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Abstract
We prove a new sufficient pair degree condition for tight Hamiltonian cycles in 3-uniform hypergraphs
that (asymptotically) improves the best known pair degree condition due to Rödl, Ruciński, and Szemerédi.
For graphs, Chvátal characterised all those sequences of integers for which every pointwise larger (or
equal) degree sequence guarantees the existence of a Hamiltonian cycle. A step towards Chvátal’s theo-
rem was taken by Pósa, who improved on Dirac’s tight minimum degree condition for Hamiltonian cycles
by showing that a certain weaker condition on the degree sequence of a graph already yields a Hamiltonian
cycle.
In this work, we take a similar step towards a full characterisation of all pair degree matrices that ensure

the existence of tight Hamiltonian cycles in 3-uniform hypergraphs by proving a 3-uniform analogue of
Pósa’s result. In particular, our result strengthens the asymptotic version of the result by Rödl, Ruciński,
and Szemerédi.
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1. Introduction
The search for conditions ensuring the existence of Hamiltonian cycles in graphs has been one of
the main themes in graph theory. For graphs, several classical results exist, starting with the tight
condition by Dirac [6] stating that every graphG= (V , E) on at least 3 vertices and withminimum
degree δ(G)≥ |V|/2 contains a Hamiltonian cycle. Pósa [15] improved this result to a condition
on the degree sequence:

Theorem 1.1. Let G= ([n], E) be a graph on n≥ 3 vertices with degree sequence d(1)≤ · · · ≤ d(n).
If d(i)≥ i+ 1 for all i< (n− 1)/2 and if furthermore d(�n/2�)≥ �n/2� when n is odd, then G
contains a Hamiltonian cycle.

Finally, Chvátal [4] achieved an even stronger result: A graph G= ([n], E) on n≥ 3 vertices
with degree sequence d(1)≤ · · · ≤ d(n) contains aHamiltonian cycle if for all i< n

2 we have: d(i)≤
i⇒ d(n− i)≥ n− i. On the other hand, for any sequence a1 ≤ · · · ≤ an < n not satisfying this
condition, there exists a graph on vertex set [n] with ai ≤ d(i), for all i ∈ [n], that does not contain a
Hamiltonian cycle. The aim of this article is to take a first step towards a generalisation of Chvátal’s
result to more general structures, namely hypergraphs, by proving an analogue of Pósa’s result
above for 3-uniform hypergraphs.
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A k-uniform hypergraph (or k-graph) is a pair (V , E) consisting of a (vertex) setV and an (edge)
set E⊆V(k) = {A⊆V : |A| = k}. We sometimes write v(H)= |V(H)| and e(H)= |E(H)|. In the
following let H = (V , E) be a 3-graph. For U ⊆V , we define H[U] := (U, E(U)) with E(U) :=
{e ∈ E : e⊆U}. For vertices v,w ∈V , we denote by d(v,w) := |{x ∈V : vwx ∈ E}| the pair degree
of v and w, where for convenience we write an edge as vwx instead of {v,w, x}. In addition, it
is also common to study the vertex degree d(v) := |{e ∈ E : v ∈ e}|. The minimum pair degree is
δ2(H) := minvw∈V(2) d(v,w), and the minimum vertex degree is δ1(H) := minv∈V d(v). Often it is
useful to consider something like a 2-uniform projection of H with respect to a vertex v ∈V ; we
define the link graph Lv of v as the graph (V , {xy : xyv ∈ E}).

We will follow the definition of paths and cycles in [16], suggested by Katona and Kierstead in
[10]. A 3-graph P is a tight path of length �, if |V(P)| = � + 2 and there is an ordering of the vertices
V(P)= {x1, . . . , x�+2} such that E(P)= {xixi+1xi+2 : i ∈ [�]}. The tuple (x1, x2) is the starting pair
of P, the tuple (x�+1, x�+2) is the ending pair of P, both are the end-pairs of P, and we say that
P is a tight (x1, x2)-(x�+1, x�+2)-path. All other vertices of P are called internal. We sometimes
identify a path with the sequence of its vertices x1, . . . , x�+2. Accordingly, a tight cycle C of length
� ≥ 4 consists of a path x1, . . . , x� of length � − 2 together with the two hyperedges x�−1x�x1 and
x�x1x2. A tight walk of length � is a hypergraph W with V(W)= {x1, . . . , x�+2}, where the xi are
not necessarily distinct, and E(W)= {xixi+1xi+2 : i ∈ [�]}. Note that the length of a path, a cycle
or a walk is the number of its edges and we will use this convention for cycles, paths, and walks in
graphs as well.

One might also consider degree conditions for loose Hamiltonian cycles in k-uniform hyper-
graphs, in which consecutive edges intersect in less than k− 1 vertices. Loose Hamiltonian cycles
have been, for instance, studied in [2, 5, 8, 11]. From now on, we only consider tight paths and
cycles, and consequently we may omit the prefix “tight”.

In recent years, there has been some progress to achieve Dirac like results for hypergraphs.
Rödl, Ruciński, and Szemerédi [18] started by showing that for α > 0, there is some n0 such
that every 3-graph on n≥ n0 vertices with minimum pair degree at least

( 1
2 + α

)
n contains a

Hamiltonian cycle. Actually, in [19] they improved the result to the following.

Theorem 1.2. Let H be a 3-graph on n vertices, where n is sufficiently large. If H satisfies δ2(H)≥

n/2�, then H has a Hamiltonian cycle. Moreover, for every n, there exists an n-vertex 3-graph Hn
such that δ2(Hn)= 
n/2� − 1 and Hn does not have a Hamiltonian cycle.

More recently, Reiher, Rödl, Ruciński, Schacht, and Szemerédi [16] proved the following
asymptotically optimal result concerning the vertex degree.

Theorem 1.3. For every α > 0, there is an n0 ∈N such that every 3-graph H on n≥ n0 vertices with
δ1(H)≥ ( 59 + α

) n2
2 contains a Hamiltonian cycle.

Since the first version of this article, this has been generalised to all k independently by Lang
and Sanhueza-Matamala [12] and by Polcyn, Reiher, Rödl, and myself [14].

In this work, we study a new pair degree condition that forces large 3-graphs to contain a
Hamiltonian cycle. Call a matrix (dij)ij Hamiltonian if every 3-graphH = ([n], E) with d(i, j)≥ dij,
for all ij ∈ [n](2), contains a Hamiltonian cycle. It would be very desirable to get a result for 3-
graphs similar to the one by Chvátal for degree sequences in graphs, that is, a characterisation of
all Hamiltonian matrices. For the graph case, Pósa’s result (Theorem 1.1) was a step towards the
characterisation by Chvátal. In a sense, our main result can be seen as a 3-uniform (asymptotic)
analogue of the theorem by Pósa.

