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DIMENSION THEORY VIA REDUCED 
BISECTOR CHAINS 

BY 

LUDVIK JANOS 

ABSTRACT. Let (X, d) be a metric space and Y and Z subsets of 
X. We say that Z is a bisector in Y and write Y>Z iff Y^Z 
and there are two distinct points yl5 y2€Y such that 
Z = {z:d(z,y1) = d(z,y2) and zeY}. By a reduced bisector chain 
in (X, d) of length n we understand a chain X = 
X0>X!t>- • •>Xn_1>Xn such that dimXn<0 and d i m X ^ X ) . 
By r(X, d) we denote the maximum length of reduced bisector 
chains in (X, d). For a metrizable topological space X we introduce 
the topological invariant r(X) as the minimum of r(X, d) taken over 
the set of all metrizations d of X. We prove that the function r(X) 
coincides with the dimension of X on the class of compact metric 
spaces. 

1. Introduction and notation. If xl9 x2e X are two distinct points in a metric 
space (X, d) we denote by B(xl9 x2) the bisector of xu x2, i.e., the set 
{x : d(x, xx) = d(x, x2)}. If Y is a subset of (X, d) we say that Y is a bisector in 
(X, d) iff there are two distinct points xu x2 in X such that Y = B(xt, x2). The 
relevancy of this concept to topological dimension, denoted in the sequel by 
dim X, has been brought to light in our recent paper [3] where the following 
result is obtained. 

THEOREM 1.1. If in a compact metric space (X, d) every bisector has dimen­
sion < n -1 then dim X < n. (n = 0 , 1 , . . . ) 

This result depends heavily upon a theorem of J. Nagata (see [4] Theorem 
11.2. page 18) and our observation that the family of open half-spaces of a 
compact metric space (X, d) forms a subbasis for the topology of X (see [3] 
Lemma 2.1.) 

The inductive character of Theorem 1.1. calls naturally for the consideration 
of consecutive formation of bisectors. If Y and Z are subsets of a metric space 
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(X, d) we say that Z is a bisector of Y and write Y>Z iff Y^Z and Z is a 
bisector in ( Y, d) where ( Y, d) is the metric space induced by the metric d on 
the subset Y Thus we have defined the binary relation > between subsets of X 
which permits us to introduce a bisector chain (be) as a sequence {XJ" of 
subsets of X satisfying Xt\>Xi+1 for i = 0, 1 , . . . , n-1, and shall write it in the 
form: 

x0>xi>-..>xn_1>xn (*) 

In [3] we considered chains starting with X, i.e., X = X0 and proceeding as far 
as possible, i.e., the terminal member Xn was either a singleton or bisector-
empty which means X n >@, where © denotes the empty set. At that time we 
were not aware of certain results due to J. H. Roberts [5] indicating the 
importance of be with at most zero-dimensional terminals. 

DEFINITION 1.1. A bisector chain (*) in a metric space (X, d) is said to be a 
reduced bisector chain (rbc) iff X = X0, d i m X n < 0 and d imX n _ 1 >0 . The 
integer n is called the length of the rbc. The reduced bisector chain has length 
zero iff it is of the form X = X0 where the metric space (X, d) has dimension 
zero. 

The question arises as to whether a metric space (X, d) possesses a rbc. If 
d i m X = 0, then, by the definition, the be X = X0 is the only rbc in (X, d) and 
its length is zero. Assume now dim X > 0. This implies that X is an infinite set 
which in turn implies the existence of bisectors B(xl9 X2) in X If for some 
xl9 x2eX the bisector B(x1,x2) is empty, i.e., dimB(x1,x2)=-I, then the 
chain X O © is a rbc of length 1. If B(xx, x2) ^ @ the dimension of B(xu x2) is 
either 0, in which case the chain X>B(xl9 x2) is again a rbc of length 1, or the 
dimension of B(xu x2) is > 0 and the process continues applying the above 
reasoning to B(xx,x2). This means that if d i m X > 0 three cases may be 
considered: 

(1) there exists in (X, d) an infinite chain X = X 0 >X 1 t> - • • > X n > • • • 
with dim Xn > 0 torn = 0 , 1 , 

(2) There exists in (X, d) a rbc of arbitrary large length. 
(3) The length n of rbc's in (X, d) is bounded. 
We now assign to every nonempty metric space (X, d) a non-negative integer 

(or oo) which we call the maximal length of rbc in (X, d) and denote it by 
r(X, d) as follows: 

