James-Hopf Invariants, Anick's Spaces, and the Double Loops on Odd Primary Moore Spaces

Joseph Neisendorfer

Abstract. Using spaces introduced by Anick, we construct a decomposition into indecomposable factors of the double loop spaces of odd primary Moore spaces when the powers of the primes are greater than the first power. If n is greater than 1, this implies that the odd primary part of all the homotopy groups of the 2n + 1 dimensional sphere lifts to a mod p^r Moore space.

0 Introduction

Throughout this paper, p will be a fixed odd prime and all spaces will be localized at p. Let $P^m(p^r)$ be the mod p^r Moore space $S^{m-1}\bigcup_{p^r}e^m$ which is formed by attaching an m-cell to an (m-1)-sphere by a map of degree a power p^r of the prime. The fibre of the degree p^r map $p^r\colon S^m\to S^m$ will be denoted by $S^m\{p^r\}$. In [4], [5], maps $\partial_r\colon \Omega^2S^{2n+1}\to S^{2n-1}$ were constructed with a strong relation to the double suspension $\Sigma^2\colon S^{2n-1}\to \Omega^2S^{2n+1}$, namely, the compositions $\Sigma^2\circ\partial_r\colon \Omega^2S^{2n+1}\to S^{2n-1}\to \Omega^2S^{2n+1}\to S^{2n-1}\to \Omega^2S^{2n+1}\to S^{2n-1}$ are $\Omega^2(p^r)$ and p^r , respectively. Let D(n,r) be the fibre of ∂_r .

In [11], a proof was given that, if $r \ge 2$, there is a homotopy equivalence

$$(0.1) D(n,r) \times \Omega \Big[\prod_{k=1}^{\infty} S^{2p^k n - 1} \{p^{r+1}\} \Big] \times \Omega^2 \Sigma P(n,r) \to \Omega^2 P^{2n+1}(p^r)$$

where P(n,r) is some infinite bouquet of mod p^r Moore spaces. In this paper we give another proof which is quite different from the proof in [11]. The proof given here is valid only for primes $p \ge 5$ while the proof in [11] is valid for $p \ge 3$. This happens because certain properties of Anick's spaces are known only for $p \ge 5$. It would not be surprising if this situation were remedied in the future.

Nonetheless, the proof given here has some advantages. It is a more straightforward attack on the problem and seems closer to a confrontation with the case r=1. It is a striking fact that both proofs fail in the case r=1. The failure here seems to be more enlightening, more closely related to the truth or falsity of the theorem in the case r=1, whereas the failure for r=1 in the first proof seems to be more a consequence of the method of attack. Of course, neither failure resolves the issue and there is as yet no reason to withdraw the conjecture that (0.1) is true for all $r \ge 1$.

Received by the editors July 2, 1998; revised December 21, 1998.

This work was supported in part by an NSF grant.

AMS subject classification: 55Q52, 55P35.

[©] Canadian Mathematical Society 2000.

Already in [6], it was shown that there is a homotopy equivalence

(0.2)
$$T^{2n+1}(p^r) \times \Omega \Sigma P(n,r) \to \Omega P^{2n+1}(p^r)$$

where $T^{2n+1}(p^r)$ is the fibre of the map $\Sigma P(n,r) \to P^{2n+1}(p^r)$ and sits in a fibration sequence

(0.3)
$$\Omega^2 S^{2n+1} \to S^{2n-1} \times \Pi_{r+1} \to T^{2n+1}(p^r) \to \Omega S^{2n+1}$$

with

$$\Pi_{r+1} = \prod_{k=1}^{\infty} S^{2p^k n - 1} \{ p^{r+1} \}.$$

The map ∂_r is nothing but the composition of the first map in (0.3) with projection on the first factor. It follows immediately that there is a fibration

(0.4)
$$\Omega\Pi_{r+1} \to \Omega T^{2n+1}(p^r) \to D(n,r)$$

and hence that (0.1) is equivalent to the problem of constructing a retraction $\Omega T^{2n+1}(p^r) \to \Omega \Pi_{r+1}$. In this paper we will construct this retraction with the aid of James-Hopf invariants [7], [8]. The James-Hopf invariants do not give this retraction immediately. The James-Hopf invariants must be modified and restricted. After that, some lifting of maps is required. It is there that the proof breaks down for r=1 in an essential way.