Theorem 1.4 (Main result). For α > 0, there exists an n0 ∈N such that for all n ∈N with n≥ n0,
the following holds. If H = ([n], E) is a 3-graph with d(i, j)≥min

(
i, j, n2

)+ αn for all ij ∈ [n](2), then
H contains a (tight) Hamiltonian cycle.

This result strengthens the asymptotic version of Theorem 1.2 achieved in [18].
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Let us remark that recently there have also been related results on degree sequences for other
spanning subgraphs in graphs. For example, Treglown [22] gave a degree sequence condition that
forces the graph to contain a clique factor and Staden and Treglown [20] proved a degree sequence
condition that forces the graph to contain the square of a Hamiltonian cycle. Since the first version
of this article, Bowtell and Hyde [1] obtained a degree sequence condition for perfect matchings
in 3-graphs.

Note that in the proof of Theorem 1.4 (and the proofs of the lemmas) we can always assume
α � 1. Before we start with the outline of the proof of Theorem 1.4 in the next section, we give
the following examples showing that our result is asymptotically optimal in some sense.

Example 1.5.

1. Consider the partition X∪̇Y = [n] with X = [⌈n+1
3
⌉]

and let H be the hypergraph on [n]
containing all triples e ∈V(3) with |e∩ X| �= 2. Then we have d(i, j)≥min

(
i, j, n2

)− 1 for all
ij ∈ [n](2).However, if there was a Hamiltonian cycle in H, it would contain at least one edge
with at least two vertices from X. But such an edge can only lie in a cycle in which all vertices
are from X � [n]. Hence, H does not contain a Hamiltonian cycle.

2. Next, look at the partition X∪̇Y = [n] with X = [⌊n
2
⌋]

and let H be the hypergraph on [n]
containing all triples e ∈V(3) such that |e∩ Y| �= 2. Then for all ij ∈ [n](2), we have d(i, j)≥
n
2 − 2. But a similar argument as above shows that H does not contain a Hamiltonian cycle.

The two examples show that Theorem 1.4 does not hold when replacing the degree condition
with d(i, j)≥min

(
i, j, n2

)− 1 (not even when replacing it with d(i, j)≥min(i, j)− 1) and neither
when replacing it with d(i, j)≥min

(
i, j, n2 − 2

)
. Note that this means that Theorem 1.4 cannot

(asymptotically) be improved on by decreasing the requirement on the degree of every pair and
neither by “capping” at a lower value than at n

2 − 1. Generally, it seems very difficult to obtain
a Chvátal like characterisation of all Hamiltonian matrices. For instance, it is not difficult to see
that there are Hamiltonian matrices with dij = 0 for �(n2) choices of i, j ∈ [n]. Thus, the Pósa like
result given by Theorem 1.4 serves as a significant step in understanding Hamiltonian matrices.

In the following, we will omit rounding issues if they are not important, for example, we will
assume that αn etc. are natural numbers. Further, for A, B⊆R+, we write that a statement S
holds for all a ∈A and b ∈ B with a� b, to say that for every b ∈ B, there exists an a0 ∈R+ such
that for all a ∈A with a≤ a0, the statementS holds.

Organisation
In the next section we give an overview of the proof, state the auxiliary results for each step and
finally deduce the main result Theorem 1.4 from these. Sections 3–6 are devoted to the proofs of
the auxiliary results. We conclude by discussing some interesting related problems in Section 7.

2. Overview and final proof
The proof of Theorem 1.4 uses the absorption method introduced by Rödl, Ruciński, and
Szemerédi in [18], which helps to reduce the problem of finding a Hamiltonian cycle to the
problem of constructing a cycle containing almost all vertices.

This strategy proceeds by constructing a cycle containing almost all vertices of the hypergraph
H and a special subpath into which we can “absorb” any small set of vertices, meaning we can inte-
grate the left-over vertices into this subpath to obtain a Hamiltonian cycle. For that, we use that
for every vertex v ∈V(H), there exist many absorbers in H, where absorbers in this setting are a
structure consisting of several paths which can be restructured into paths containing vwhile keep-
ing the same end-pairs. Then, utilising probabilistic ideas, we can construct an absorbing path,

https://doi.org/10.1017/S096354832300007X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300007X


Combinatorics, Probability and Computing 765

a path containing many absorbers for every vertex. Lastly, we build a long path in the remainder
ofH, consisting of almost all vertices, and connect it with the absorbing path to a cycle into which
the left-over vertices can be absorbed.

For these constructions, we often need to connect two paths, that is, find a path from an end-
pair of one to an end-pair of the other. Hence, we begin by showing that given two distinct ordered
pairs of two vertices, (x, y) and (w, z), there are many paths of the same fixed length with end-pairs
(x, y) and (w, z).

Lemma 2.1 (Connecting lemma). Let α, ϑ > 0, n, L ∈N with 1/n� ϑ � 1/L� α. If H = ([n], E)
is a 3-graph with d(i, j)≥min

(
i, j, n2

)+ αn, for all ij ∈ [n](2), then for all disjoint ordered pairs of
distinct vertices (x, y), (w, z) ∈ [n]2, the number of paths of length L in H connecting (x, y) and (w, z)
is at least ϑnL−2.

See Section 3 for the proof of Lemma 2.1.
Later, we will use this result whenever we need to connect different paths that have already been

constructed. However, when we want to connect paths after almost all the vertices are covered by
paths, we need to ensure that there still exist paths which are disjoint from all previously built
paths. To this end, we will take a special selection of vertices – the reservoir – aside, with the
property that for every pair of pairs of vertices, we still have many paths of fixed length connecting
them, where all internal vertices of those paths are vertices of the reservoir. The existence of such
a set will be shown by probabilistic arguments.

Lemma 2.2 (Reservoir lemma). Let α, ϑ > 0 and n, L ∈N such that 1/n� ϑ � 1/L� α. If H =
([n], E) is a 3-graph satisfying d(i, j)≥min

(
i, j, n2

)+ αn, for all ij ∈ [n](2), then there exists a reser-
voir set R⊆ [n] with ϑ2

2 n≤ |R| ≤ ϑ2n such that for all disjoint ordered pairs of distinct vertices
(x, y), (w, z) ∈ [n]2, there are at least ϑ |R|L−2/2 paths of length L in H which connect (x, y) and
(w, z) and whose internal vertices all belong toR.

It follows that removing a few vertices from the reservoir will not destroy its connectability
property.

Lemma 2.3 (Preservation of the reservoir). Let α, ϑ > 0 and n, L ∈N such that 1/n� ϑ � 1/L�
α. If H = ([n], E) is a 3-graph satisfying d(i, j)≥min

(
i, j, n2

)+ αn, for all ij ∈ [n](2), R is given by
Lemma 2.2, and R′ ⊆R with |R′| ≤ 2ϑ4n, then for all disjoint ordered pairs of distinct vertices
(x, y), (w, z) ∈ [n]2, there is an (x, y)-(w, z)-path of length L in H with all internal vertices belonging
toR \R′.

