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VALUES OF POLYNOMIALS
OVER FINITE FIELDS

JOACHIM VON ZUR GATHEN

Let ¢ be a prime power, F; a field with ¢ elements, f € Fq[z] a polynomial of
degree n 2> 1, V(f) = #f(F,) the number of different values f(a) of f, with
a € Fg, and p = g — V(f). It is shown that either p = 0 or 4n* > g or 2pn > g.
Hence, if ¢ is “large” and f is not a permutation polynomial, then either n or p
is “large”.

Possible cryptographic applications have recently rekindled interest in permutation
polynomials, for which p = 0 in the notation of the abstract (see Lidl and Mullen [10}).
There is a probabilistic test for permutation polynomials using an essentially linear (in
the input size nloggq) number of operations in F, (von zur Gathen [5]). There are
rather few permutation polynomials: a random polynomial in Fy[z] of degree less than
g is a permutation polynomial with probability ¢!/q?, or about e~9. For cryptographic
applications, we think of ¢ as being exponential, about 2V, in some input size parameter
N; then this probability is doubly exponentially small: e-2"

In the hope of enlarging the pool of suitable polynomials, one can relax the notion
of “permutation polynomial” by allowing a few, say polynomially many in N, values
of Fg not to be images of f:p = NOQ) | There is a probabilistic test for this property,
whose expected number of operations is essentially linear in nplogg (von zur Gathen
[5]). The purpose of this note is to show that this relaxation does not include new
examples with ¢ large and n, p small: if p # 0, then either +4n* > g or 2pn > ¢
(Corollary 2 (ii)).

The theorem below provides quantitative versions of results of Williams [15], Wan
[14], and others, which we now first state. As an application, we will show that a naive
probabilistic polynomial-time test for permutation polynomials has a good chance of
success; this could not be concluded from the previous less quantitative versions.

If p= charF,, then a — a® is a bijection of Fy. If f = g(zP) for some g € F,[z],
then V(f) = V(g), and, in particular, f is a permutation polynomial if and only if g
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is. Replacing f by g (and repeating this process if necessary) we may therefore assume
that f isnot a pth power, that is, that f'# 0. Then f is called separable. We consider
the difference polynomial
* z)—
p=f@ W) gy,
zT-y

and the number o of absolutely irreducible (that is, irreducible over an algebraic closure
of F,) factors in a complete factorisation of f* into irreducible factors in Fy[z, y]. We
call f ezceptionalif o = 0. Any linear f is exceptional.

FacTs. Let f € Fy[z] be separable of degree n.

(1) (MacCluer [12], Williams [18], Gwehenberger [7], Cohen [3]). If f is
exceptional, then f is a permutation polynomial.

(i1) (Davenport and Lewis [4], Bombieri and Davenport [2],
Tietaviinen [13], Hayes [8], Wan [14]). There exist c1, ¢z, ... such that
for any separable f € Fgy[z] of degree n we have: If ¢ > ¢n and f is a
permutation polynomial, then f is exceptional.

(iii) (Williams [15)) If g is a fixed prime, large compared with n, say ¢ >
qo(n), and p = O(1) (that is, p depends only on n, but not on gq), then
f is exceptional (hence, by (i), a permutation polynomial).

(iv) (von zur Gathen and Kaltofen [6], and Kaltofen [9]) There is a proba-
bilistic test whether f is exceptional using a number of operations in Fg
that is polynomial in nloggq.

We will establish quantitative versions of Facts (ii) and (iii). The proof follows the
lines of Williams’ argument; a central ingredient is, as in Williams’ and Wan’s work,
Weil’s theorem on the number of rational points of an algebraic curve over a finite field.

THEOREM 1. Let n > 1, f € Fy[z] separable of degree n, V(f) the number of
valuesof f, p=q—V(f),and 0 <e <8.

(i) If ¢ > n* and f is a permutation polynomial, then f is exceptional.
(ii) If ¢ > e 2n* and o is the number of absolutely irreducible factors of f*
in Fylz, y|, then p > (0 —€)g/n.

PROOF: Since any linear polynomial is a permutation polynomial and exceptional
(that is, & = 0), we may assume that n > 2. For 1 <i < n,let

Ri={a € Fy: #(f7'({a})) =}

be the set of points with exactly i preimages under f,and r; = #R;. Then |J R; =
1€i1<n
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f(Fg) is a partition, and
(1) Y ri=q-p,
(2) Y ir=q.

Subtracting (1) from (2), we find

3) Y G-Dri=p

2<ign

Let
S ={(a, b) € Fj:a # b, f(a) = f(b)},
and s = #S5. We map every (a,b) € S to c = f(a) € |J R;; every ¢ € R; with

2<ign
i 2> 2 has exactly i(z — 1) preimages under this map. Together with (3), this shows
that

(4) np> Y i(i-1)r=s.

2€ig<n

We may assume that f is not exceptional, and it is sufficient to prove p > 0 if ¢ > n*

for (i), and pn > (0 —€)g if ¢ > €7 2n* for (ii). We write f* = hy---hohot1 -+ by,
with hi, ..., h, € Fg[z, y] irreducible, and h; absolutely irreducible if and only if
1< o. Wehave 0 2 1.