As described in [11], (0.1) implies that the natural map $P^{2n+1}(p^r) \to S^{2n+1}$ induces split epimorphisms on all homotopy groups in dimensions greater than 2n + 1 if r is \geq the maximum of 2 and n.

I wish to thank Stephen Theriault for valuable e-mail tutorials on the contents of his thesis [13]. Without his help in Section 2 to deloop the maps η and ζ , the proof given here would have been strong enough to prove only the loop of (0.1).

1 James-Hopf Invariants

The James-Hopf invariants [7], [8] are natural maps $h_j: \Omega \Sigma X \to \Omega \Sigma X^{\wedge j}$ with $X^{\wedge j} = X \wedge \cdots \wedge X$ being the *j*-fold smash. These maps have the following homological property for field coefficients: if $x_1 \in \bar{H}_*(X), \ldots, x_i \in \bar{H}_*(X)$, then

$$h_{j*}(x_1 \otimes \cdots \otimes x_i) = \begin{cases} 0 & \text{if } i < j, \\ x_1 \otimes \cdots \otimes x_i & \text{if } i = j, \\ \text{a decomposable element} & \text{if } i > j. \end{cases}$$

Throughout this paper, the coefficients will be Z/pZ and we will be concerned with the cases where $j=p^k$ and X is S^{2n} or $P^{2n}(p^r)$. In the second case, we will replace the James-Hopf invariant with a modified James-Hopf invariant \bar{h}_j as follows. Since $P^a(p^r) \wedge P^b(p^r) \simeq P^{a+b}(p^r) \vee P^{a+b-1}(p^r)$, it follows that, if $q: P^a(p^r) \to S^a$ is

Since $P^a(p^r) \wedge P^b(p^r) \simeq P^{a+b}(p^r) \vee P^{a+b-1}(p^r)$, it follows that, if $q: P^a(p^r) \to S^a$ is the natural map, there is a factorization of $\bigwedge^j q$ into $\left(P^{2n}(p^r)\right)^{\bigwedge^j} \stackrel{\alpha}{\to} P^{2jn}(p^r) \stackrel{q}{\to} (S^{2n})^{\bigwedge^j}$.

228 Joseph Neisendorfer

Hence, there is a commutative diagram

$$\Omega P^{2n+1}(p^r) \xrightarrow{h_j} \Omega \Sigma \left(P^{2n}(p^r)\right)^{\wedge j} \xrightarrow{\Omega \Sigma \alpha} \Omega P^{2jn+1}(p^r) \\
\downarrow \Omega q \qquad \qquad \qquad \downarrow \Omega \Sigma (\wedge^j q) \qquad \qquad \downarrow \Omega q \\
\Omega S^{2n+1} \xrightarrow{h_j} \Omega \Sigma (S^{2n})^{\wedge j} \xrightarrow{=} \Omega S^{2jn+1}.$$

Let the modified James-Hopf invariant $\bar{h}_j=\Omega\Sigma\alpha\circ h_j\colon\Omega P^{2n+1}(p^r)\to\Omega P^{2jn+1}(p^r)$ be the composition in the top row of (1.1). If $u=u(a-1,r)\in H_{a-1}\big(P^a(p^r)\big)$ and $v=v(a,r)\in H_a\big(P^a(p^r)\big)$ are generators, then $\bar{h}_{j_*}\big(v(2n,r)^j\big)=v(2nj,r)$. Let β^r be the r-th Bockstein. Then $\beta^r v(a,r)=u(a-1,r)$ and $\beta^r\big(v(2n,r)^{p^k}\big)=ad^{p^k-1}\big(v(2n,r)\big)\big(u(2n-1,r)\big)=\tau_k\big(v(2n,r)\big)$ [4]. Hence, $\bar{h}_{p_*^k}\big(\tau_k(v(2n,r))\big)=u(2p^kn-1,r)$.