(a) We set r(X, d) = 0 iff dim X = 0. 
(b) We set r(X, d) = max {n : there exists a rbc in (X, d) of length n} iff 

d i m X > 0 and case (3) takes place. 
(c) We set r(X, d) = & iff d i m X > 0 and either case (1) or case (2) takes 

place. 
For a metrizable topological space X we introduce the topological invariant 
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r(X) as the minimum of {r(X, d):d£M(X)} where M(X) denotes the set of all 
metrics on X inducing the topology of X, or expressed in equivalent terms: 
r(X) is the minimum of r(Y, d), where (Y, d) ranges through the class of metric 
spaces homeomorphic to X. 

The purpose of this paper is to prove the following two statements. 

THEOREM 1.2. The function r(X) coincides with dim X on the class of compact 
metric spaces. 

THEOREM 1.3. For the n-dimensional Euclidean space En we have r(En) = n 
for n = 1 ,2 , . . . 

2. Relation between bisectors and the geometric theory of J. H. Roberts. 

LEMMA 2.1. Let Y0 > Y 1 > - • • >Yn be a be in a metric space (X, d). Then 
there exists a be X = X0l>X1[>- • ->Xn in (X,d) such that Y ^ X j H Y0 for 
i = 0, 1 , . . . n. 

Proof. For i = l,2,...n, Yt is a bisector in Yt-l9 hence there are two 
distinct points y U and y"_! in Y ^ such thatYf = B(y[_l, y"_i)n Y ^ . 

Defining recursively Xx = J3(yo, yS) 

X2 = B(y[,y'[)Ç\Xx 

and • 

we obtain the chain of required properties. 

COROLLARY 2.2. The function r(X) is monotonie, i.e., if Y is a nonempty 
subset of a metrizable topological space X then we have r (Y)<r(X). 

Proof. Let deM(X) be a metric on X for which r(X) = r(X, d). Assume 
now that the statement is false, i.e., r(X)<r(Y). Since r(Y)<r(Y, d) we obtain 
r(X, d)<r(Y, d). The assumption r{X)<r(Y) implies that r(X) is finite, say 
n > 0 . Thus, there exists in (Y,d) a be Y=Y0>Y1>-->Yn>Yn+l for 
which d i m Y n > 0 . Lemma 2.1. implies the existence of a be X = 
X0 > X1 > - • • > Xn. > Xn + 1 with Yn = Xn H Y0. Since Yn c Xn and the dimension 
function dim X is monotonie we have that dim Xn > 0 implying that r(X, d) is 
at least n + 1 contrary to our assumption. 

In order to formulate the geometrical result of J. H. Roberts we need to 
make some trivial observations concerning the be in Euclidean spaces En. 

LEMMA 2.3. Every bisector Y in the n-dimensional Euclidean space (En, e) 
(n = l , 2 , . . . ) equipped with the Euclidean metric e is a hyperplane, i.e., an 
affine subspace ofEn of dimension n-\, and conversely every affine subspace of 
dimension n — \ is a bisector in (En, e). 
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Proof. If x1,x2eEn and x1^x2, the bisector B(x1,x2) can be defined as a 
hyperplane passing through the point 1/2(JC! + x2) and orthogonal to the vector 
x2 — x1; it is clear that every hyperplane can be obtained this way. 

COROLLARY 2.4. If En = Y0>Y1>- - ->Yk is a be in the Euclidean space 
(En, e) (n = 1, 2 , . . . ) then each member Yt is an affine subspace of dimension 
n — i, J = 1, 2 , . . . , fc, and conversely, if Y is an affine subset of En of dimension 
m(0< m < n) then there exists a be En = Y0>YX>- • • >Yk = Y of length fc = 
n — m connecting En and Y. 

Proof. Straight-forward by induction on K. 

THEOREM 2.5. Let X be a nonempty subset of (E2n+1, e) such that dim (XH 
Y ) < 0 for every affine subset Y of E2n+1 of dimension n + 1 . Then r(X, e)<n 
where (X, e) is the metric space induced on X by the euclidean metric e. 

Proof. Assume that X = X0\>Xr\>' • • >Xk is an arbitrary be in (X, e) such 
that d i m X k > 0 . Lemma 2.1. implies that there is a be in (E2 n + 1 , e) E2n+1 = 
Y 0 > Y 1 >- • • \>Yk with Xk = YknX. Since dimXk > 0 and dim (YD X ) < 0 for 
every affine subset of dimension n + 1, this implies that dim Yk > n + 1 . On the 
other hand we know that the dimension of Yk is precisely 2n + l —fc, so that 
fc < n showing that no rbc in (X, e) can be longer than n. 