See Section 4 for the proof of Lemma 2.2 and Lemma 2.3.
After formally defining absorbers, we will show that for each vertex there are many such

absorbers. We make use of this fact when we show that a small random selection of tuples still
contains many absorbers for every v ∈V(H). With the Connecting Lemma we can afterwards
connect all the small paths in that selection to a path that can absorb any small set of vertices.

Lemma 2.4 (Absorbing path). Let α, ϑ > 0 and n, L ∈N such that 1/n� ϑ � 1/L� α. If
H = ([n], E) is a 3-graph satisfying d(i, j)≥min

(
i, j, n2

)+ αn, for all ij ∈ [n](2), and R is given by
Lemma 2.2, then there exists a path PA ⊆H \R with v(PA)≤ ϑn and with the (absorbing) property
that for each X ⊆ [n] with |X| ≤ 2ϑ2n, there is a path with vertex set X ∪V(PA) and the same
end-pairs as PA.

See Section 5 for the proof of Lemma 2.4.
By using weak hypergraph regularity and then an explicit result to obtain an almost perfect

matching in the reduced hypergraph, we show in Section 6 that in every hypergraph H satisfying
the degree condition in Theorem 1.4, there exists a path which contains almost all vertices of H
(see Proposition 2.5).
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Figure 1. Overview of the proof.

Proposition 2.5 (Long path). Let α, ϑ > 0 and n, L ∈N such that 1/n� ϑ � 1/L� α. Let H =
([n],V) be a 3-graph with d(i, j)≥min

(
i, j, n2

)+ αn, for all ij ∈ [n](2), let R be as in Lemma 2.2,
and PA as in Lemma 2.4.

Then there exists a path Q⊆H \ PA such that

v(Q)≥ (1− 2ϑ2) n− v (PA)

and |V(Q)∩R| ≤ ϑ4n.

See Section 6 for the proof of Proposition 2.5.
Now we are ready to prove our main result, Theorem 1.4 (see also Figure 1).

Proof of Theorem 1.4. Let α, ϑ > 0 and n, L ∈N such that 1/n� ϑ � 1/L� α. Now let H =
([n], E) be a 3-graph satisfying the degree condition d(i, j)≥min

(
i, j, n2

)+ αn for all ij ∈ [n](2).
Lemmas 2.2, 2.4, and Proposition 2.5 provide a reservoir R, an absorbing path PA ⊆H \R and
a long path Q⊆H \ PA with |R∩V(Q)| ≤ ϑ4n. Let (a, b) and (c, d) be the end-pairs of PA and
let (r, s) and (t, u) be the end-pairs of Q (note that they are disjoint since we have Q⊆H \ PA).
Since |R∩V(Q)| ≤ ϑ4n and PA ⊆H \R and by Lemma 2.3, we can choose a path P1 of length
L connecting (t, u) and (a, b) with all internal vertices in R \ (V(Q)∪V(PA)). Further, by the
hierarchy of constants, we also find a path P2 of length L connecting (c, d) and (r, s) with all inter-
nal vertices in R \ (V(Q)∪V(PA)∪V(P1)). That leaves us with a cycle C in H which satisfies
v(C)≥ (1− 2ϑ2)n and PA ⊆ C. The absorbing property of PA guarantees that forX := [n] \V(C),
there exists a path P′A with V(P′A)=V(PA)∪ X which has the same end-pairs as PA (which are
connected to Q), and hence there is a Hamiltonian cycle in H. �

3. Connecting lemma
Before we start with the actual proof of Lemma 2.1, let us take a look at the strategy. Say we want
to connect two (ordered) pairs (x, y) and (w, z) in a hypergraph H satisfying the conditions of
Theorem 1.4. We will show that one can easily reduce the case of both pairs being arbitrary to that
of both having pair degree at least n

2 + αn by “climbing up” in the degree sequence (see the begin-
ning of the proof of Lemma 2.1). Then N((x, y), (w, z)), the set of common neighbours of (x, y)
and (w, z), is non-empty because of the high pair degrees of (x, y) and (w, z). Assume that there are
many (2-uniform) y-w-paths in the link graphs of elements in N((x, y), (w, z)). Roughly speaking,
we then proceed as follows. First, we find a set X of vertices in N((x, y), (w, z)) which share some
y-w-paths in their links. Subsequently, we insert the vertices of X at every third position of each

https://doi.org/10.1017/S096354832300007X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300007X


Combinatorics, Probability and Computing 767

such y-w-path (viewed as a vertex sequence), thereby obtaining many 3-uniform walks from (x, y)
to (w, z). So we could indeed connect two pairs if the link graphs of vertices in N((x, y), (w, z))
inherit the right degree condition, that is, if the vertices are large relative to n. However, since
we cannot control how large the elements in N((x, y), (w, z)) are, the degree condition that the
link graphs of vertices in N((x, y), (w, z)) inherit may not be strong enough to let us connect two
vertices by “climbing up” the degree sequence. The idea to insert a middle pair (a, b), as done in
[16], overcomes this problem. If (a, b) has some large common neighbours with (x, y) and some
with (w, z), we can find enough (x, y)-(w, z) walks passing through (a, b) by applying the strategy
explained above. The number of those walks will depend on the number of large common neigh-
bours that (a, b) has with each (x, y) and (w, z). So roughly speaking, if the sum over all (a, b) of
large common neighbours of (a, b) and (x, y) and of (a, b) and (w, z) is large, we can indeed prove
the Connecting Lemma. This last point (in its accurate form) will follow from the observation that
two link graphs of large vertices have many common edges.

Note that this strategy can be used in the seemingly different settings of our pair degree
condition and the minimum vertex degree condition in [16], since in both cases we have “well-
connected” subgraphs in every link graph and each two of these subgraphs intersect in many
edges: In [16] those subgraphs are the robust subgraphs and in our case we can just consider the
link graphs of large vertices. Since the first version of this article, this idea has also been used
extensively in [14].

Proof of Lemma 2.1.Observe that when we show that there exists an L ∈N and a ϑ > 0 such that
the statement of Lemma 2.1 holds for these, it easily follows that it holds for all L ∈N and ϑ > 0
with 1/n� ϑ � 1/L� α � 1. Hence, let the hierarchy and H be as described in the lemma and
let (x, y), (w, z) ∈ [n]2 be two disjoint ordered pairs of distinct vertices.

First, we will show that it is possible to “climb up” along the degree sequence in (relative to n)
few steps, starting from the pairs (x, y) and (w, z) and ending with pairs of vertices ≥ n

2 .
In the second step, we will connect these two pairs by utilising an analogous “climb up” argu-

ment in the link graphs of neighbours of a pair and slipping in an additional connective pair. We
first look for walks rather than paths and conclude by deducing that many of them will actually be
paths.