The space $T^{2n+1}(p^r)$ is defined to be the fibre of a map $\Sigma P(n,r) \to P^{2n+1}(p^r)$ [6]. This map is defined on a bouquet of mod p^r Moore spaces as a bouquet of mod p^r Whitehead products which, since S^{2n+1} is an H-space, map to zero when composed with the map $P^{2n+1}(p^r) \to S^{2n+1}$. It follows that we may form the commutative diagram below in which the rows and columns are fibration sequences:

$$\Omega F^{2n+1}\{p^r\} \longrightarrow W^{2n+1}\{p^r\} \longrightarrow \Sigma P(n,r) \longrightarrow F^{2n+1}\{p^r\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow = \qquad \qquad \downarrow$$

$$\Omega P^{2n+1}(p^r) \longrightarrow T^{2n+1}(p^r) \longrightarrow \Sigma P(n,r) \longrightarrow P^{2n+1}(p^r)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega S^{2n+1} \longrightarrow \Omega S^{2n+1} \longrightarrow * \longrightarrow \Omega S^{2n+1}.$$

The result quoted in (0.2) gives a section $\sigma\colon T^{2n+1}(p^r)\to\Omega P^{2n+1}(p^r)$ and (1.2) implies that σ restricts to $\bar\sigma\colon W^{2n+1}\{p^r\}\to\Omega F^{2n+1}\{p^r\}$. At a certain point in the proof below we will restrict a further modification of the modified James-Hopf invariant $\bar h_{p^k}$ from $\Omega P^{2n+1}(p^r)$ to $T^{2n+1}(p^r)$ via the map σ . We will need to know the following: Suppose v_k and $\tau_k=\beta^r v_k$ are the respective images of $v(2n,r)^{p^k}$ and $\tau_k\big(v(2n,r)\big)$ in $H_*\big(T^{2n+1}(p^r)\big)$. These are primitive elements. Since $v(2n,r)^{p^k}$ is the primitive element of least length in its degree, it follows that $\bar h_{p^k_*}\circ\sigma_*$ sends v_k to $v(2p^k n,r)$ and τ_k to $u(2p^k n,r)$.

2 Theriault's Reconstruction of Anick's Spaces BD(n, r)

In order to avoid proving our decomposition theorem for triple loops instead of double loops, we shall use spaces $\mathrm{BD}(n,r)$, defined for $r\geq 1$, which are candidates for classifying spaces for the spaces D(n,r) (and, in fact, it is an elementary consequence of the product decomposition (0.1) that they are classifying spaces if $r\geq 2$). These spaces were introduced by Anick [1] for $p\geq 5$, further studied by Anick and Gray [2], and reconstructed for all $p\geq 3$ in the thesis of Theriault [13] and his subsequent paper [14]. (Theriault used the notation $T_{\infty}^{2n-1}\{p^r\}$ for the spaces we call $\mathrm{BD}(n,r)$. Anick and Gray have used variations

of this notation involving the letter T. Because of a conflict with the notation of Cohen, Moore, and Neisendorfer, this notation will not be used here.) In this section we provide a brief summary of some of the work of Theriault and derive some consequences which we use in the proof of (0.1).

First, if $p \ge 3$ and $r \ge 1$, there are H-spaces BD(n, r), [2], [13], [14], and there are factorizations of the natural maps $\Omega P^{2n+1}(p^r) \to \Omega S^{2n+1}$ into

(2.1)
$$\Omega P^{2n+1}(p^r) \to \mathrm{BD}(n,r) \to \Omega S^{2n+1}\{p^r\} \to \Omega S^{2n+1}$$

where the second and third maps are *H*-maps. There is a fibration sequence

$$\Omega^2 S^{2n+1} \to S^{2n-1} \to BD(n,r) \to \Omega S^{2n+1}$$

in which the first map has degree p^r on the bottom cell [1].

