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THE LEBESGUE FUNCTION FOR HERMITE-FEJER
INTERPOLATION ON THE EXTENDED CHEBYSHEV NODES

SIMON J. SMITH

Given / 6 C[—1,1] and n points (nodes) in [—1,1], the Hermite-Fejer interpola-
tion polynomial is the polynomial of minimum degree which agrees with / and has
zero derivative at each of the nodes. In 1916, L. Fejer showed that if the nodes
are chosen to be zeros of Tn(x), the nth Chebyshev polynomial of the first kind,
then the interpolation polynomials converge to / uniformly as n —> oo. Later, D.L.
Berman demonstrated the rather surprising result that this convergence property no
longer holds true if the Chebyshev nodes are extended by the inclusion of the end-
points —1 and 1 in the interpolation process. The aim of this paper is to discuss
the Lebesgue function and Lebesgue constant for Hermite-Fejer interpolation on the
extended Chebyshev nodes. In particular, it is shown that the inclusion of the two
endpoints causes the Lebesgue function to change markedly, from being identically
equal to 1 for the Chebyshev nodes, to having the form 2n2(l — z2)(Tn(z)) + O{\)
for the extended Chebyshev nodes.

1. INTRODUCTION

Suppose / is a continuous real-valued function defined on the interval [—1,1], and
let

X = {xk,n : * = l , 2 , . . . , n ; n = 1,2,3,...}

be an infinite triangular matrix such that, for all n,

The well-known Lagrange interpolation polynomial of / is the polynomial Ln(X,f)(x)
— Ln(X, f, x) of degree at most n — 1 which satisfies

Ln{X, f, xk<n) - /(!*,„), 1 ^ k ^ n.
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It can be expressed as

n

(1) Ln(X, f,x)=J2 /(**.»)'*.»(*. X),
k-\

where the fundamental polynomials £k<n(X,x) are the unique polynomials of degree at
most n — 1 which satisfy

(Here 6kj denotes the Kronecker delta.) Thus the 4,n are denned by

(2) 4,n(*, X) = - ""P^jl y l^k^U,

and

(3) . un{X,x)=
k-\

Consider the supremum norm

| | / | | = max| /(x) |

on C[— 1,1]. From (1) it follows that for given x E [—1,1],

and so the quantity

is the norm of the linear functional

Ln(X, • , z ) : C [ - l ,

which is given by

Ln(X, .,

The function A0,n(>Y, x) is known as the Lebesgue function for Lagrange interpolation on
X. Furthermore, the value

= max A0]n(X,i),

which is termed the Lebesgue constant for Lagrange interpolation on X, is the norm of
the linear operator
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which is defined by
Ln(X,-)(f) = Ln(X,f).

For Lagrange interpolation it is known (see Rivlin [9, Section 1.3]) that there exists
a positive constant c such that

(4) Ao,B(X) > - l o g n + c, n = 1,2,3, . . . ,

for any X. By the uniform boundedness theorem (see, for example, Powell [7, p. 203]),
a consequence of (4) is the classic result, due to Faber [5], that for any matrix X there
exists / G C[—1,1] so that Ln(X,f) does not converge uniformly to / as n —> oo. On
the other hand, if T denotes the matrix of Chebyshev nodes

T = {xk<n = cos ( ^ - ^ r ) : k = 1,2,... ,n; n = 1,2,3,...},

then

(5) A0,n(T) ^ - l o g n + 1, n= 1 ,2 ,3 , . . . ,

(see Rivlin [9, Theorem 1.2]). Furthermore, if the modulus of continuity u>(6; f) of / is
defined by

{ | | s,t ^ 1, \s - t\

it follows from (5) (see Rivlin [8, Section 4.1]) that if / € C [ - l , 1] satisfies the relatively
weak additional condition w( l /n ; / ) l ogn -> 0 as n -> oo, the sequence of Lagrange in-
terpolation polynomials Ln(T,f) converges uniformly to / as n —¥ oo. In view of these
results, it can be seen that the Chebyshev nodes T are a good choice if uniform approx-
imation by Lagrange interpolation polynomials is required. Consequently the Lebesgue
function A0,n(T, x) and Lebesgue constant A0,n(T) have been studied extensively — a
comprehensive account of results appears in the survey paper by Brutman [4].

