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1. General Theory. We consider a volume of material, divided into two regions 1 and 2.
each of density />, by a moving surface S. On S a change of phase occurs, at a definite tempera-
ture (which we may take to be zero) and with absorption or liberation of a latent heat L per
unit mass. If 0lt klt Kx are the temperature, thermal conductivity and diffusivity of phase 1,
and 02> &2> -^2 corresponding quantities for phase 2, the surface S is the isothermal

ex(x, y, z, t) =O = 02(z, y, z, t) (1)

and the boundary condition on this surface is

^ ^ - | (2)

Subscript letters denote partial differentiation.
The condition for a simple solution is thus seen at once to be that 6V 62 separately satisfy

. when 0 = 0 (3)

For example, in the one-dimensional cases of linear, axially symmetrical or spherically sym-
metrical flow, we require

0r
2/0( = const, when 0=0, .• (4)

where r is the appropriate space co-ordinate.
In addition, 6V 02 must, of course, satisfy

(5)

which for the above one-dimensional cases become

[ ^ ^ (6)
where n=0, 1, 2 in the three cases, respectively.

2. Particular solutions. We consider solutions of the form

e=v(i), (7)
where ^=<f,{r) t/>(t) (8)

I t has been shown elsewhere that the only such solutions are :

- 4 erf* ( l
rJ^_)+D, (9)

I \2jK(t+E)J K

i n e a r c a s e \ e A * K t [ B A C ^ ] D (10)
(11)

) = 1-erfc(a:)=^r I e~u du; Ei(x)=\ e~udu/u.
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A x i a l l y \ ( ^ ] )

symmetricalje=e-^t[Bjo(Ar)+CY0(Ar)UD, (13)
[ (14)

Spherically
symmetrical
case

eA.'Kt

r
(16)

- + £ (17)
r

Of these we must discard the trivial solutions (11), (14) and (17) ; and also (12) and (16), which
cannot be made to satisfy (4). (4) is, however, satisfied by (9), (12) and (15), and also by (10),
if either B or C is zero.

Solution (10), which was mentioned by Stefan (1), defines a boundary of fusion moving
with constant speed. It is of restricted interest, For example, consider the solution

61=B[e-^-A^-l], r>AK1t, (18)

6Z = C [etMAKlt-r) _ l] , 0 < r < AKJ.

This describes the behaviour of a semi-infinite solid, whose initial temperature is

0 1 = .B(e-^- l ) ,

and whose surface temperature at r — 0 is

0a = C(e*2 -1).

However, B and G must, by (2), satisfy

k2CIK2-h1BjK1=LP (19)

(9), (12) and (15) define boundaries of fusion whose position varies linearly with the square
root of the time, measured from an appropriate zero. Solutions based on (9) are, in fact, well-
known, and correspond to problems of some importance (2). (12) and (15) also yield solutions
of practical interest, which do not appear to have been studied.

3. Propagation of a Boundary of Fusion from a line source of heat. Let Q units of heat be
generated per unit time, per unit length of the line r = 0, in an infinite fusible solid, whose
initial temperature is - &, referred to the melting point as zero. A cylindrical boundary of
fusion, r=R(t) say, then advances into the solid. Let suffices 1, 2 refer to the solid and liquid
phases respectively. We assume a solution :

-B, (20)
62= -CEi(-r2/4:K2t)-D, (21)

whereupon
B(t)=aJt, (22)

where a is a constant to be determined.
Then

A (23)
(24)

See footnote, p. 42.
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When t = 0, R = 0, and 61= -B. Hence

5 = 0 (25)
Also,

dr r ' dr
Thus

r_>o L or
so that

Again, by (2), (22) and (26),

/C^yG * — K-yJxH 1 = = — , \^&)

where L, p are the latent heat and density of the material. (23), (24), (25), (27) and (28) deter-
mine A, B, C, D and a. Eliminating A, B, C, D, we have, for a :

(29)

The left side of (29) decreases monotonically from <2/4TT when a = 0 to - oo when a = oo . Hence
the equation has always one, and only one, real positive root, a and the solution is :

62 = JQr[Ei(-<x2l4:K2)-Ei{-ril4JC!it)], 0<r<<x«/«. (30)