The first and second maps in (2.1) are mod p homology isomorphisms in dimensions 2n-1 and 2n. Accordingly, we shall denote the generators of both $H_*(BD(n,r))$ and $H_*(\Omega S^{2n+1}\{p^r\})$ in these dimensions by u(n,r) and v(n,r), respectively.

If $p \ge 5$, the *H*-spaces BD(n, r) are homotopy commutative, homotopy associative, have null homotopic p^r -th power maps, and the first map in (2.1) is an *H*-map [13], [14].

Second, if $p \ge 3$, the spaces BD(n,r) and the natural maps $\iota \colon P^{2n} \xrightarrow{\Sigma} \Omega P^{2n+1}(p^r) \to$ BD(n,r) satisfy the universality property [14]: if X is a homotopy commutative and homotopy associative H-space and $f \colon P^{2n}(p^r) \to X$ is any map, then there is an extension to an H-map $\bar{f} \colon BD(n,r) \to X$. The extension is unique up to homotopy.

Following a suggestion of Theriault we apply the universality property to the maps ζ and η uniquely defined for s < r by the maps of cofibration sequences

$$S^{2n-1} \xrightarrow{p^s} S^{2n-1} \xrightarrow{} P^{2n}(p^s) \quad S^{2n-1} \xrightarrow{p^r} S^{2n-1} \xrightarrow{} P^{2n}(p^r)$$

$$(2.2) \qquad \downarrow p^{r-s} \qquad \downarrow = \qquad \downarrow \zeta \qquad \downarrow = \qquad \downarrow p^{r-s} \qquad \downarrow \eta$$

$$S^{2n-1} \xrightarrow{p^r} S^{2n-1} \xrightarrow{} P^{2n}(p^r) \quad S^{2n-1} \xrightarrow{p^s} S^{2n-1} \xrightarrow{} P^{2n}(p^s).$$

There are also maps ζ and η uniquely defined by maps of fibration sequences

$$S^{2n+1}\{p^{s}\} \longrightarrow S^{2n+1} \xrightarrow{p^{s}} S^{2n+1} \quad S^{2n+1}\{p^{r}\} \longrightarrow S^{2n+1} \xrightarrow{p^{r}} S^{2n+1}$$

$$(2.3) \qquad \downarrow \zeta \qquad \qquad \downarrow p^{r-s} \qquad \downarrow = \qquad \downarrow \eta \qquad \qquad \downarrow = \qquad \downarrow p^{r-s}$$

$$S^{2n+1}\{p^{r}\} \longrightarrow S^{2n+1} \xrightarrow{p^{r}} S^{2n+1} \quad S^{2n+1}\{p^{s}\} \longrightarrow S^{2n+1} \xrightarrow{p^{s}} S^{2n+1}$$

For the remainder of this paper, let $p \ge 5$.

Theriault's universality property implies that the maps in (2.2) extend to H-maps ζ : BD $(n, s) \to$ BD(n, r) and η : BD $(n, r) \to$ BD(n, s) where the ζ and η maps are unique and

there are commutative diagrams

$$(2.4) \qquad S^{2n-1} \xrightarrow{p^{r-s}} S^{2n-1} \xrightarrow{=} S^{2n-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$BD(n,s) \xrightarrow{\zeta} BD(n,r) \xrightarrow{\eta} BD(n,s)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$QS^{2n+1} \xrightarrow{=} QS^{2n+1} \xrightarrow{\Omega p^{r-s}} QS^{2n+1}$$

Therefore, for n > 1 we have a commutative diagram with rows and columns fibration sequences

$$(2.5) \qquad * \longrightarrow \Omega^{2}S^{2n+1} \stackrel{=}{\longrightarrow} \Omega^{2}S^{2n+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^{2n-1}\{p^{r-s}\} \longrightarrow S^{2n-1} \stackrel{p^{r-s}}{\longrightarrow} S^{2n-1}$$

$$\downarrow = \qquad \qquad \downarrow$$

$$S^{2n-1}\{p^{r-s}\} \longrightarrow BD(n,s) \stackrel{\zeta}{\longrightarrow} BD(n,r)$$

and for all $n \ge 1$ we have a commutative diagram with rows and columns fibration sequences

$$(2.6) \qquad * \longrightarrow S^{2n-1} \stackrel{=}{\longrightarrow} S^{2n-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega S^{2n+1} \{ p^{r-s} \} \longrightarrow BD(n,r) \stackrel{\eta}{\longrightarrow} BD(n,s)$$

$$\downarrow = \qquad \qquad \downarrow$$

$$\Omega S^{2n+1} \{ p^{r-s} \} \longrightarrow \Omega S^{2n+1} \stackrel{\Omega p^{r-s}}{\longrightarrow} \Omega S^{2n+1}.$$

