s) = lev(y(s) ).

If ¥ C Jis a subtree of 7 and S is a segment of 7, we say S is compatible
with & if there exist 5|, s, € ¥ such thats; =1 = s, foralls € S.
For ease of referral, we isolate the next notions in

Definition 1. Let {m,}, {n;} be sequences of natural numbers such that
m; = n; < m,,, for all i. We say the subtree ¥ C J is banded by {m;},
{n;} (or banded) if

1. levy(¢) = i implies m; = lev(t) = n,

2. levy(t) = i implies there is a unique m; — n; segment S, of  which
contains ¢ and is compatible with &, and

3. levy(r) = i implies there exist precisely two n; — m; | segments S,
which are compatible with & and such that s € S; implies 1 = 5.

We shall omit the proofs of the following propositions. Proposition 4 is
a strengthened version of Proposition 5 of [1].

PROPOSITION 2. If S is a tree and A is a subset of &, then there exists a
subtree 1 C & such that either ¥, C A or S C A.

PROPOSITION 3. Each subtree of I contains a banded subtree.

PROPOSITION 4. Let f be bounded real valued function on a tree. Then for
any € > 0, there exists a subtree & such that

a. for any branch B of &
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lim f(t) = Ly exists, and
00
t€B

b. if, for each t € &, B, is a branch of & containing t, then

2 F(r) = Lg| < e

=4

Let L denote the space of finitely nonzero functions on . The unit
vectors are

1 s=1

X,(s) = {O s F 1,
and we denote the sequence of biorthogonal functionals by {x; }. We shall
use the projections and functionals on L, or any completion of L, defined

by the following formulas. In these, N is a natural number, S is either a
segment or a branch, and ¢ is a node.

($*, xy = 2 (x}x),

1€S

Px = 2 (x} x)x,,

s=t

Py = X (x} x)x,, and
4
lev(t)=N

Ov= 2 P=1-P,_,
lev(t)=N

The Hagler tree space, HT, is the completion of L with respect to the
norm

llxIl = sup X | (S*x) 1,

i=1

where the supremum is taken over all r and all admissible families
{S1.....S,}. The unit vectors, in the order xg ¢, X g, X |, X3, - - - » aT€ A
Schauder basis for HT. We shall discuss this space in Section 3.

The spaces ST, were constructed by Schechtman after an analysis of
several tree spaces. For A > 1, define a sequence of norms on L by
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lxlly = Ilxll
K

i, = inf{nxoum_l +A Y max, qu,,.xknm_l}
k=1 0=i<2

where the infinum is taken over all K and all sequences x, ..., xg in L
such that

K
AZoxkzx and Qux, = x, fork =0,...,K.
Let

lIxll = lim [Ix[|
m—00

m>

and denote by Y, and Y the completions of L with respect to the norms

[[l,, and || ||, respectively. The norms dual to these are
Ixly = lixl,,
21
-1
|x|m = max { |xlm— I A max 2 l[‘}(.ixlm—l }’
1Sk<oo =0
and
x| = lim |x|,,.
m—00

We shall denote by Z,, and Z the completions of L with respect to these
norms.
The space ST, is then the completion of L with respect to

2 172
12 a,x, 1l = IIZla,"x, |y~

To define ST, for 1 = p < oo, let {x,} be the unit vector basis in ST, and
let {x}} be the biorthogonal sequence in ST%,. Take ST, = ST%,, and for
1 < p < oo, let ST, be the completion of L under the norm

1/
12 a,x, 1l = I1Zla, Fx} |57

3. In this section, we prove

THEOREM 5. Let U:HT — HT be a bounded linear operator. Then there
exists a subspace X C HT such that X is isomorphic to HT, UlX (or
(I — U)|X) is an isomorphism, and UX (or (I — U)X) is complemented in
HT.

We prepare for the proof of this theorem with several propositions.
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PROPOSITION 6. Let & be a banded subtree of I, and let
X =[{x;s € £}
Then X is isomorphic to HT and complemented in HT.