We now confront this result with the theorem of J. H. Roberts ([5] Theorem 
12). 

THEOREM 2.6. / / a separable metric space X has dimension n then there exists 
a topological embedding f:X^>E2n+1 such that dim (/(X) Pi Y) < 0 for every 
affine subset Y of E2n+1 of dimension n + 1. 

COROLLARY 2.7. If X is a separable metrizable space then r ( X ) < d i m X 

Proof. If dim X = oo there is nothing to prove, therefore assume dim X finite, 
say n > 0 . Theorem 2.6. implies that a homeomorphic image of X, namely /(X) 
satisfies the hypothesis of Theorem 2.5. furnishing r(f(X),e)<n from which 
our assertion follows. 

3. Proofs of Theorems 1.2. and 1.3. To prove Theorem 1.2. means to show 
that for every non-negative integer fc > 0 we have 

r(X)=k if and only if d i m X - f c (**) 

for every compact metrizable space X We shall proceed by induction on fc. For 
fc = 0 the statement (**) is true by the very definition of r(X). In order to carry 
out the induction step we need 

LEMMA 3.1. Let X be a metrizable topological space with r(X)<^, and 
assume that YaX is a bisector in (X, d) where deM(X) is such that r(X) = 
r(X,d). Then r(Y)<r(X). 
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Proof. The length of an rbc in (Y9d) is not greater than r ( X ) - l . Thus 
r(Y9d)<r(X) and therefore r(Y)<r(X). 

Now assume that the validity of the statement (**) has been established for 
all values k = 0 , 1 , . . . , n and assume 

(a) X compact and r(X) = n 4-1. Consider the metric space (X, d) where d is 
such that r(X) = r(X, d). Lemma 3.1. implies that every bisector Y in (X, d) is 
such that r(Y)<n which by the induction hypothesis yields that dim Y<n 
from which we conclude, using Theorem 1.1. that d imX<rc + l. Confronting 
this result with Corollary 2.7., we finally have dim X = n + 1 , which proves one 
half of the statement. To prove the second half assume 

(b) X compact and d i m X = n + l. From Corollary 2.7. we know r(X)< 
n + 1. But if r (X)<n + l then the induction hypothesis would yield r(X) = 
dim X < n + 1 contrary to the assumption. Thus we have r(X) = n + 1 and the 
proof of Theorem 1.2. is complete. 

We now prove Theorem 1.3. as an easy corollary of Theorem 1.2. and the 
monotonie property of the function r(X). 

From Corollary 2.4. follows that r(En, e) = n(n = 1, 2 , . . . ) implying that 
r(E")<rc(n = l , 2 , . . . ) . 

Denoting by In the unit cube in En we obtain from Theorem 1.2. that 
r(In) = n(n = 1, 2 , . . . ) and since In a En Corollary 2.2. yields finally r(En) = 
n(n = 1, 2 , . . . ) what had to be shown. 

4. Some logical aspects of our results. In our paper [3] we introduced the 
function b(X9 d) as the maximum length of bes in a metric space (X, d) and the 
corresponding topological invariant b(X) as the minimum of {b(X9d):de 
M(X)}. 

Despite similarity between the definitions of fo(X, d) and r(X, d) there is an 
essential difference between these notions from the point of view of formal 
logic and we need some definitions to bring this distinction to light. 

DEFINITION 4.1. For a nonempty metric space (X, d) we introduce the 
ternary relation . R c X x X x X on X setting (xu JC2, x3)eR iff xx^x2 and 
X3 G B\Xi, X2)' 

REMARK 4.1. The relation JR is defined naturally by the concept of bisector 
JB(JC15 x2). In the sequel we shall also deal with two quaternary relations on 
X, J c X x X x X x X and E c i X x X x X x X defined on a metric space (X, d) 
by (xl9 x2, x3, x4) G I iff d(xl9 x2) ^ d(x3, x4) and (xl9 x2, x3, x4) e E iff d(xl9 x2) = 
d(x39 x4) respectively. It is obvious that E can be expressed in terms of I and R 
in turn can be expressed in terms of E. We can say that the relations R9 E and / 
introduce on X the bisector-, equational- and inequality-structure, respec­
tively. The corresponding languages which can talk about these structures shall 
be denoted by L, LE and Lz respectively. 
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DEFINITION 4.2. Let L denote the first order language containing besides the 
logical connectives, - i , V, A, - » , 3 and V and variables xl9 x2, •.. only one 
ternary predicate symbol JR*. If P is a property of a metric space we say that P 
is expressible in the language L provided there is a sentence S (i.e., a formula 
without free variables) in L such that a metric space (X, d) has the property P 
if and only if (X, d) is a model of S, assuming that the predicate symbol R* is 
interpreted by R in X The fact that (X, d) is a model of S will be denoted by 
(X,d)l=S. 

