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James-Hopf Invariants, Anick’s Spaces,
and the Double Loops
on Odd Primary Moore Spaces

Joseph Neisendorfer

Abstract. Using spaces introduced by Anick, we construct a decomposition into indecomposable factors of
the double loop spaces of odd primary Moore spaces when the powers of the primes are greater than the first
power. If n is greater than 1, this implies that the odd primary part of all the homotopy groups of the 2n + 1
dimensional sphere lifts to a mod p" Moore space.

0 Introduction

Throughout this paper, p will be a fixed odd prime and all spaces will be localized at p. Let
P™(p") be the mod p” Moore space S™ ' | J e which is formed by attaching an m-cell to
an (m — 1)-sphere by a map of degree a power p” of the prime. The fibre of the degree p”
map p": §" — S™ will be denoted by S”{p"}. In [4], [5], maps 9,: Q*S*"*! — $2"~1 were
constructed with a strong relation to the double suspension ¥?: §?*~1 — Q28! namely,
the compositions X2 0 §,: Q282+ — §21=1 s 2827%1 and §, o ¥2: §27~1 — Qg2+
S2=Lare O?(p") and p’, respectively. Let D(n, r) be the fibre of ,.
In [11], a proof was given that, if r > 2, there is a homotopy equivalence

0.1) D(n, r) x Q[H sZPk"*l{p’“}} % PSP(n,r) — QEPPI(p")
k=1

where P(n,r) is some infinite bouquet of mod p” Moore spaces. In this paper we give
another proof which is quite different from the proofin [11]. The proof given here is valid
only for primes p > 5 while the proof in [11] is valid for p > 3. This happens because
certain properties of Anick’s spaces are known only for p > 5. It would not be surprising if
this situation were remedied in the future.

Nonetheless, the proof given here has some advantages. It is a more straightforward
attack on the problem and seems closer to a confrontation with the case r = 1. Itisa
striking fact that both proofs fail in the case r = 1. The failure here seems to be more
enlightening, more closely related to the truth or falsity of the theorem in the case r = 1,
whereas the failure for r = 1 in the first proof seems to be more a consequence of the
method of attack. Of course, neither failure resolves the issue and there is as yet no reason
to withdraw the conjecture that (0.1) is true for all r > 1.
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Already in [6], it was shown that there is a homotopy equivalence
(0.2) T (p") x QXP(n, 1) — QP (p")

where T?"*1(p") is the fibre of the map XP(n,r) — P***!(p") and sits in a fibration se-
quence

(03) Q282n+1 N Sanl % Hr+1 — T2n+1(pr) BN QSZn+1

with
M = [T

k=1

The map 0, is nothing but the composition of the first map in (0.3) with projection on
the first factor. It follows immediately that there is a fibration

(0.4) I, — QT (p") — D(n,r)

and hence that (0.1) is equivalent to the problem of constructing a retraction QT*"*!(p") —
QII,,1. In this paper we will construct this retraction with the aid of James-Hopf invari-
ants [7], [8]. The James-Hopf invariants do not give this retraction immediately. The
James-Hopf invariants must be modified and restricted. After that, some lifting of maps is
required. It is there that the proof breaks down for r = 1 in an essential way.

As described in [11], (0.1) implies that the natural map P>**!(p") — S***! induces split
epimorphisms on all homotopy groups in dimensions greater than 2n + 1 if r is > the
maximum of 2 and n.

I wish to thank Stephen Theriault for valuable e-mail tutorials on the contents of his
thesis [13]. Without his help in Section 2 to deloop the maps n and ¢, the proof given here
would have been strong enough to prove only the loop of (0.1).

1 James-Hopf Invariants

The James-Hopf invariants [7], [8] are natural maps h;: QXX — QXX with XN =
X A -+ A X being the j-fold smash. These maps have the following homological property
for field coefficients: if x; € H,.(X),...,x; € H,(X), then

0 ifi < j,
i1 @ - ®x) =X Q- @x; ifi = j,
a decomposable element ifi > j.

Throughout this paper, the coefficients will be Z/pZ and we will be concerned with
the cases where j = p* and X is $?" or P*'(p"). In the second case, we will replace the
James-Hopf invariant with a modified James-Hopf invariant h ; as follows.

Since P?(p") A PP(p") ~ P*b(p") v P*b=1(p"), it follows that, if g: P/(p") — $%is
the natural map, there is a factorization of A/q into (PZ”(p’))A] 2 pin(pry & ($myN,
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Hence, there is a commutative diagram

QPZnJrl(pr) hi Qz(PZn(pr))/\j Q% , QPZjnJrl(pr)
(1.1) lﬂq lgzwq) lﬂq
952n+1 L) QE(SZn)/\] ;> 952jn+1.