Proof. Let &% be banded by {m;} and {n;}, let $:¥ — J be an order
isomorphism, and for each t = (i, j) € 7, let S, be the unique m;, — n,
segment of 7 containing ¢ (1), and compatible with %

If {a,} is a finite set of scalars, and x = X a,x,, let {S|,...,S,} be an
admissible family such that

Il = 2 ¢St |

Since {S,,...,S,} is admissible, there exist p, g such that each S, is a
p — g segment. If S is the unique m, — n, segment of 7 which contains all
of the ¢~ (1) for 1 € S, and is compatible with & then {S]};_, is an ad-
missible family, and

D2 ISH Zaxgi) | = 2 K(SE x| = lix]l.
i=1 i=1
Hence

12 ax |l = 12 ax,—1)l-

For the reverse inequality, let S|, ..., S, be p — g segments with
r
IZ axy—1)l = 2 1(SE 2 apy=1) |-
i=1

Since % is banded, we may assume there exist i and j such thatm, = p = n
and m, =g = n;, and with

]

y = 2 atx¢_|([)a
we have

2 (St | = 2 ICSE By + (By — By

i=1
+ (= By | =311 gl

It follows that the basic sequence {x, },c «is equivalent to {x,}, and hence,
that X is isomorphic to ST.

For each ¢+ = ¢>_](n, i) € & let S, be the unique (n,_; + 1) — n,
segment containing ¢ and compatible with . Define
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Px = X (Skx) x,

te¥

It is apparent that P is a projection onto X and that ||P]| = 2.

ProrosiTiON 7. Let U:HT — HT be a bounded linear operator, ¢ > 0, N
an integer, ¥ C I a subtree and 1y € . Then there exists t|, € & t, > 1,
such that

||PNUx,|I| < e

Proof. If no such ¢, exists, then for any follower r € & of 1,, there exists
t, lev(t’) = N with
@ I (xf BU ) | = e/K,

where K = 2¥"! — 1. Thus, for any L and any collection {t,},l‘=I of fol-
lowers in & of ¢, [L/K] of the ¢, satisfy (4) for the same node . Hence
there is a choice of signs {#;, = =1} such that

L L
(5) ‘ > PyU(0)x,) ‘ = (x, > Ulyx,)) = < [E]
/=1 ! /=1 ! K LK

If, however, the {¢,} are chosen to be strongly noncomparable, we have

Since L is arbitrary, (5) is contradicted.

L
3 RU@x,) } = IUIIZ 6l = 2 U1l
=1

ProprosITION 8. Let U:HT — HT be a bounded linear operator, € > 0, N

an integer, & a subtree of 7, and 1, . . . , t, mutually noncomparable nodes of
. Then there exists t > ty,t € $, M € NN, = N,and Ny — (M + 1)
segments S;, i = 1, ..., k, of I having the properties:

a. ||PyUx,|| <,

b. | (I — Py)Ux,ll <

c. For each i, there exists t, € & such that t;, = s < t/ for all s € S,
d. For each i, | {(S*, Ux,) | < € for each segment S O S,

Proof. Let K satisfy
275Ul < @3,
and let
N, = max(N, lev(t;))

be such that for each i = 1,..., k there are 2% branches of & which
contains #; and pass through distinct nodes in the N-th level of J. Then
there exists ¢+ > ¢, such that t € ¥ and
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IPy, Ux, |l < e/3.
Hence a. is satisfied. To satisfy b., choose M > N, such that
Il (I — Py)Ux,|| < €/3.

Now for i = 1,....K, let S!..... 82 be disjoint N, — (M + 1)
segments satisfying c. For fixed i, if no §/ satisfies

| (S7*, Ux,) | < €/3,

i
it follows that

zl\

( .

gzk = EI | (S7*, Ux,) |
J=

€
= lux|l = IUIl < 32",

a contradiction. Hence for each i, there exists S; = S such that
| (S, Ux,) |< €/3.
Now, if § D §,,
| (8%, Ux,y| = | (S*, Py, Ux) | + | (SF. Ux,) |
+ KS*, (I — Py, DUx) | < e
We are now ready for the

Proof of Theorem 5. Let 0 < y < 1/2. Using standard perturbation
arguments, Propositions 2, 3, 4, 7, 8, and the arguments of [1], we may
assume the existence of a subtree ¥ = {r(n, i) } C J banded by sequences
{m;} and {n;} such that for each t € #and each n; — m; segment S of J°
which is compatible with .#, we have

" )y, res
O

where y = v, = || V||, where Vis either U or (I — U). We shall assume that
V = U, and show that U(HT) contains a complemented isomorph of HT.
Furthermore, we may assume that along each branch B of .¥;

lim y, = yp exists

1—00

t€EB
and that if y; = yp for some branch containing s, then

Y

2y, — vl <
T ! 6
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Let X = [ {x,},e.]- By Proposition 6, X is isomorphic to HT, and we shall
now show that {Ux, },c « is a basic sequence equivalent to {x,},c . It will
follow that U|X is an isomorphism.