First step. By induction on � ≥ 3, we will prove the following statement: There exist at least(
α
5
)�−2 n�−2 walks x1 = x, x2 = y, x3, . . . , x� such that for i≥ 3 we have:

xi ≥min
(α

4
n(i− 2),

n
2

)
+ α

4
n (3.1)

We will first show the statement for � = 3 and � = 4 and then deduce it for any � ≥ 5 given that it
holds for � − 1.

� = 3: By the degree condition on H we have d(x, y)≥min
(
1, 2, n2

)+ αn. Hence, there exist at
least α

5 n possible vertices x3 such that x1, x2, x3 is a walk and x3 ≥ α
4 n+ α

4 n.
� = 4: Let x1, x2, x3 be one of those α

5 n walks satisfying the condition (3.1) that we get by the
previous case. We then have d(x2, x3)≥min

(
1, α

2 n,
n
2
)+ αn, so there exist at least α

5 n possible
vertices x4 such that x1, x2, x3, x4 is a walk and xi ≥ α

4 n(i− 2)+ α
4 n for i= 3, 4.

� ≥ 5: Let x1, x2, x3, . . . , x�−1 be one of the
(

α
5
)�−3 n�−3 walks satisfying, for i≥ 3,

xi ≥min
(α

4
n(i− 2),

n
2

)
+ α

4
n

that we get by induction. Then our pair degree condition implies that

d(x�−2, x�−1)≥min
(α

4
n(� − 4)+ α

4
n,

n
2

)
+ αn
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Figure 2. Idea of the second step, the picture is similar to [16, Fig. 4.1].

which in turn gives rise to at least α
5 n possible vertices x� such that x1, x2, . . . , x� build a walk, and

we have xi ≥min
(

α
4 n(i− 2), n2

)+ α
4 n for all i ∈ [�], i≥ 3.

This leaves us with
(

α
5
) 2

α n
2
α possibilities for walks

x1 = x, x2 = y, x3, . . . , x 2
α
+2

with x 2
α
+1, x 2

α
+2 ≥ n

2 and an analogous argument for (w, z) with just as many possibilities for
walks

z1 = z, z2 =w, z3, . . . , z 2
α
+2

with z 2
α
+1, z 2

α
+2 ≥ n

2 .

Second step (Figure 2). Letm be the smallest even number≥ 1
α

+ 1. It now suffices to show that
for some ϑ ′ > 0 with 1/n� ϑ ′ � α we have the following. For all ordered pairs (x′, y′), (w′, z′) ∈
[n]2 for which the vertices within each pair are distinct and x′, y′,w′, z′ ≥ n

2 , the number of (x′, y′)-
(w′, z′) walks with 3m+ 4 internal vertices is at least ϑ ′n3m+4.

Since d(x′, y′)≥ n
2 + αn, there exists a set Ux′y′ = {u1, . . . , uαn} ⊆ [n] \ [n/2] such that x′y′ ∈

E(Lui), for all i ∈ [αn] (recall that Lui denotes the link graph of ui). Similarly, there exists Uw′z′ =
{v1, . . . , vαn} ⊆ [n] \ [n/2] such that w′z′ ∈ E(Lvi), for all i ∈ [αn].

For (a, b) ∈ [n]2, let Iab = {i ∈ [αn] : ab ∈ E(Lui)∩ E(Lvi)}. Since all vertices ≥ n
2 (apart from

ui, vi) have in both Lui and Lvi at least n
2 + αn neighbours, and therefore 2αn vertices that they are

adjacent to in both Lui and Lvi , there are at least αn2
4 edges in Lvi ∩ Lui . Thus, by double counting

we have ∑
(a,b)∈[n]2

|Iab| ≥
∑
i∈[αn]

∣∣E (Lvi)∩ E
(
Lui
)∣∣≥ αn2

4
αn .
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Next, for fixed (a, b) ∈ [n]2, we find a lower bound on the number Lab of 3-uniform walks of
the form

x′y′ui(1)r1r2ui(2) . . . ui(m
2 )rm−1rmui(m

2 +1)ab

where y′r1r2 . . . rm−1rma is a 2-uniform walk in Lui(k) and i(k) ∈ Iab, for all k ∈ [m2 + 1
]
.

To this goal, first observe that for all i ∈ [αn], the number of y′a-walks of length m+ 1
in Lui is at least

(
α
3
)m nm. Indeed, since ui ≥ n/2, we know that for j ∈ [n], we have

dLui (j)≥min
(
j, n2
)+ αn. Therefore, there are at least

(
αn
2
)m−1 walks of lengthm− 1 starting in a

in which each vertex is either at least n
2 + αn

2 or at least αn
2 larger than the preceding vertex. Since

we set m≥ 1/α + 1, each of these walks ends in a vertex ≥ n
2 and for at least

(
αn
3
)m−1 of them

the last vertex is distinct from y′. For each such walk T with its last vertex aT′ �= y′, there are 2αn
possibilities for common neighbours of y′ and aT′ (note that the degrees in Lui of both y′ and aT′
are at least n

2 + αn). In total, that gives us at least
(

αn
3
)m y′a-walks of lengthm+ 1 in Lui .

Now for �r ∈ [n]m, we setDab(�r) := {i ∈ Iab : y′�ra is a walk in Lui}. Again by double counting and
by the previous observation, we infer∑

�r∈[n]m
|Dab (�r)| =

∑
i∈Iab

∣∣{�r ∈ [n]m : y′�ra is a walk in Lu(i)
}∣∣≥ |Iab|

(α

3

)m
nm.

Note that for each �r ∈ [n]m that is a y′a-walk in Lui(k) for every k ∈ [m2 + 1
]
, we have that

x′y′ui(1)r1r2ui(2) . . . ui(m
2 )rm−1rmui(m

2 +1)ab

is a 3-uniform (x′y′)-(ab)-walk of length m+ m
2 + 3 in H. Hence, with Jensen’s inequality we

derive:

Lab ≥
∑

�r∈[n]m
|Dab (�r)|m2 +1 ≥ nm

(∑ 1
nm

|Dab (�r)|
)m

2 +1
≥ nm

(
|Iab|

(α

3

)m)m
2 +1

.

We define Rab analogously as the number of 3-uniform walks of the form
abvj(1)s1s2vj(2) . . . vj(m

2 )sm−1smvj(m
2 +1)w

′z′ ,

where bs1s2 . . . sm−1smw′ is a 2-uniform walk in Lvj(k) and j(k) ∈ Iab, for all k ∈ [m2 + 1
]
, and get

the same lower bound by an analogous argument.
At last, let W be the number of (x′y′)-(w′z′)-walks of length 3m+ 6 in H. We apply Jensen’s

inequality a second time to obtain:

W ≥
∑

(a,b)∈[n]2
LabRab

≥n2m
(α

3

)m2+2m∑
(a,b)∈[n]2

|Iab|m+2

≥n2m
(α

3

)m2+2m
n2
(

1
n2

α2n3

4

)m+2

≥
(α

3

)m2+2m
(

α2

4

)m+2
n3m+4

≥
(

α2

4

)m2+3m+2
n3m+4.
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In total, putting together the walks connecting (x, y) and (x′, y′), (x′, y′) and (w′, z′), and (w′, z′)
and (w, z), we get that the number of (x, y)-(w, z)-walks of length 2 · 2

α
+ 3m+ 6 in H is at least

((α

5

) 2
α n

2
α

)2
×
(

α2

4

)m2+3m+2
n3m+4 ≥ αm3

n
4
α
+3m+4 .