The uniqueness of ζ and η clearly implies that $\zeta \circ \zeta = \zeta$ and $\eta \circ \eta = \eta$.

We note that the universality property implies that, if $r \geq 1$, the composition $\eta \circ \zeta \colon \mathrm{BD}(n,r) \to \mathrm{BD}(n,r+1) \to \mathrm{BD}(n,r)$ is the p-th power map and, if $r \geq 2$, so is the composition $\zeta \circ \eta \colon \mathrm{BD}(n,r) \to \mathrm{BD}(n,r-1) \to \mathrm{BD}(n,r)$. Furthermore, the diagram below commutes

$$(2.7) \qquad \begin{array}{c} \operatorname{BD}(n,r) & \xrightarrow{p=\eta\circ\zeta=\zeta\circ\eta} & \operatorname{BD}(n,r) \\ \downarrow & & \downarrow \\ \Omega S^{2n+1}\{p^r\} & \xrightarrow{\Omega p} & \Omega S^{2n+1}\{p^r\} \\ \downarrow & & \downarrow \\ \Omega S^{2n+1} & \xrightarrow{\Omega p} & \Omega S^{2n+1} \end{array}$$

These equalities allow us to easily compute any composition $\eta \circ \zeta$ and any composition $\zeta \circ \eta$. For example, $\eta \circ \zeta \colon \mathrm{BD}(n,r) \to \mathrm{BD}(n,r+t) \to \mathrm{BD}(n,r+t-s)$ equals $\zeta \circ p^{t-s} = p^{t-s} \circ \zeta$ if t,t-s>0.

If we compose the modified James-Hopf invariant \bar{h}_{p^k} with the map in (2.1), we get a map

$$H_{p^k} \colon \Omega P^{2n+1}(p^r) \to \mathrm{BD}(p^k n, r)$$

and a commutative diagram with the columns fibration sequences:

$$\Omega F^{2n+1} \{ p^r \} \xrightarrow{\bar{H}_{p^k}} S^{2p^k n - 1} \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\Omega P^{2n+1} (p^r) \xrightarrow{\bar{H}_{p^k}} BD(p^k n, r) \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\Omega S^{2n+1} \xrightarrow{h_{p^k}} \Omega S^{2p^k n + 1}.$$

We shall call the map H_{p^k} the Anick-James-Hopf invariant.

3 Selick's Lifting Method

In this section, we apply a method due to Selick [12] to construct a lifting of $\Omega(p) \circ \Omega(H_{p^k})$, the loops on the composition of the Anick-James-Hopf invariant with the p-th power map.

Selick's lifting method is based on two facts. First, if $A \to \Omega S^{2n+1}$ is any map with A a space of category $< p^k$, then the composition with the p^k -th James-Hopf invariant followed by the p-th power,

$$A \longrightarrow \Omega S^{2n+1} \xrightarrow{h_{p^k}} \Omega S^{2p^k n+1} \xrightarrow{\Omega(p)} \Omega S^{2p^k n+1},$$

is null homotopic. Second, if G is a topological group with classifying space BG and Milnor filtration B_jG , then the composite map $G \stackrel{\Sigma}{\to} \Omega\Sigma G = \Omega B_1G \subseteq \Omega BG$ is a homotopy equivalence with $G \to \Omega B_jG$ an H-map for j > 1. Selick wrote his proofs only for the case k = 1, but, as he knew, they work without change for $k \ge 1$.