Given / G C[— 1,1] and an interpolation matrix X, the Hermite-Fejer interpolation
polynomial is the unique polynomial Hn{X, f)(x) — Hn(X, f, x) of degree at most In — 1
which satisfies

\ H'n(XJ,xk,n) = 0, ! < * < » •

The Hermite-Fejer polynomial can be written as

(6) Hn(X, f,x) = J2 f(Xkin)Ak,n(X, X),
k=l

where the fundamental polynomials Ak,n{X, x) are the unique polynomials of degree at
most 2n - 1 which satisfy

(7) [ Ak<n{X,xj<n) = SkJ, i<ki<n
I Ak,n\Ji'Xj,n) — U>
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It is readily verified that an explicit formula for AktTl(X, x) is

(8) Ak,n(X,x) = (l - ^Xk'n)Ax-xKn)){tktn{X,x))\

where 4,n and wn are defined by (2) and (3).

The initial impetus for studying Hermite-Fejer interpolation came from the result

of Fejer [6] in 1916, who showed that if / G C [ - l , 1], then

Thus, for any / € C[—1,1], the Hermite-Fejer interpolation polynomials based on the
Chebyshev nodes converge uniformly to / , a result which established the importance of
the Hermite-Fejer method, and confirmed the utility of the Chebyshev node system, in
polynomial interpolation.

The Lebesgue function for Hermite-Fejer interpolation on X is defined by

(9) Xltn(X,x) =
k=l

while the Lebesgue constant is

Now, as a result of uniqueness considerations, Hn(X, l,x) = 1, and so (6) gives •

k=l

Hence, for any X and x,

n

(10) Alin(X, x) =

Note that by (7), equality holds in (10) at each interpolation node xk^n.

By Fejer's result, the Lebesgue constants for Hermite-Fejer interpolation on the
Chebyshev nodes T are uniformly bounded. In fact, much more can be stated, for it
follows from (8) that

_ l-xxk,n( Tn(x) ^
Ak,n{T,X) = z I 1 ,

n2 \x-xkin/

where xk,n = cos(2fc — l)7r/(2n) and Tn(x) denotes the nth Chebyshev polynomial
Tn(x) = cos(narccosx), - 1 < x ^ 1
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(see Rivlin [9, Section 1.4]). Thus the Akfn(T,x) are nonnegative on [ - 1 , 1 ] , and so by

(10), A 1 - n (T , i ) = 1, and hence

(11) Ai l B(T) = l , n = 1 , 2 , 3 , . . . .

Thus the study of the Lebesgue function and constant for Hermite-Fejer interpolation

on T is trivial.

Given tha t | | # n ( T , / ) - / | | -» 0 as n ->• oo for all / e C [ - l , 1], it was a rather un-

expected development when, in a series of papers in the 1960s, Berman showed t h a t even

for very simple functions / , extending the Chebyshev nodes by including the endpoints

- 1 and 1 in the node system can result in an Hermite-Fejer interpolation process tha t

has quite surprising divergence behaviour. To describe one of these results, let Te denote

the extended Chebyshev nodes

(12) Te = {xk,n+9 : * = 0 , 1 , . . . , n + l ; n = 1 , 2 , 3 , . . . } ,

where

{ 0,n+2 , n+l,n+

(2k-1
O I ) 1 ^ k ^ U.

(2k-1 \
Z/fc,n+2 = COS I — - 7T),

v 2n /
2n

In his paper [1, Theorem 2], Berman showed that if f(x) = x2, the sequence {Hn(Te, f,x)}

diverges as n -> oo for all x € (—1,1). (Note that this result cannot be extended to the
entire interval [-1,1] because ±1 are interpolation nodes for all n.)

Subsequently, R. Bojanic [2] investigated this so-called 'Berman's phenomenon'. He
showed that if / 6 C[—1,1], and if the left and right derivatives / [ ( I ) and f'R(—l) exist,
then

( l 2 ) \ ( l ) f ' ( l ) ( l ) f ' ( l ) \

This result explains why Hn(Te,x
2,x) does not converge to x2 for any x € (-1,1), and

also shows that if / [ ( I ) and f'R(-l) exist, then a necessary and sufficient condition for
the uniform convergence of Hn(Te, f) to / is that f'L(l) — f'R{-l) = 0. Further necessary
and sufficient conditions for the uniform convergence of Hn(Te, f) to / were developed by
Bojanic, Varma and Vertesi [3] in work that considered Hermite-Fejer interpolation on
the extended Jacobi nodes, a more general setting than the extended Chebyshev nodes.

Our aim in this paper is to study the Lebesgue function Aln+2(Te,2;) and Lebesgue
constant Ai,n+2(Te) for Hermite-Fejer interpolation on the extended Chebyshev nodes
Te. Figure 1 illustrates a typical Lebesgue function, with the oscillations in Aiin+2(Te,a;)
between each pair of nodes seemingly increasing in magnitude as x moves from the outside
towards the centre of the interval [—1,1]. Note also that the graph of Aijn+2(Te,i) is
qualitatively quite different at the ends of [—1,1] than it is elsewhere on the interval.
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-1 0 1

Figure 1: Graph of the Lebesgue function XiiU(Te,x)

Our main results concerning the Lebesgue function are presented in the following
two theorems, the proofs of which will be given in Section 2.