Let the modified James-Hopf invariant h; = Qa0 hj: QP*"!(p") — QP*"*1(p") be
the composition in the top row of (1.1). If u = u(a — 1,r) € Ha,l(P“(p’))
and v = wv(a,r) € H, (P“(pr)) are generators, then 1_1]-* (v(Zn, r)f) = v(2nj,r).
Let 3" be the r-th Bockstein. Then g'v(a,r) = u(a — 1,r) and ﬂ’(v(Zn,r)Pk) =
ad?* =1 (V(Zn, r)) (u(Zn -1, r)) = Tk(v(Zn, r)) [4]. Hence, fzp;; (Tk(V(ZTl, r))) = u(2pkn -
1,7).

The space T?"*!(p") is defined to be the fibre of a map XP(n,r) — P*"*'(p") [6]. This
map is defined on a bouquet of mod p” Moore spaces as a bouquet of mod p” Whitehead
products which, since $*"*! is an H-space, map to zero when composed with the map
P2rL(pr) — S2L Tt follows that we may form the commutative diagram below in which
the rows and columns are fibration sequences:

QF2n+1{pr} W2n+l{pr} EP(H, T) F2n+1{pr}

l | 5 |

(1.2) QPZnJrl(pr) - T2n+l(pr) — % ¥P(n,1) P2n+1(pr)

| | l |

952n+1 s 982n+1 * 952n+1 .

The result quoted in (0.2) gives a section o: T?"*!(p") — QP*"*1(p") and (1.2) im-
plies that o restricts to 5: W™ 1{p"} — QF?*"*1{p"}. At a certain point in the proof be-
low we will restrict a further modification of the modified James-Hopf invariant h ok from
QP (p") to T?**1(p”) via the map o. We will need to know the following: Suppose vi
and 7, = (3" are the respective images of v(2n, 1P and 7, (v(2n, 1)) in H, (T (p").
These are primitive elements. Since v(2n, r)? " is the primitive element of least length in its
degree, it follows that }_zpk* o o, sends vi to v(2p*n, r) and 7 to u(2p*n, r).

2 Theriault’s Reconstruction of Anick’s Spaces BD (1, r)

In order to avoid proving our decomposition theorem for triple loops instead of double
loops, we shall use spaces BD(n, r), defined for r > 1, which are candidates for classifying
spaces for the spaces D(n, r) (and, in fact, it is an elementary consequence of the product
decomposition (0.1) that they are classifying spaces if r > 2). These spaces were introduced
by Anick [1] for p > 5, further studied by Anick and Gray [2], and reconstructed for all
p > 3 in the thesis of Theriault [13] and his subsequent paper [14]. (Theriault used the
notation T2 ~!{p"} for the spaces we call BD(, r). Anick and Gray have used variations
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of this notation involving the letter T. Because of a conflict with the notation of Cohen,
Moore, and Neisendorfer, this notation will not be used here.) In this section we provide a
brief summary of some of the work of Theriault and derive some consequences which we
use in the proof of (0.1).

First, if p > 3 and r > 1, there are H-spaces BD(n, r), [2], [13], [14], and there are
factorizations of the natural maps QP?"*1(p") — QS8*"*! into

(2.1) QP 1(p") — BD(n,r) — QS {p'} — Q!
where the second and third maps are H-maps. There is a fibration sequence
Q27— §=1 5 BD(n, r) — QS¥H!

in which the first map has degree p” on the bottom cell [1].

The first and second maps in (2.1) are mod p homology isomorphisms in dimensions
2n — 1 and 2n. Accordingly, we shall denote the generators of both H, (BD(n, r)) and
H.(QS**'{p"}) in these dimensions by u(n, r) and v(n, r), respectively.

If p > 5, the H-spaces BD(n,r) are homotopy commutative, homotopy associative,
have null homotopic p”-th power maps, and the first map in (2.1) is an H-map [13], [14].

Second, if p > 3, the spaces BD(#,r) and the natural maps ¢: P*" x5 QP (pr) —
BD(n, r) satisty the universality property [14]: if X is a homotopy commutative and homo-
topy associative H-space and f: P?"(p”) — X is any map, then there is an extension to an
H-map f: BD(n,r) — X. The extension is unique up to homotopy.

Following a suggestion of Theriault we apply the universality property to the maps ¢ and
71 uniquely defined for s < r by the maps of cofibration sequences

SZn—l P SZn—l N P2n(p5) SZn—l P SZn—l P2n(pr)
I N S
SZn—l r SZn—l N P2n(pr) SZn—l r SZn—l P2n(ps).