Let $1 < j < p^k$. Since B_jG is a space of category j, it follows that the composite map

$$B_i(\Omega^2 S^{2n+1}) \subseteq B(\Omega^2 S^{2n+1}) = \Omega S^{2n+1} \xrightarrow{h_{p^k}} \Omega S^{2p^k n+1} \xrightarrow{\Omega(p)} \Omega S^{2p^k n+1}$$

is null homotopic. The range being simply connected, we can assume that the homotopy is basepoint preserving.

232 Joseph Neisendorfer

If we restrict (2.8) to B_iG , we get a diagram

The above basepoint preserving null homotopy of $\Omega(p) \circ h_{p^k}$ on $B_j(\Omega^2 S^{2n+1})$ yields, via the covering homotopy property, a homotopy of $p \circ H_{p^k}$ defined on $B_j(\Omega^2 P^{2n+1}(p^r))$. This covering homotopy terminates at a map \bar{H} of $B_j(\Omega^2 P^{2n+1}(p^r))$ into the fibre $S^{2p^k n-1}$ and since the original homotopy is basepoint preserving it may be constructed to be a stationary homotopy on $B_j(\Omega^2 F^{2n+1}\{p^r\})$. Hence, we get a commutative diagram

$$(3.2) \qquad B_{j}(\Omega^{2}F^{2n+1}\{p^{r}\}) \xrightarrow{p \circ \tilde{H}_{p^{k}}} \qquad S^{2p^{k}n-1} \\ \downarrow \qquad \qquad \downarrow = \\ B_{j}(\Omega^{2}P^{2n+1}(p^{r})) \xrightarrow{\tilde{H}} \qquad S^{2p^{k}n-1} \\ \downarrow = \qquad \qquad \downarrow \\ B_{j}(\Omega^{2}P^{2n+1}(p^{r})) \xrightarrow{p \circ H_{p^{k}}} BD(p^{k}n, r)$$

If we loop (3.2), inject G into $\Omega B_j G$ as described in the first paragraph of this section, and include the maps σ and $\bar{\sigma}$ from the end of Section 1, we get a commutative diagram of H-maps as follows

$$\Omega W^{2n+1}\{p^{r}\} \xrightarrow{\Omega\bar{\sigma}} \Omega^{2}F^{2n+1}\{p^{r}\} \xrightarrow{\Omega(p)\circ\Omega(\hat{H}_{p^{k}})} \Omega S^{2p^{k}n-1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow = \qquad \qquad \downarrow = \qquad \qquad \downarrow$$

$$\Omega T^{2n+1}(p^{r}) \xrightarrow{\Omega\sigma} \Omega^{2}P^{2n+1}(p^{r}) \xrightarrow{H} \Omega S^{2p^{k}n-1}$$

$$\downarrow = \qquad \qquad \downarrow = \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega T^{2n+1}(p^{r}) \xrightarrow{\Omega\sigma} \Omega^{2}P^{2n+1}(p^{r}) \xrightarrow{\Omega(p)\circ\Omega(H_{p^{k}})} \Omega BD(p^{k}n, r).$$

4 Lifting the Lift

In this section we construct a lift of the map H in (3.3).

The main technical result of [10], slightly extended as in [11], is a map $T^{2n+1}(p^r) \to \Pi_r$ such that, if we compose this map with the map $S^{2n-1} \times \Pi_{r+1} \to T^{2n+1}(p^r)$, the result fits into horizontal fibration sequences

$$(4.1) \qquad C(n) \times \Pi_{1} \xrightarrow{1 \times \Pi \zeta} C(n) \times \Pi_{r+1} \longrightarrow \Pi_{r}$$

$$\downarrow \qquad \qquad \downarrow =$$

$$S^{2n-1} \times \Pi_{1} \xrightarrow{1 \times \Pi \zeta} S^{2n-1} \times \Pi_{r+1} \longrightarrow \Pi_{r}$$

where C(n) is the fibre of the double suspension $S^{2n-1} \to \Omega^2 S^{2n+1}$.