Since onlyO
(
n

4
α
+3m+3

)
of these fail to be a path, we are done. �

4. Reservoir
In this section, we will prove the existence of a small set, the reservoir, such that any two pairs of
vertices can be connected by paths with all internal vertices lying in the reservoir. The probabilistic
proof of this lemma as done in [16] works in almost the sameway with different conditions as soon
as the Connecting Lemma is provided. We will state two inequalities first that we will need for the
probabilistic arguments.

Lemma 4.1 (Chernoff, see for instance Cor. 2.3 in [9]). Let X1, X2, . . . , Xm be a sequence of m
independent random variables Xi : → {0, 1} with P(Xi = 1)= p and P(Xi = 0)= 1− p. Then we
have for δ ∈ (0, 1):

• P
(∑

i∈[m] Xi ≥ (1+ δ) pm
)≤ exp

(
− δ2

3 pm
)

• P
(∑

i∈[m] Xi ≤ (1− δ) pm
)≤ exp

(
− δ2

2 pm
)

Lemma 4.2 (Azuma-Hoeffding, McDiarmid, Cor. 2.27 in [9] and Thm. 1 in [13]). Suppose that
X1, . . . , Xm are independent random variables taking values in �1, . . . ,�m and let f :�1 × · · · ×
�m →R be a measurable function. Moreover, suppose that for certain real numbers c1, . . . , cm ≥ 0,
we have that if J, J′ ∈∏�i differ only in the k-th coordinate, then |f (J)− f (J′)| ≤ ck. Then the
random variable X := f (X1, . . . , Xm) satisfies

P (|X −E(X)| ≥ t) ≤ 2 exp

(
− 2t2∑

c2i

)

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. Let α, L, ϑ , n, andH be given as in the statement. We choose a random sub-
set R⊆ [n], where we select each vertex independently with probability p= (

1− 1
10L
)
ϑ2. Since

|R| is now binomially distributed, we can apply Chernoff’s inequality (Lemma 4.1) and utilise the
hierarchy to obtain

P
(|R| < ϑ2n/2

)≤ P

(
|R| < 2

3
E (R)

)
≤ exp

(
− (1/3)2

2
pn

)
< 1/3. (4.1)

We also have ϑ2n≥ (1+ c(L))E(|R|) for some small c(L) ∈ (0, 1) not depending on n and
therefore, again by Chernoff we get for large n:

P
(|R| > ϑ2n

)≤ P (|R| ≥ (1+ c(L))E (R)) ≤ exp
(

− c(L)2

3
pn
)

< 1/3 (4.2)

By Lemma 2.1, we have that for all disjoint ordered pairs of distinct vertices (x, y) and (w, z), the
number of (x, y)-(w, z)-paths of length L in H is at least ϑnL−2. Let X = X((x, y), (w, z)) denote
the random variable counting the number of those (x, y)-(w, z)-paths inH that are of length L and
have all internal vertices inR. We then have E(X)≥ pL−2ϑnL−2.
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Now we apply the Azuma-Hoeffding inequality (Lemma 4.2) (with X1, . . . , Xn being the indi-
cator variables for the events “1 ∈R”,. . .,“n ∈R”) which gives us, since the presence or absence
of one particular vertex inR affects X by at most (L− 2)nL−3, that

P

(
X ≤ 2

3
ϑ(pn)L−2

)
≤P

(
X ≤ 2

3
E(X)

)

≤2 exp

(
− 2

(
pL−2ϑnL−2)2

9n
(
(L− 2)nL−3

)2
)

= exp(−�(n)) .

By the union bound, also the probability that there is a pairs of pairs for which the respective
number of connecting paths with all internal vertices inR is less than 2

3ϑ(pn)
L−2 can be bounded

from above by

exp(−�(n)) × n4 < 1/3 (4.3)

for n large. Moreover, recalling our hierarchy we have

2
3
ϑpL−2nL−2 =

(
1− 1

10L

)L−2 2
3
ϑ
(
ϑ2n

)L−2 ≥ ϑ

2
(
ϑ2n

)L−2

which together with (4.2) and (4.3) implies the following:With probability> 1/3 the chosen setR
satisfies |R| ≤ ϑ2n and has the property that for all disjoint ordered pairs of distinct vertices (x, y)
and (w, z) there exist at least ϑ

2 |R|L−2 paths of length L inH that connect those pairs and have all
their internal vertices in R. Therefore, combining this with (4.1) ensures that there indeed exists
a version ofR that has all the required properties of our reservoir set. �

It is not hard now to show the preservation of the reservoir, Lemma 2.3.

Proof of Lemma 2.3. LetH,R,R′ be as in the statement of the Lemma. Consider any two disjoint
ordered pairs of distinct vertices (x, y) and (w, z). We have

∣∣R′∣∣≤ 2ϑ4n≤ ϑ3/2ϑ2

2
n≤ ϑ3/2 |R|

by the lower bound we get from Lemma 2.2. Since every particular vertex in R′ is an internal
vertex of at most (L− 2)|R|L−3 of the (x, y)-(w, z)-paths of length L inH with all internal vertices
fromR, the Reservoir Lemma tells us that there are at least

ϑ

2
|R|L−2 − ∣∣R′∣∣ (L− 2)|R|L−3 ≥ ϑ

2
|R|L−2 − ϑ3/2(L− 2)|R|L−2 > 0

such (x, y)-(w, z)-paths with all internal vertices inR \R′. �

5. Absorbing path
In this section, we will construct a short (absorbing) path PA that can “absorb” every small set
of arbitrary vertices: For each small set X ⊆V , we can build a path P′A with V(P′A)=V(PA)∪ X
which has the the same end-pairs as PA. Later, it will then suffice to find a cycle containing PA and
almost all vertices, and subsequently absorb the remaining vertices into PA. Since we already have
a Connecting Lemma, actually the only step left will be to find a long path.