Since U is bounded, if {a,} is a finite set of scalars,

”2 a, Ux,(,,‘,')” = HU” “2 a,,‘,'x,(,,_,')”-
For the reverse inequality, let
x =2 Ay i Xi(niy

and notice that there exist disjoint m, — n, segments Sy, ..., S; of 7 and
branches B; > S; such that

k
lIxll = 3 Zl | (S%x) |
J=

YB ’ 2 an,i

Jj=1 / l(n,i)ES/

n
| W
M=

<

I

2 (fx
Y

where f € HT* is defined by
k
f= 2 v sgn(S* x)S*.
j=r

Let ¢, = sgn(S7, x), and let

= {y, teE¥NB
Yy = /
¥, e Bj\‘%

and define g € HT* by

k
§= 2 € 2 Y XS
j=1 SESI
Then
4 Y
lg—fll=2 2 v, —vgl<-.
j=11e5,ny / 6

so for any y € HT,
y
Soyy =Ly + LIl

In particular,
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3 3
Il = 2/ 0 = 2[ (e + el
Y Y 6
k
3 1
=-2¢ 2 Yoa, t+ oIl
Y j=1 t(ni)€S, 2
SO
6 k
IXI==-2¢ 2,4,
Y j=1 "1 iES,;
k
6 6
= - 2 |(Sr, Uxy| = - ||Ux]l.
Y =1 Y

Thus, U|X is an isomorphism, and to see that UX is complemented,
observe first that the preceding argument may be used to show that the
multiplier operator M on X defined by Mx, = yx, is bounded
and invertible. Denoting by P the projection onto X constructed in
the proof of Proposition 6, we see that UX is complemented by
0 = (UX)M 'pP.

4. This section is devoted to proving

THEOREM 9. If X is one of the Schechtman tree spaces Y, Z or ST,
1 = p = oo, and U is a bounded linear operator on X, then there is a
subspace W C X such that U\W (or (I — U)|W) is an isomorphism and
UW (or (I — U)W) is complemented in X.

In [6], Schechtman proved that {x, ;} is a 1-unconditional basis for Y,

and for Y, and that ¢, does not embed in Y. From this we easily obtain

ProrosiTioN 10. 1. {x, ;} is a boundedly complete basis for Y.
2. Z* = Y and {x,;} is a shrinking basis for Z.

3. {x,,} is a 1-unconditional basis for Z,, and for Z.

4. {x,,} converges weakly to zero in Z.

ProrosiTiON 11. Let & = {t(n, i)} be a banded subtree of I. Then
[ {x,},es] in Z is isometric to Z and [ {x,},c] in Y is isometric to Y.

Proof. We first consider the unit vectors in Z and show that for any
finite scalar sequence {a, ;},

|E an,ixn,il = I2 an,ixt(n.i)l'

The proof is by induction and passage to the limit. Since ||, = ||l , we

have that

«’

|2 an,ixn,il() = IE an,ixt(n,i)lo
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for any banded subtree ¥ = {t(n, i) } and any sequence of scalars {a,}.
Assume that for any banded subtree & = {t(n, i) },

IE an.ixn,ilm—l = |E an,lxt(n.z)lmwl
for all scalar sequences {a,,}. Now let # be banded by {m;}, {n,}. and
let
X = 2 an.ixr(n.i)'
We have
2" — |
-1
|x|m = max { ]X|m, I’ A max _20 IPmA :x|m—l }
i=
21
—1
= max{lz aHI ni m~1’ A mfx 20 |1:;<1(2 anl Hl) |mfl }
R
= |2 anl nllm
by the induction hypothesis. For the other inequality, we consider two
cases:
(1) Ix,m = ’2 an.ixr(n,l)lnz~—l and
241