THEOREM 1 . For the extended Chebyshev no'des Te defined by (12) and (13), there
exists a positive constant C (independent ofn and x) so that, for - 1 < x < 1,

(14)

Xhn+2(Te,x) < 2(Tn(x))2[n2(l - x2) + l] + 1.

Observe that equality holds throughout (14) at the interpolation nodes x = xk<n+2,
1 ^ k ^ n.

The upper bound in (14) is, in fact, valid on [—1,1]. The next theorem provides a
uniform lower bound.

THEOREM 2 . For - l ^ x < l,

(15) 2(Tn(z))2[n2(l - x2) + 1] - 1 ^ A1>n+2(re,:r) < 2(Tn(z))2[n2(l - x2) + l] + 1.

In Theorem 2, note that equality holds in the lower bound at the nodes x = ±1 .

Our final theorem, which will be proved in Section 3, provides an estimate for the
Lebesgue constant for Hermite-Fejer interpolation on the extended Chebyshev nodes.
The proof of the theorem makes use of the observation from graphs such as Figure 1 that
^i,n+2(Te,x) achieves its maximum value at or near the local maximum of |Tn(x)| which
is closest to 0 (which is sin7r/(2n) if n is odd, and 0 if n is even).
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THEOREM 3 . The Lebesgue constant Alin+2(Te) satisfies

( 2n2 + 3 + O(l/n), ifn is even,
Ai,n+2(ie) - | 2n2 + 3 n2/2 + 0 ( 1 / n ) i ^ n i s

On comparing the results of Theorem 3 with (5) and (11), it is seen that the Lebesgue
constants for Hermite-Fejer interpolation on the extended Chebyshev nodes are far larger
than the corresponding Lebesgue constants for Lagrange and Hermite-Fejer interpolation
on the (unextended) Chebyshev nodes. Such a result is not unexpected, given that the
convergence behaviour of the Hermite-Fejer interpolation process on Te is far worse than
that of the Lagrange and Hermite-Fejer interpolation methods on T. It is also worth
pointing out that Lebesgue constants much larger than those in Theorem 3 are known to
occur for simple node systems. For instance, for Lagrange interpolation on equally-spaced
nodes in [-1,1], the Lebesgue constants grow exponentially with n (see Brutman's survey
paper [4] for further details and references).

2. P R O O F S OF T H E O R E M S 1 AND 2

As shown by Bojanic [2], for the extended Chebyshev nodes Te defined by (12) and

(13), the fundamental polynomials are given by

(16)

A0,n+2(Te,x) =

An+hn+2(Te,x) =

Ak,n+2(Te,x) =
( i -^ l .n) 2 ^ n{x-Xk}n)

For simplicity, we shall henceforth write Aktn+2(Te,x) as Ak(x) and xk<n as xk. Let x
€ (-1,1) . Note that A0(x) ^ 0 and An+i(x) ^ 0. Also, for 1 ^ k < n, 1 + 3a;2:jfc,n - 4 x | n

> 0 if and only if p(x) < i* < q{x), where

V-W/ P\XJ — ^"l — V "̂  i o / y i, H\X) ~

Therefore, by (9),

(18) A,,n+2(Te)x) = (Tn(x))2[n2(l - x2) + l] +

where
U{x) = {k : 1 ̂  k ̂  n, p(x) < xk < q(x)},

S(x) = {k : 1 ̂  k < n, xk < p{x) or xk > q(x)}.

We shall employ the partial fraction representation

(19)
( 1 -

- 3xx
)2(z - X t ) 2

3
' 4(1 +x)

4(1

(1

1
-x)2

1

+ ^ ) 2

1
1

-%k

(1 -

+

X

- X

4(1

2)2

3
- x ) ( l

1
x-ifc

1
-xk)

2

1

l-x2

1
4(1 +a;)2

1

(x-xky

i
i

+ xfc
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Applying this to Ak (x) for 1 ^ k < n gives

(20) £ *(*) - £ >M«) = ( ( 1 " t ) T " ( X ) ) 2 [P(:c)" Q{x)]'
where

P{X} ~
3 y . 1 1y +

4(1 - X)2 ^ 1 - xfc
 + 4(1 - x) y (1 - z*)2 + 4(1 +

3 ^ l ^ V i 1
+ + +

and

2a;

On observing that

2 x T—>. 1 2 v—N 1 2 ^—s 1 —

we note for future reference that

(21) Q{x)>0, - l < z < l .