Consider the diagram of [10] in which the rows and columns are all fibration sequences, $C(n) \to S^{2n-1} \xrightarrow{\Sigma^2} \Omega^2 S^{2n+1}$ is the fibration sequence of the double suspension, and the left hand column is the evident product:

$$C(n) \times \Pi_{r+1} \longrightarrow T^{2n+1}(p^r) \longrightarrow \Omega S^{2n+1}\{p^r\}$$

$$\downarrow \qquad \qquad \qquad \downarrow = \qquad \qquad \downarrow$$

$$S^{2n-1} \times \Pi_{r+1} \longrightarrow T^{2n+1}(p^r) \longrightarrow \Omega S^{2n+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p^r$$

$$\Omega^2 S^{2n+1} \longrightarrow \qquad * \longrightarrow \Omega S^{2n+1}.$$

The fact that $S^{2n+1}\{p^r\}$ is an H-space with a null homotopic p^r -th power map [9], together with (4.1) and (4.2) looped to make everything an H-map, easily shows, using standard lifting properties of fibrations as in the proof of Proposition 1.2 of [10], that the p^r -th power map on $\Omega T^{2n+1}(p^r)$ factors as

(4.3)
$$\Omega(p^r): \Omega T^{2n+1}(p^r) \longrightarrow \Omega C(n) \times \Omega \Pi_1 \xrightarrow{1 \times \Pi \zeta} \Omega C(n) \times \Omega \Pi_{r+1} \longrightarrow \Omega S^{2n-1} \times \Omega \Pi_{r+1} \longrightarrow \Omega T^{2n+1}(p^r).$$

Notice that $W^{2n+1}\{p^r\} = S^{2n-1} \times \Pi_{r+1}$ and use the above paragraph and the fact that H in (3.3) is an H-map to conclude that $\Omega(p^r) \circ H \circ \Omega \sigma = H \circ \Omega \sigma \circ \Omega(p^r)$ factors as

Since C(n) and Π_1 are both H-spaces with null homotopic p-th power maps [5, 9], it follows that $\Omega(p^r) \circ H \circ \Omega \sigma$ is null homotopic and thus that we have a lift of $H \circ \Omega \sigma \colon \Omega T^{2n+1}\{p^r\} \to \Omega S^{2p^kn-1}$ to a map $K \colon \Omega T^{2n+1}\{p^r\} \to \Omega S^{2p^kn-1}\{p^r\}$.

234 Joseph Neisendorfer

5 Proof of the Decomposition Theorem for the Double Loop Space

From Section 2 we get a commutative diagram with the columns fibration sequences

$$S^{2p^{k}n-1}\{p^{r+1}\} \stackrel{=}{\longrightarrow} S^{2p^{k}n-1}\{p^{r+1}\} \stackrel{\eta}{\longrightarrow} S^{2p^{k}n-1}\{p^{r}\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(5.1) \qquad BD(p^{k}n,r) \stackrel{\eta}{\longrightarrow} BD(p^{k}n,r-1) \stackrel{\zeta}{\longrightarrow} BD(p^{k}n,r)$$

$$\downarrow \zeta \qquad \qquad \downarrow \zeta \qquad \qquad \downarrow \zeta$$

$$BD(p^{k}n,2r+1) \stackrel{\eta}{\longrightarrow} BD(p^{k}n,2r) \stackrel{=}{\longrightarrow} BD(p^{k}n,2r)$$

with $\zeta \circ \eta = p$ in the middle row. Since the spaces $D(p^k,0)$ do not exist, we are required to assume that $r \geq 2$. Clearly, the lower left hand square and the upper right hand square are both homotopy pullbacks, a fact that will be preserved if we apply the loop functor to (5.1).

$$K: \Omega T^{2n+1}(p^r) \to \Omega S^{2p^k n-1}\{p^r\}$$

and

$$\Omega \eta \circ \Omega H_{p^k} \circ \Omega \sigma : \Omega T^{2n+1}(p^r) \to \Omega^2 P^{2n+1}(p^r) \to \Omega \operatorname{BD}(p^k n, r) \to \Omega \operatorname{BD}(p^k n, r-1)$$

yield a map

Hence, the maps

$$L \colon \Omega T^{2n+1}(p^r) \to \Omega S^{2p^k n-1}\{p^{r+1}\}\$$

and hence a map into the product

$$\bar{L} \colon \Omega T^{2n+1}(p^r) \to \Omega \Pi_{r+1}.$$

We claim that the composition $\Omega\Pi_{r+1} \to \Omega T^{2n+1}(p^r) \to \Omega\Pi_{r+1}$ is a homotopy equivalence, which as mentioned in Section 0 is equivalent to proving the product decomposition in (0.1).