There are also maps ¢ and 7 uniquely defined by maps of fibration sequences

52n+1{p5} 52n+1 » 52n+1 82n+1{pr} 82n+1 ' 82n+1
@3 | Il S |- e
52n+1{pr} SZrHl » SZrHl 52n+1{p5} 52n+1 r 52n+1

For the remainder of this paper, let p > 5.
Theriault’s universality property implies that the maps in (2.2) extend to H-maps (:
BD(n,s) — BD(n,r) and n: BD(n,r) — BD(n, s) where the ¢ and n maps are unique and
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there are commutative diagrams

r—s

gan—1 p gan—1 =, gl

l ! !

(2.4) BD(n,s) % BD(n,r) -1, BD(n,s)

l l !

Qg2+ = Qg2+ Qp Qg2+

Therefore, for n > 1 we have a commutative diagram with rows and columns fibration

sequences
* QZSZHJrl = QZSZHJrl
(25) S2n—1{pr—s} S2n—1 P S2n—1

§21=1{p"~} — BD(n,s) —— BD(n,r)

and for all n > 1 we have a commutative diagram with rows and columns fibration se-

quences
* [N S2n—1 ;> S2n_1
(2.6) Qs {pr=} — BD(n,r) —— BD(n,s)
952n+1{pr75} N Qserl QPHS; 982n+1.

The uniqueness of ¢ and 7 clearly implies that ( o { = (andnon =n.

We note that the universality property implies that, if > 1, the composition 7 o
¢: BD(n,r) — BD(n,r +1) — BD(n,r) is the p-th power map and, if r > 2, so is
the composition ¢ o n: BD(n,7) — BD(n,r — 1) — BD(n, r). Furthermore, the diagram
below commutes

BD(n,r) —>p:7]0C:(O7] BD(n,r)

l !

(27) Qszn+1{pr} Qp 952n+1{pr}
Q2+l & Q2+l
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These equalities allow us to easily compute any composition 7 o ¢ and any composition
Con. For example, noC: BD(n,r) — BD(n, r+t) — BD(n, r+t—s) equals (op'™* = p'~“o(

ift,t —s>0.
If we compose the modified James-Hopf invariant }_zpk with the map in (2.1), we get a
map

Hye: QP! (p) — BD(p*n, 1)

and a commutative diagram with the columns fibration sequences:

QF2n+1{pr} HPk s S2pkn—1

l !

H
QpP>(p)y —2— BD(pkn,r)

! !

Qsznﬂ th N Qszpknﬂ

(2.8)

We shall call the map H  the Anick-James-Hopf invariant.

3 Selick’s Lifting Method

In this section, we apply a method due to Selick [12] to construct a lifting of €2(p) o Q2(H ),
the loops on the composition of the Anick-James-Hopf invariant with the p-th power map.

Selick’s lifting method is based on two facts. First, if A — QS*"*! is any map with A a
space of category < p, then the composition with the p¥-th James-Hopf invariant followed
by the p-th power,

by s Qp) K
A QS2n+1 P Qs2p n+1 Qszp n+1’

is null homotopic. Second, if G is a topological group with classifying space BG and Milnor

filtration B;G, then the composite map G E) O¥G = QB;G C QBG is a homotopy
equivalence with G — QB;G an H-map for j > 1. Selick wrote his proofs only for the case
k = 1, but, as he knew, they work without change for k > 1.

Let1 < j < p*. Since B ;G is a space of category j, it follows that the composite map

Bj(Q28¥1) C B(Q2§2+1) = Q! a Qg2ptnt P o gapknl

is null homotopic. The range being simply connected, we can assume that the homotopy is
basepoint preserving.
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If we restrict (2.8) to B;G, we get a diagram

Bj(Q2F1{pr}) HP"E 2ptn—1 P qptn-t

! ! l

(3.1) Bj (Q2P2n+1(P,)) Hox BD(pkn, r) p BD(pkn, r)

l l !

B.Q2s2m+1 e Q2 20)  g2ptnt
j — — )

The above basepoint preserving null homotopy of €2(p) o hx on B 1(Q28*1) yields, via
the covering homotopy property, a homotopy of p o H « defined on B; (2?P***!(p")). This

. . = . k
covering homotopy terminates at a map H of B;(Q2?P***!(p")) into the fibre $*” "~! and
since the original homotopy is basepoint preserving it may be constructed to be a stationary
homotopy on B;(Q*F*"*'{p’}). Hence, we get a commutative diagram

(O2m2ntl [ ar poH 2pFn—1
Bj(°F"H{p'}) —— S

l I

(3.2) B; (QZPZnJrl(pr)) a SZPkn—l
poH

B (P (p")) —= BD(pn,r).

If we loop (3.2), inject G into 2B;G as described in the first paragraph of this section,
and include the maps ¢ and & from the end of Section 1, we get a commutative diagram of
H-maps as follows

QW2 {pry Q5 Q2P pry Up)oQHy) Qs2pn—1

! ! [

(3.3) QT (pr) Qo y Q2P2L(pr) H Q2P n—1

Q(p)oQUH )
QT (pr) $to > QPP (ph) u} QBD(pkn,r).