In order to construct such an absorbing path, one first has to find many absorbers for each
vertex v: In our case, an absorber is a “cascade” of small paths that allows us to build a new such
cascade of paths with the same end-pairs, containing all vertices of the first two paths and in
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Figure 3. Structure of the absorbers with hyperedges used before absorption of x in dark red and hyperedges used after
absorption of x in light red.

addition the “absorbed” vertex v (see Definition 5.1). This makes sure that we can maintain the
path structure of PA when absorbing a vertex since the linking pairs remain unchanged. Once
we know that for every vertex v, there exist many such v-absorbers in H, probabilistic arguments
provides a small set of disjoint paths with the property that for every vertex v, this set contains
many v-absorbers. Lastly, we will simply connect all these paths via the Connecting Lemma and
note that then we can absorb a small set of vertices by greedily inserting each vertex into a different
absorber.

To construct the absorbers, we again utilise that we can “climb up” the degree sequence. More
precisely, we define the following “absorbers”.

Definition 5.1. Let α > 0, n ∈N, set s= s(α)= 2 · 1
α
, and let H = ([n], E) be a 3-graph.1 For x ∈

[n], a 4s-tuple

(v1,w1, y1, z1, . . . , vs,ws, ys, zs) ∈ [n]4s

of distinct vertices is called (x, α)-absorber (in H) if

1. v1w1xy1z1 is a path in H,
2. for i ∈ [s− 1], we know that viwiyi+1zi+1 and vi+1wi+1yizi are paths in H, and
3. vswsyszs is a path in H.

When α is not important, we omit it in the notation, then simply speaking of x-absorbers.
Note that we can absorb x into an x-absorber (v1,w1, y1, z1, . . . , vs,ws, ys, zs) as follows, see also
Figure 3. Before absorption, we consider the paths viwiyi+1zi+1 and vi+1wi+1yizi, for all odd i ∈ [s].
After absorption, we consider the path v1w1xy1z1, the paths viwiyi+1zi+1 and vi+1wi+1yizi for all
even i ∈ [s− 2], and the path vswsyszs. Note that the (ordered) end-pairs of the considered paths
are the same before and after absorption.

Lemma 5.2 (Many absorbers). Let 1/n� ϑ � α � 1. If H = ([n], E) is a 3-graph with d(i, j)≥
min

(
i, j, n2

)+ αn for all ij ∈ [n](2) andR is a reservoir set given by Lemma 2.2, then for every x ∈ [n],
the number of (x, α)-absorbers in ([n] \R)4s(α) is at least (αn

3 )4s(α).

Proof of Lemma 5.2. Let 1/n� ϑ � α � 1, let H be as in the statement, and let x ∈ [n]. There
are at least n

3 possibilities to choose a vertex w1 ∈ [n] \ (R∪ {x}) with w1 ≥min (x+ αn
2 , n2 ).

1Recall that in our convention 1
α
is an integer and, hence, s is an even integer.
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Then, there are at least αn
3 choices for a vertex v1 ∈N(w1, x) \R with v1 ≥min (x+ αn

2 , n2 ) since|N(w1, x)| ≥min (w1, x, n2 )+ αn andw1 ≥min (x+ αn
2 , n2 ). Similarly, there are at least αn

3 choices
for a vertex y1 ∈N(w1, x) \ (R∪ {v1}) with y1 ≥min (x+ αn

2 , n2 ) and at least αn
3 choices for a

vertex z1 ∈N(x, y1) \ (R∪ {v1,w1}) with z1 ≥min (x+ αn
2 , n2 ).

Now assume that for some i ∈ [s− 2], vertices vj, wj, yj, and zj have already been selected, for
all j ∈ [i], in such a way that all edges required by Definition 5.1 are present and vj,wj, yj, zj ≥
min (x+ jαn2 , n2 ) for all j ∈ [i], and denote the set containing all these vertices, all vertices from
R, and x by Ai. Note that for all i ∈ [s− 2], we have |Ai| ≤ αn

7 . Therefore, there are at least
αn
3 choices for a vertex wi+1 ∈N(yi, zi) \Ai with wi+1 ≥min (x+ (i+ 1)αn

2 , n2 ). Further, there
are at least αn

3 choices for a vertex vi+1 ∈N(wi+1, yi) \Ai with vi+1 ≥min (x+ (i+ 1)αn
2 , n2 ).

Similarly, there are at least αn
3 choices for a vertex yi+1 ∈N(vi,wi) \ (Ai ∪ {vi+1,wi+1}) with yi+1 ≥

min (x+ (i+ 1)αn
2 , n2 ) and at least αn

3 choices for a vertex zi+1 ∈N(wi, yi+1) \ (Ai ∪ {vi+1,wi+1})
with zi+1 ≥min (x+ (i+ 1)αn

2 , n2 ).
Assume that vj, wj, yj, and zj have been selected for all j ∈ [s− 1] such that all edges required

by Definition 5.1 are present and vj,wj, yj, zj ≥min (x+ jαn2 , n2 ), for all j ∈ [s− 1], and denote the
set containing all these vertices, all vertices from R, and x by As−1. Then there are at least αn

3
choices for a vertex ws ∈N(ys−1, zs−1) \As−1 with ws ≥min (x+ sαn

2 , n2 ) and at least αn
3 choices

for a vertex ys ∈N(vs−1,ws−1) \ (As−1 ∪ {ws}) with ys ≥min (x+ sαn
2 , n2 ). Note that by the choice

of s we have vs−1,ws−1, ys−1, zs−1,ws, ys ≥min ((s− 1)αn
2 , n2 )= n

2 . Thus, we know that

|N(ws, ys−1)∩N(ws, ys)| ≥ n
2

+ αn+ n
2

+ αn− n≥ 2αn

and so there are at least αn choices for vs ∈N(ws, ys−1)∩N(ws, ys) \As−1 and, similarly, we know
that there are at least αn choices for zs ∈N(ws−1, ys)∩N(ws, ys) \ (As−1 ∪ {vs}).

Observe that if the vertices v1,w1, y1, z1, . . . , vs,ws, ys, zs are chosen in the respective neigh-
bourhoods as described above, they form an (x, α)-absorber. Hence, the number of (x, α)-
absorbers is indeed at least (α

3 n)
4s(α). �

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4. The proof proceeds in two steps. First, we will use probabilistic arguments,
showing that with positive probability a randomly chosen set of 4s-tuples containsmany absorbers
for every vertex while being not too large. In the second part we connect all those paths using the
Connecting Lemma (Lemma 2.1).

Let 1/n� ϑ � α, let L ∈N be given by the Connecting Lemma, let s= s(α), and let H,R be
given as in the statement of Lemma 2.4.