As an example, consider an ice-water system, for which

Water : kz =0-00144 Cal/cm. sec.0 K. K2 = 0-00144 cm.2/sec.
Ice : jfcj = 0-0053 Cal/cm. sec.° K. Kx = 0-0155 cm.2/sec.

and Lp (ice) = 73-6 Cal/cm.3

Suppose that -@= - 2 , and # = 2-38 Cal/cm. sec, which represents approximately the heat
supplied by a very thin wire, of resistance 10I2/cm., carrying a current of 1 amp. Then (29)
yields

a = 0-06637 cm./sec*.

and A =1-681°, B = 2°, C = 131-7°, D =43-73°.
The corresponding temperature profiles are shown in Table I., on page 45.
In practice, since 02 rises indefinitely, a boundary of vaporisation must follow the bound-

ary of fusion. The theory could be extended to cover this if the effect of pressure on the boiling
point and latent heat were ignored. Although this is not legitimate in the case described, the
solution will be included for its general interest. If suffix 3 refers to the vapour state, we
assume in addition to (20), (21) :

03= -FEi(-r2j4:K3t)-G (31)
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Table I

rf-Jt
(cm./sec*.)
0-024
03394
04158
04799
05367
05879
06351
06637
09248
1128
1302
1456
1783
2059
2302
2523
2724
2905

h
(°C.)
196-6
117-6
75-56
48-78
30-00
16-12
5-51
0

(°C.)

0
-0-8196
-1-2362
-1-4780
-1-6312
-1-8319
-1-9178
-1-9581
-1-9781
-1-9883
-1-9936

Then the boundaries of vaporisation and fusion are r = oc^Ji, r = a23-Jt, say, whereupon (23) and
(24) apply, and also :

CEi(-43l4K2)+D=-V, (32)
FEi(-*UI4Ka)+G--V, (33)

where V is the boiling point, referred to the melting point as zero. (25) holds as before, while
F and lcs must be substituted for C and k2 in (27). (28) is replaced by two similar equations,
involving L12 and L23. We have thus eight relations to determine A, B, C, D, F, O, a12, a23.
Elimination of the six coefficients leads to the following simultaneous equations for a12, a23 :

e « J , \ - 4

~"12 ~°12

e 4 X2 AjOe 4 'Kl -^12/:)

7 a1 2

These could be solved cychcally in a numerical case. This has not been carried out for the
system ice-water-steam, in view of the physically unreal assumptions.

4. Propagation from a point source. Let Q units of heat be generated per unit time at the
origin, the conditions being otherwise as before. A spherical boundary r = B(t) proceeds out-
ward. We assume the solution :

- ^ erfc —-p= - 5 , (36)
2 2v /^d

5 (37)
2 2-jKj
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Then
R(t)=ocJt (38)

say, and

^ ^ 0 T
2

^erfo^=l=i) (40)
a 2 2JKJAlso, as before,

B = 0, (41)
while

Thus

so that Q=qJt, say, g constant, and

K% (43)

From (2), (39), (40), (42), (43), we obtain the following equation for a :

1. *-••/«, h?* = k^ (44)

The left side again decreases monotonically from qj^n to — oo as a increases from 0 to oo.
Hence (44) has always one and only one real positive root. We have therefore derived a solu-
tion for propagation from a point source whose strength increases as Jt.

The solution may be readily extended to cover the case in which two (or more) surfaces of
phase-change arise. The analysis is similar to that indicated above for the cylindrical system.

Appendix. Proof that the functions in (29) and (44) decrease monotonically for a > 0 .
Consider f(x) = exEi (-x),

-f=ex [Ei (-x)+ e-z/x] = exg (x) say.

Then

dx

But when x = + oo , g =0 . Hence g>0, and so dfjdx>0. I t follows at once that the function
on the left of (29) decreases monotonically. Its value is Q/in at 0 and - oo at oo .

Again, let

f(x)=--Jnex*erfc(x),

dfjdx = - xe** [2J7T erfc (x) - ? t~^ + - 3 e"*2

= -xex*g(x), say.
Then

dgjdx= -3e-*'lx*<0.
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But
<7(oo)=0.

Hence g>0 and so df/dx<0. I t follows at once that the function on the left of (44) decreases
monotonically. Its value is g/4-n- at 0 and — oo at oo .
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