4 Lifting the Lift

In this section we construct a lift of the map H in (3.3).
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The main technical result of [10], slightly extended as in [11], is a map T>"*!(p") — II,
such that, if we compose this map with the map $**~! x II,,; — T*"*!(p"), the result fits
into horizontal fibration sequences

cn) x 1, 22 cn) x M,y —— 11,

(4.1) J l l:

1xII
=y, XM -t T,

where C(n) is the fibre of the double suspension S?"~! — Q2§21
Consider the diagram of [10] in which the rows and columns are all fibration sequences,

2
C(n) — $¥=1 Z5 Q2521 i the fibration sequence of the double suspension, and the left
hand column is the evident product:

Cn) xII,,;, —— T2ﬂ+1(pr) ; Qs2n+1{Pr}

! I |

(4.2) SZn—l % Hr+1 SN T2n+1(pr) [N QSZnH
| ! l*
QZSZnJrl * s QSZnH.

The fact that $***'{p"} is an H-space with a null homotopic p’-th power map [9], to-
gether with (4.1) and (4.2) looped to make everything an H-map, easily shows, using stan-
dard lifting properties of fibrations as in the proof of Proposition 1.2 of [10], that the p’-th
power map on QT?"*!(p") factors as

s Qp): QT (p) ——— Q) x oI, 1 Qc(n)

X Oy —— QS 1 x QI —— QT?"(p).

Notice that W1 {p"} = §*"~! x II,;, and use the above paragraph and the fact that H
in (3.3) is an H-map to conclude that Q(p") o H o 20 = H o Qo o Q(p") factors as

Qrl(p) ——  QC(n)

05 Qp)oQH ) ¢
% QHI QWZnH{pr} QZFZnJrl{pr} \ QSZP n—l_

Since C(n) and II; are both H-spaces with null homotopic p-th power maps [5, 9],
it follows that Q(p") o H o Qo is null homotopic and thus that we have a lift of H o

Qo: QT2 {pr} — QSP'"~1 to a map K: QT2 {p'} — QS2P'n=1{p"}.
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5 Proof of the Decomposition Theorem for the Double Loop Space

From Section 2 we get a commutative diagram with the columns fibration sequences

SZpknfl{prJrl} = N SZpknfl{prJrl} n SZpknfl{pr}

! ! l

(5.1) BD(p*n,r) —2%— BD(pfn,r—1) LN BD(p*n, 1)

J< l< J<

BD(pkn,2r+l) SN BD(pkn,Zr) — BD(pkn,Zr)

with ¢ on = p in the middle row. Since the spaces D(p*, 0) do not exist, we are required to

assume that r > 2. Clearly, the lower left hand square and the upper right hand square are

both homotopy pullbacks, a fact that will be preserved if we apply the loop functor to (5.1).
Hence, the maps

K: QTZnJrl(pr) N QSZPkn—I{pr}

and
Qn o QHy 0 Qo : QT (p) — QP> (p") — QBD(p*n,r) — QBD(p*n,r — 1)

yield a map
I QT2n+l(pr) N Qszlyknfl{prﬂ}

and hence a map into the product
L: QT (p") — QIL,,,.

We claim that the composition QI1,; — QT**(p") — QII,,, is a homotopy equiva-
lence, which as mentioned in Section 0 is equivalent to proving the product decomposition
in (0.1).

Sections 1 and 2 imply that 2H « maps the transgression 7 of 7y in Hy 5, _» (QTZ'”l ( pr))
to the generator u(2p*n — 2, r) of Hypy 5 (Q BD(p*n, r)). Then Q7 sends it to the gener-
ator u(2pfn — 2,r — 1) of Hypin—s (Q BD(pFn,r — 1)). From the homological properties
of the fibration in the middle column of (5.1), it follows that L sends 7 to the generator
v(2pfn — 2,1 + 1) ofHzpkn,Z(QS”k”_l{pr“}). From the proof of Theorem 6.1 in [10],
we see that v(2pkn — 2,7+ 1) is the only primitive element in H,x,_,(QIL.4;). It fol-
lows that L sends 7 to v(2p*n — 2,7 + 1) in Hypiy—p(QL41). From [4], [10], we see that
QI — QT*™(p") sends v(2p*n — 2,7 + 1) to 7. Now Theorem 6.1 in [10], a gen-
eralization of an atomicity result in [12], says that any self map of QII,,; which sends
v(2p*n — 2, r + 1) to itself and hence its (r + 1)-st Bockstein u(2p*n — 3, r + 1) to itself is a
homotopy equivalence. Thus, the composition in the preceding paragraph is a homotopy
equivalence.
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