Let K be an algebraic closure of Fg, and for 1 <i < 7 let

T'- = {(a, b) € K?: h,-(a, b) = 0}

be the curve defined by k;, X; = X; N F: its rational points, n; = degh;, and X =

U X:. We observe that f(z) — f(y) is squarefree, since for a factor h? one finds,
1<igr

by differentiating, that h divides ged (f'(z), f'(y)) = 1. In particular, £ — y does not
divide f*, and if A C K? is the diagonal, then X; # A for all i. Then
(5) n—1=degf*-degA> #(XNA)>#XNA),

by Bezout’s theorem. Similarly,

nin; > #(X:NX;) > #(X:i N X;)
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for 1 € i < j < 7. Furthermore, by Weil’s Theorem (see Lidl and Niederreiter [11,
p-331]) we have

#Xi2q+1- ((n.—l)(n.—2)q1/2+n )

for 1 £ i € o. Together, we obtain

(6) #x># U x> Y #xi—- Y #xinXxy)
1<io 1<ig€o 1<i<j<o
>o0q— Z ((n.' —1)(n; — 2)¢"/? + nf) - Z nin;.
1€i<o 1€i<j<o
The maximum value of Y (ni-1)(ni—2) with Y =n;<n-1and 1<
1<i<o 1<i<o
ny, ..., Ny is achieved at (n;,...,n,) = (n-o,1,...,1), where it equals

(n—o—1)(n—-0-2) < (n—2)(n—3). Adding the terms n? into the last sum, we

find again that )  n;n; reaches, under the given conditions, its maximum at the
1€i<i<o

same (ny, ..., n,). Its value there is (n — o)’ + (¢ — 1)(n — o) + (0 — 1)0/2. This
function achieves its maximum (n —1)* at o = 1.

Since X \ (X N A) C S, we have from these estimates and (4), (5), and (6)
(7 np=2s2#X—(n-1)
> 09— (n—2)(n-23)¢"* - (n-1)’ - (n-1).

To prove (i), it is sufficient to have the right hand side of (7) nonnegative. This is

clearly the case for n < ¢'/*, since & > 1. To prove (ii), we note that

6+e+v36 8€+e2
10/

Using this for v = ¢'/%, assuming ¢ > ¢~2n* (which implies u > 2¢~1/2 > §), and

> u(—5veu? + (6 + €)u — Ve) for u >

using (7), we have
np>oq-— ((n —2)(n—3)¢""? +n(n -~ 1))

>0q- (eq+ ( 5vEg'/* + 647 +eg!l? — Veg'/*))

> (o —€)q.

O

COROLLARY 2. Let n > 1, f € F [z] separable of degree n, V(f) the number
of values of f, p=q — V(f), and assume that ¢ > 4n*.

(i) If o is the number of absolutely irreducible factors of f* in Fy[z, y], then
p>(oc—1/2)q/n.
(i) I p < q/2n, then f is a permutation polynomial.
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PROOF: (i) Set € = 1/2 in (ii) of the Theorem. (ii) If f is not a permutation
polynomial, then it is not exceptional (Fact (i)); hence ¢ > 1 and p > ¢/2n by (i). 0O

In various statements (the numbering of which is indicated below) of Lidl and
Niederreiter [11], we can replace “there exist ¢, ¢z, ... such that for all ¢ > ¢,” by
“for all ¢ > n*”; we refer to their text for a complete bibliography.

COROLLARY 3. Let ne N, n > 1, F, afinite field with q elements, and assume
g>nt.
(i) (Corollary 7.30) Suppose that f € Fq[z] is separable of degree n. Then
f is a permutation polynomial if and only if f is exceptional.
(i1) (Theorem 7.31) Suppose that gcd (n, q) =1 and F, contains an nth root
of unity, different from 1. Then there is no permutation polynomial of
F, with degree n.
(iii) (Corollary 7.32) Suppose that n is positive and even, and ged(n, g) = 1.
Then there is no permutation polynomial of F, with degree n.
(iv) (Corollary 7.33) Suppose that gcd(n, g) = 1. Then there exists a permu-
tation polynomial of F, with degree n if and only if ged(n, g—1) =1.

We obtain a probabilistic polynomial-time algorithm to test whether a given poly-
nomial f € Fg[z] of degree n is a permutation polynomial, as follows. We first note
that any u € F, has exactly one preimage under f (that is, #f~'({v}) = 1) if and
only if ged (2?9 — z, f — u) is linear. Calculating 29 —z mod f —u by repeated squar-
ing takes O™~(nlog q) operations, and the gcd calculation then O™~(n) operations in F,
(Aho, Hopcroft and Ullman [1, Section 8.9]). (The “soft O” notation O~(m) means
O(m log* m) for some fixed k, thus ignoring factors logm.) If ¢ < 4n*, we test for
each u € F, whether it has one (or at least one) preimage under f. This costs O~(ng)
or O~ (n®) operations in F,.

If ¢ > 4n*, we have the following probabilistic algorithm, with a confidence parame-
ter € > 0 as further input. We choose k = [2nlog, e 7] elements u € F, independently
at random, and test whether u has exactly one preimage under f. If this is not the
case for some u, then f is not a permutation polynomial. If it is true for all u tested,
then we declare f to be a permutation polynomial. It may of course happen that f is
not a permutation polynomial and this test answers incorrectly; the probability of this

_ k _ 9 2n-k/2‘n
(‘1 P) < (‘1 2n) < (e—l)k/’t’n <e,

q q
by Corollary 2 (ii). The cost is k ged’s or O~ (nloge™ - nlog q) operations in F,.

event is at most

This test is conceptually much simpler than the one in von zur Gathen [5]; however,
that test is more efficient, using only O~ (nloge~!) operations (if € < g~*).
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