REMARK 4.2. Analogously we understand the expressability of P in the 
language LE or Lz. Since L can be conceived as a sublanguage of LE and LE as 
a sublanguage of Lx the expressability in L implies that in LE and conse­
quently in Lj. 

THEOREM 4.1. The property b(X, d) = n for n = 0 , 1 , . . . is expressible in L. 

Proof. The sentence S 0 = VX1VX2VJC3—\R*(X1X2X3) says precisely that every 
bisector in (X, d) is empty. Applying this result to any bisector B(x4, x5) of a 
metric space (X, d) we can express the fact that fo(X, d ) < l by the formula 
S[ = Vx1\/x2Vx3Vx4Vx5 [ J R*(X 4 X 5 X 1 )A^*(X 4 X 5 X 2 ) A R*(XAX5X3) -*-IR*(X1X2X3\. 

Proceeding inductively we can produce formulas S'n expressing the property 
b(X, d) N Sn(n = 1 ,2 , . . . ) . Thus the statement b(X, d) = 0 is equivalent to 
(X, d)\=S0 and the statement b(X,d) = n for w = l , 2 , . . . is equivalent to 
(X, d) N Sn where Sn = S'n A ~ I S ^ and where we set SQ = S0. 

It is clear that this statement is no longer true if we pass from the property 
b(X,d) = n to the property r(X,d)=n since the conditions d i m X n < 0 and 
d imX n _ 1 >0 involved in the definition of rbc are not in any obvious way 
describable in terms of the relation R. This is the main reason why the results 
obtained in this paper cannot be considered as definite. 

DEFINITION 4.3. To each sentence S in the language L we assign the 
topological property Ps defined on the class of metrizable spaces as follows. We 
say that a space X has the topological property Ps iff there is a metric d e M(X) 
for which (X, d)\=S, and we express this by saying that PS(X) is true. 

DEFINITION 4.4. Let P be a topological property and C a subclass of the class 
of metrizable spaces. We say that P is expressible in the language L on the class 
C provided there are sentences Su S 2 , . . . ,Sm in L and a formula 
F(Pu P2> • • • J Pm) °f the sentential logic such that for XeC the truth value of 
P(X) coincides with that of F(PSi(X), P S l (X) , . . . PSm(X)]. 

THEOREM 4.2. The topological property b(X) = n for n = 0 , 1 , . . . is expressible 
in L on the class of metrizable spaces. 
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Proof. If n = 0 the fact b(X) = 0 means that there is d e M{X) with (X, d) \= 
S0 showing that the property b(X) = 0 is expressible. Assume now n > 1. In this 
case the fact b(X) = n means that there is d e M(X) for which b(X, d) = n but it 
is not true that there is such d'eM{X) for which b(X, d') = n-\. Thus 
the statement {[deM(X)(x, d)\=Sn] and not [d'eM(x)(X, d')£S^]} is 
the desired expression of the property b{x) = n. 

COROLLARY 4.3. The property d imX = 0 is expressible in L on the class of 
compact metrizable spaces. 

Proof. This follows readily from the above theorem and the basic result of 
our paper [3] where we proved that if X is compact then d imX = 0 iff 
b(X) = 0. 

Our main conjecture is that for arbitrary n > 0 the property dimX=n is 
expressible in L on the class of compact metrizable spaces. 

Our belief in the truth of this conjecture is supported by a result of J. de 
Groot (see [1] or [4] page 154, Corollary to Theorem V.5). This result can 
easily be translated in the language Lx and it reads: 

THEOREM 4.4. (De Groot) The property dim X= n(n = 0 , 1 , . . . ) is expressible 
in the language Lx on the class of compact metrizable spaces. 

Analogously, our result [2] on the metric rigidity if translated in the 
equational language LE reads: 

The property d imX = 0 is expressible in the language LE on the class of 
separable metrizable spaces. 
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