To simplify P(x), we use some well-known properties of the Chebyshev polynomials
(see, for example, Rivlin [9, Chapter 1]) and the symmetry of the interpolation nodes xk

about 0. Our starting point is the representation

(22) ™
{ 2 2 ) Tn(z)

Therefore

(231 V 1 - Y* 1 - T"^ - n2

Also, from (22),

(24) (Tn(x))2 J2 . \ v = CTO)2 - Tn(x)T:(x),
(x Xk>
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and so

k=l

Further, on employing (1 -x 2 )T^ = xT'n -n
2Tn and (1 - x 2 ) ( T ^ z ) ) 2 = n2 [l - ( T J

we obtain, from (24),

) 2(26) (1 - x2)(Tn(x)Y J2 , ,2 =n2' xTn{x)rn(x).
k=\ ^x ~ Xk>

Therefore, by (22), (23), (25) and (26), it follows that

and so, by (18) and (20),

(27) Alin+2(Te>i) = 2(Tn(x))2[n2(l - x2) ] (
\ TL

The upper bound for A1]n+2(Te, x) in Theorems 1 and 2 then follows from (21).

We now obtain the lower bound in Theorem 1. Because the interpolation nodes are

symmetric about 0, the Lebesgue function Ain+2(Te,x) is even, and hence there is no loss

of generality in assuming 0 ^ x < 1. Our aim is to obtain an upper bound on [0,1) for

(l-x2

(

| (1-x)2 1 | 3 ( l - x 2 ) ( l - x ) 1 ^ , , r l-xxk

2 1 + Xk 2 (1 + x/t

Now, p(x) ^ —1/2 for 0 ^ x < 1, so if k € TZ{x), some simple estimations give

(28) I1"1"-*--1 1 I J ^ - •*• A 1 f x; i ^i - x) i

| 3 ( l - x 2 ) ( l - x ) 1 ^ 2 | 3 | ?

Also, if p(x) and q(x) are given by (17), some elementary calculations show that

and so, if A; £ S{x), then
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On noting that q(x) - x < 1 - q(x) for 0 ^ x < 1, it follows from (28) and (29) that
there exists an absolute constant K so that

(1 - x2)2Q(x) ^ — -2.
(q{x) - x)

Finally, from

q{x) -x = l; ((3>A2 + 16/9 - 3x - 2) + 2(1 - x)) > ^ A 0 ̂  x < 1,

we see that there is an absolute constant C so that

2 2 Cn

( I - * ) 2

The lower bound in Theorem 1 then follows from (27).

It remains to obtain the lower bound in Theorem"2. From (9) and (16),

Tn(x)) [„ (1 - x ) + 1) + { J ^ {l_xlnx_Xk)2

The lower bound in (15) then follows from the partial fraction representation (19), along
with the summation formulas (22), (23), (25) and (26).

3. P R O O F OF THEOREM 3

Since |Tn(x)| ^ 1 on [-1,1], it follows from Theorem 2 that A1,n+2(Te,a;) ^ 2n2 + 3
for - 1 ^ x < 1, and so

On the other hand, if n is even, then |Tn(0)| = 1, and so, by the lower bound in Theorem 1,

Ai,n+2(Te) ^ AiiB+2(re>0) ^ 2n2 + 3 - £ ,

which establishes Theorem 3 for even values of n.

Now suppose n is odd. By (15),

A,,B+2(Te,a;) ^ 2n2(l - x2)(Tn(x))2 + 3, - 1 < a: < 1.

Define Mn > 0 by

so that

(30) AliB+2(Te) ^ 2n2M2 + 3.
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From symmetry considerations, and because 1 — x2 is decreasing on [0,1], it is appar-
ent that the maximum value of (1 - x2)(Tn(x)) on [-1,1] is achieved on the interval
[0, sin7r/(2n)]. Then, by putting x = sin#, we see that

(31) Mn = max cos 6 sin n6.
0<9^7r/(2n)

The maximum of cos 6 sin n6 in 0 ^ 9 ^ 7r/(2n) occurs at a point 9* which is the solution
of n cos n9 cos 9 — sin nOsin 9 = 0, or, equivalently, (n+l)cos(n + l)# + (n — 1) cos(n —1)9

= 0. Hence cos(n + 1)0* < 0, so

2 ( n + l ) < 2^'

and thus

By (31) we conclude that

and so, by (30),

Ai,n+a(Te) ^ 2n2 + 3 - TT2/2

On the other hand, if n is odd, then Tn(sin7r/(2n)) = 1, and so, by the lower

bound in Theorem 1,

Ai,»+2(Te) ^ A1,n+2(Te,sin7r/(2n)) ^ 2n2 + 3 - TT2/2

which completes the proof of Theorem 3. D
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