Let X ⊆ ([n] \R)4s be a random selection in which each 4s-tuple in ([n] \R)4s is included
independently with probability p := ϑ234s+2

α4sn4s−1 . Then E [|X |]≤ pn4s = ϑ234s+2

α4s n and by Markov’s
inequality we get

P

(
|X | > 2

ϑ234s+2

α4s n
)

≤ 1
2
. (5.1)

Calling two distinct 4s-tuples overlapping if they contain a common vertex, we observe
that there are at most (4s)2n8s−1 ordered pairs of overlapping 4s-tuples. Let us denote the
number of overlapping pairs with both of their tuples occurring in X by D. We then get
E[D]≤ (4s)2n8s−1p2 = (4s)2

(
ϑ234s+2

α4s
)2n and Markov yields

P
[
D> ϑ2n

]≤ P

[
D> 64s2

(
ϑ234s+2

α4s

)2
n

]
≤ 1

4
(5.2)

since 1/n� ϑ � α.

https://doi.org/10.1017/S096354832300007X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300007X


774 B. Schülke

Next, we focus on the number of absorbers contained in X . For x ∈ [n], let Ax denote the set of
all (x, α)-absorbers. Lemma 5.2 gives that for every x ∈ [n],

E [|Ax ∩X |]≥
(αn
3

)4s
p= 9ϑ2n.

Since |Ax ∩X | is binomially distributed, we may apply Chernoff’s inequality to get for every
x ∈ [n],

P
(|Ax ∩X | ≤ 3ϑ2n

)≤ exp

(
−
( 2
3
)2
2

9ϑ2n

)
<

1
5n

. (5.3)

Hence, by the union bound and (5.1), (5.2), and (5.3), there exists a selection F∗ ⊆ ([n] \R)4s
with:

• |F∗| ≤ 2ϑ234s+2

α4s n,
• F∗ contains at most ϑ2n overlapping pairs,
• F∗ contains at least 3ϑ2n x-absorbers, for every x ∈ [n].

For each overlapping pair, we delete one of its 4s-tuples and thus, for every x ∈ [n], we lose
at most ϑ2n x-absorbers. Furthermore, we delete every 4s-tuple A ∈F∗ for which there does not
exist an x ∈ [n] such that A is an x-absorber. Note that now every remaining tuple has all edges
present as in Definition 5.1 and all its vertices are distinct. This deletion process gives rise to an
F ⊆ ([n] \R)4s satisfying:

• |F | ≤ 2ϑ234s+2

α4s n,
• for every x ∈ [n], there are at least 2ϑ2n x-absorbers in F ,
• the elements of F (viewed as sets) are pairwise disjoint, and
• for every 4s-tuple A ∈F , there is an x ∈ [n] such that A is an x-absorber. In particular, all

the vertices in A are distinct and there are edges present as in Definition 5.1.

Next, we want to connect the elements in F to a path utilising the Connecting Lemma. Let
G be the set consisting of all the paths viwiyi+1zi+1 and vi+1wi+1yizi for odd i and for each
(v1,w1, y1, z1, . . . , vs,ws, ys, zs) ∈F :

G =
⋃

(v1,w1,y1,z1,...,vs,ws,ys,zs)∈F

{
vi+jwi+jyi+1−jzi+1−j : i ∈ [s] odd, j ∈ {0, 1}}

We then have |G| = 2|F | ≤ 4ϑ234s+2

α4s n. Let G∗ ⊆ G be a maximal subset such that there exists a path
P∗ ⊆H −R with:

• P∗ contains all paths in G∗ as subpaths
• V(P∗)∩⋃P∈G\G∗ V(P)= ∅
• P∗ satisfies v(P∗)= (L+ 2)(|G∗| − 1)+ 4.

First assume G∗ � G, and let Q∗ ∈ G \ G∗. Notice that recalling 1/n� ϑ � α, 1/L� 1, we
have

v
(
P∗)+

∣∣∣ ⋃
P∈G\G∗

V(P)
∣∣∣+ |R| ≤ (L+ 2)

4ϑ234s+2

α4s n+ ϑ2n≤ ϑn
2 (L− 2)

. (5.4)
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Now Lemma 2.1 tells us that there are at least ϑnL−2 paths of length L connecting the ending-pair
(a, b) of P∗ with the starting-pair (b, c) of Q∗ (which are disjoint by the choice of P∗). By (5.4),
at least half of those are disjoint from R∪⋃P∈G\(G∗∪{Q∗}) V(P) and (apart from the end-pairs)
disjoint from V(P∗) and V(Q∗). Hence, there exists a path P∗∗ starting with P∗ and ending with
Q∗ whose vertex set is disjoint fromR∪⋃P∈G\(G∗∪{Q∗}) V(P) and for which we further have

v
(
P∗∗)= v

(
P∗)+ L− 2+ v

(
Q∗)= 4+ (L+ 2) (

∣∣G∗ ∪ {Q∗}∣∣− 1) .

Therefore, G∗ ∪ {Q∗} contradicts the maximality of G∗ and thus, G∗ = G. Further, for PA := P∗,
the hierarchy 1/n� ϑ � α, 1/L� 1 gives us the required bound on v(PA):

v (PA) ≤ 4+ (L+ 2)
4ϑ234s+2

α4s n≤ ϑn.

Lastly, the structure and the number of the absorbers in PA ensure the absorbing
property: Let X ⊆ [n] with |X| ≤ 2ϑ2n. For each x ∈ X, we can choose one x-absorber
(v1,w1, y1, z1, . . . , vs,ws, ys, zs) from F such that all chosen absorbers are distinct, since for
every x ∈V , the number of x-absorbers in F is at least 2ϑ2n. For every x ∈ X, we then “open” PA
at the paths vi+jwi+jyi+1−jzi+1−j for i ∈ [s] odd and j ∈ {0, 1} and reconnect it to a path containing
x by instead considering the paths vi+jwi+jyi+1−jzi+1−j, for all even i ∈ [s] and j ∈ {0, 1}, and the
paths v1w1xy1z1 and vswsyszs. That leaves us with a path P′ which satisfies V(P′)=V(PA)∪ X
and has the same end-pairs as PA. �

6. Long path
In this section, we will prove the existence of a path that contains almost all vertices. To do so,
we will need a weak form of the hypergraph regularity method, which we will therefore introduce
briefly.

Let H = (V , E) be a 3-graph and let V1,V2,V3 ⊆V be pairwise disjoint; we write

E (V1,V2,V3) = {(v1, v2, v3) ∈V1 ×V2 ×V3 : v1v2v3 ∈ E}
and e(V1,V2,V3)= |E(V1,V2,V3)|. Further, we write

H(V1,V2,V3)= (V1∪̇V2∪̇V3, E (V1,V2,V3)).

For δ > 0, d ≥ 0 and V1,V2,V3 ⊆V , we say that H(V1,V2,V3) is weakly (δ, d)-quasirandom if
for all U1 ⊆V1,U2 ⊆V2,U3 ⊆V3, we have that∣∣e (U1,U2,U3) − d |U1| |U2| |U3|

∣∣≤ δ |V1| |V2| |V3| .
We say that H(V1,V2,V3) is weakly δ-quasirandom if it is weakly (δ, d)-quasirandom for some
d ≥ 0. For brevity, we might also say that V1,V2,V3 are weakly (δ, d)-quasirandom (or δ-
quasirandom) (in H). Lastly, since we only look at weak quasirandomness in this section, we may
omit the prefix “weakly”.