Sections 1 and 2 imply that ΩH_{p^k} maps the transgression τ of τ_k in $H_{2p^kn-2}\left(\Omega T^{2n+1}(p^r)\right)$ to the generator $u(2p^kn-2,r)$ of $H_{2p^kn-2}\left(\Omega\operatorname{BD}(p^kn,r)\right)$. Then $\Omega\eta$ sends it to the generator $u(2p^kn-2,r-1)$ of $H_{2p^kn-2}\left(\Omega\operatorname{BD}(p^kn,r-1)\right)$. From the homological properties of the fibration in the middle column of (5.1), it follows that L sends τ to the generator $v(2p^kn-2,r+1)$ of $H_{2p^kn-2}(\Omega S^{2p^kn-1}\{p^{r+1}\})$. From the proof of Theorem 6.1 in [10], we see that $v(2p^kn-2,r+1)$ is the only primitive element in $H_{2p^kn-2}(\Omega\Pi_{r+1})$. It follows that L sends τ to $v(2p^kn-2,r+1)$ in $H_{2p^kn-2}(\Omega\Pi_{r+1})$. From [4], [10], we see that $\Omega\Pi_{r+1} \to \Omega T^{2n+1}(p^r)$ sends $v(2p^kn-2,r+1)$ to τ . Now Theorem 6.1 in [10], a generalization of an atomicity result in [12], says that any self map of $\Omega\Pi_{r+1}$ which sends $v(2p^kn-2,r+1)$ to itself and hence its (r+1)-st Bockstein $u(2p^kn-3,r+1)$ to itself is a homotopy equivalence. Thus, the composition in the preceding paragraph is a homotopy equivalence.

References

- D. Anick, Differential Algebras in Topology. Res. Notes Math. 3, A. K. Peters Ltd., 1993.
- D. Anick and B. Gray, *Small H spaces related to Moore spaces*. Topology **43**(1995), 859–881. F. R. Cohen and M. E. Mahowald, *A remark on self-maps of* $\Omega^2 S^{2n+1}$. Indiana Univ. Math J. **30**(1981), 583–
- F. R. Cohen, J. C. Moore and J. A. Neisendorfer, Torsion in homotopy groups. Ann. of Math. 109(1979), [4] 121-168.
- , The double suspension and exponents of the homotopy groups of spheres. Ann. of Math. 110(1979), [5] 549-565.
- , Exponents in homotopy theory. In: Algebraic Topology and Algebraic K-theory (ed. W. Browder), [6] Princeton Univ. Press, 1987.
- I. M. James, Reduced product spaces. Ann. of Math. 62(1955), 170–197.
- , On the suspension sequence. Ann. of Math. **65**(1957), 74–107. [8]
- [9] J. A. Neisendorfer, Properties of certain H-spaces. Quart. J. Math. Oxford Ser. (2) 34(1983), 201-209.
- , The exponent of a Moore space. In: Algebraic Topology and Algebraic K-theory (ed. W. Browder), [10] Princeton Univ. Press, 1987.
- , Product decompositions of the double loops on odd primary Moore spaces. Topology, to appear. [11]
- P. S. Selick, *Odd primary torsion in* $\pi_k(S^3)$. Topology **17**(1978), 407–412.
- [13] S. D. Theriault, A reconstruction of Anick's fibration, University of Toronto Thesis, 1997.
- [14] _, Properties of Anick's Spaces. Preprint.

University of Rochester Rochester, New York U.S.A.