) Ixl, =A7" max X B,

m
I1=k<co =0
In the first case, the induction hypothesis implies that

lxlm = lm—l - 2 anl'xnlm—] = IE alll nlm

In the second case, there exists K such that

2K
|le = )\71 2 |PK.ix|m—l’
i=0
and let j be the largest integer such that m; = K. If m; = K < nj, then

there exists / such that
Pyx = P K.iij.Ix’

and by the 1-unconditionality in ||

m—1
[Py x|y —1 = |ij,/x|m—l‘
Hence
2K
R D R L
i=
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-1
= A EIP 2anlxnlm—] _IEaMI nlm

i

On the other hand, if n; =K< m., then for each i, either there exist /,
and /, such that

Pcx =P, ,x+P,  .x

M40 KUESE

or there exists / such that

PK,I‘X = P

mj+l.lx'

In either case, using the triangle inequality, we have

2K
-1
Iy = A7 2 Pl
i=0
*l
=A 2 |Pm+llx|mfl
—1
=A 2 +l 1(2 anl n:

= Iz an,ixn,ilm‘

The equivalence of {x,},c+and {x,},c«in the space Y follows from the
equivalence in Z and the fact that Z* = Y.

Proof of Theorem 9. As in the proof of Theorem 5, the argument may be
carried out for one of U or (I — U). We shall call that operator U, and
show that UX contains a complemented isomorph of X.

If U is a bounded operator on Z, {Ux, ;} converges weakly to zero since
{x,,} converges weakly to zero, and we may assume there exists a banded
subtree & = {t(n, i) } such that t € & implies

[{xk Ux,y| = 172,

and that the Ux, are disjointly supported. With W = [{x,},co). W is

isometric to Z, and the unconditionality of {x, ;} implies that U|W is an

isomorphism. Again by the unconditionality, the operator M defined by
-1

Mx :{éx,"j Ux,) 'x, t€¥

t

t&E S

is bounded, and UW is complemented by the projection UM.

In the case of the space Y, the unit vectors do not tend weakly to zero,
and if U is a bounded linear operator on Y, in order to obtain a sequence
{/,.} for which {Uf,} is disjointly supported, we use differences of unit
vectors. To this end, select a subtree ¥ C 7 such that ¢+ € & implies

(x* Ux,) = 1/2,
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and inductively choose sequences {m; }, {n;} and nodes '(n, i), t(n, i) of
& such that

a. tl(n, i) < tz(n, i)

b. An, i) < t'(n + 1,2i)and P(n, i) < t'(n + 1,2 + 1)

c. {f(n, i) } is banded by {m} and {n;}, for / = 1,2

d. <xt*2(n,i)’ lel(n,i)> = O’ and

e. with f, ; = x2,.,) — X, the Uf, ; are disjointly supported.
Now, let W = [ {/,,;} ]. Then

”E an.ixn,in = HE an.ixlz(n‘i)H
HE an,ifn‘ill by d’
= 2H2 an,ixn,i”’

so W is isomorphic to Y. Furthermore, since

A

(xp, Ux,y = 1/2,
by the unconditionality of {x,,} and e,
12 a,, /.l = 212 a,x,l
212 a, X2l
4Z a,,Uf
AUNNZ a, /.

It 1s easily seen that UW is complemented in Y.

As for the spaces ST,, 1 = p = oo, it follows from Proposition 11 and
the definitions of the norms that whenever % is a bounded subtree of
I, {x,},es 1s isometrically equivalent to {x,},c . Since these spaces are
reflexive, the unit vector basis is shrinking, and thus converges weakly to
zero. Thus, the argument used for the space Z also proves the theorem for
ST, 1 =p = oo

A

lIA

5. A consequence of Theorems 5 and 9 is that if X is either the Hagler
tree space or one of the Schechtman tree spaces, and W is complemented
in X, then W contains a complemented isomorph of X. Since these spaces
are isomorphic to their Cartesian squares, the arguments of [2] show

CoroLLARY 10. If X = HT, Z, Y, orST;,, l1=p=oc0, X=W®®V, and
W=W® WorV=V®®V, then either W = Xor V= X.
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