The regularity lemma is a strong tool in extremal combinatorics. Whilst the full generalisa-
tion to hypergraphs is more involved than the version for graphs, there is also a light version for
hypergraphs that can already be useful and indeed it is for us:

Lemma 6.1 (Weak hypergraph regularity lemma). For δ > 0, t0 ∈N, there exists a T0 ∈N such that
for every 3-graph H = ([n], E) with n≥ t0, there exists an integer t with t0 ≤ t ≤ T0 and a partition
[n]=V0∪̇V1∪̇ . . . ∪̇Vt such that:

• |V0| ≤ δn and |V1| = · · · = |Vt|
• for i≥ 1, we havemax (Vi)≤max (Vi+1) andmax (Vi) −min(Vi) ≤ n

t0
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• there are at most δt3 sets ijk ∈ [t](3) such that the “triplet” Vi,Vj,Vk, also written as Vijk, is
not δ-quasirandom in H.

For a proof of Lemma 6.1 see for instance [3, 7, 21]. The second bullet point regarding the
ordering of the vertices is less standard. It can however be achieved by dividing the vertex set in
intervals of length n

t0 and afterwards proceeding with the standard proof refining those sets. This
has been remarked before, for example, by Reiher, Rödl, and Schacht in [17].

We will apply (the conclusion of) the above lemma to H and then observe that a quasirandom
triplet Vijk with positive density can almost be covered with not too short disjoint paths. Then we
can consider an auxiliary hypergraph, known as the reduced hypergraph, with the partition classes
as vertices and edges encoding those “good triplets” that inH we can almost cover with paths. We
will show that the degree condition is almost inherited by the reduced hypergraph. In Lemma
6.3, we prove that this degree condition will ensure an almost perfect matching in the reduced
hypergraph. But that means that in H almost all vertices can be covered with paths, which we can
then connect through the reservoir to a long path in H.

Lemma 6.2 (Good triplets). For ξ > 0, d > 0, δ > 0, n ∈N with dξ3−δ
6 n≥ 1, the following holds.

Let H = (U∪̇V∪̇W, E) with |U|, |V|, |W| = n be a 3-graph and suppose that U,V ,W are (δ, d)-
quasirandom in H. Then at least (1− ξ )3n vertices of H can be covered by vertex-disjoint paths of
length at least dξ3−δ

2 n− 2.

Proof of Lemma 6.2. For convenience set c= dξ3−δ
6 n. Let P be a maximal set of vertex-disjoint

paths of length 3c− 2 inH, where each path takes alternatingly vertices from each partition class,
that is, each path is of the form

u1v1w1u2v2w2 . . . ucvcwc

with ui ∈U, vi ∈V ,wi ∈W.
Assume for a contradiction that |V| − |⋃P∈P V(P)| > 3ξn. Then the sets

U ′ := U \
⋃
P∈P

V(P),V ′ := V \
⋃
P∈P

V(P),W′ := W \
⋃
P∈P

V(P)

satisfy |U ′|, |V ′|, |W′| > ξn.
Next, we will delete all the edges that contain vertex pairs of small pair degree. With the edges

that still remain after this process we can build a path of the required length.
We start with F1 =H[U ′,V ′,W′] and set Fi+1, for i≥ 1, as the hypergraph obtained from Fi by

deleting all edges containing a vertex pair xy with d×
Fi(x, y)≤ c, where d×

Fi(x, y)= |{e ∈ E(Fi) : x, y ∈
e, |e∩U ′| = |e∩V ′| = |e∩W′| = 1}|. This process stops with a hypergraph Fj in which for all
x, y ∈V(Fj), we either have d×

Fj(x, y)= 0 or d×
Fj(x, y)≥ c. The deletion condition guarantees

e×(F1)− e×
(
Fj
)≤ 3cn2 ,

where e×(Fi)= |E×(Fi)| and E×(Fi)= {e ∈ E(Fi) : |e∩U ′| = |e∩V ′| = |e∩W′| = 1}, and the
quasirandomness of U,V ,W gives that e×(F1)= e(U ′,V ′,W′)≥ (dξ 3 − δ)n3. Thus, there still
exists an edge u1v1w1 in Fj with u1 ∈U ′, v1 ∈V ′ and w1 ∈W′. But this means that there is a path
of length 3c− 2 in Fj: Let P∗ = u1v1w1 . . . ukvkwk be amaximal path in Fj with ui ∈U ′, vi ∈V ′ and
wi ∈W′, for all i ∈ [k] (note that k≥ 1). Assuming k< c for a contradiction, less than c vertices of
U ′ appear in P∗. But since vkwk is contained in the edge ukvkwk ∈ E×(Fj), we actually have that
d×
Fj(vk,wk)≥ c, whence there is a uk+1 ∈U ′ \V(P∗) such that P∗uk+1 is a path in Fj. The same

argument applied to wkuk+1 gives a vk+1 ∈V ′ such that P∗uk+1vk+1 is a path in Fj and finally
applying the argument to uk+1vk+1 gives rise to a wk+1 ∈W′ such that the path P∗uk+1vk+1wk+1
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exists in Fj and thus contradicts the maximality of P∗, telling us that P∗ actually contains an alter-
nating path of length 3c− 2. That, on the other hand, gives us another alternating path of length
at least 3c− 2 that is vertex-disjoint to all paths in P and, therefore, contradicts the maximality of
P . So we indeed have |V| − |⋃P∈P V(P)| ≤ 3ξn. �

Asmentioned before, we later want to find an almost perfect matching in a reduced hypergraph
whose edges represent “good” triplets as in Lemma 6.2. Then “translating back” those edges in the
matching will give us a set of (not too many) paths in H which almost covers all vertices. To find
an almost perfect matching in a hypergraph satisfying the pair degree condition in Theorem 1.4
for almost all pairs, we look at a maximal matching in which the sum of the vertices not contained
in it is also maximal. This should give us the best chance to enlarge the matching if too many
vertices would be left over, deriving a contradiction. A similar maximisation idea has also been
used in [22] when a degree sequence condition was given for a graph. The following Lemma will
later guarantee the existence of an almost perfect matching in the reduced hypergraph.

Lemma 6.3 (Matching). Let 1/n� α, β. If H = ([n], E) is a 3-graph, GH is a graph on vertex set
[n] with maximum degree 
(GH)≤ βn and H satisfies d(i, j)≥min

(
i, j, n2

)+ αn, for all ij ∈ [n](2)
with ij /∈ E(GH), then H has a matching M with v(M)≥ (1− 3β)n.

Proof of Lemma 6.3. Without loss of generality let α � 1 and β < 1/3 and let H,GH be given
as in the statement. For matchings M1,M2 ⊆H of maximum size, we write M1 ≺M2 if [n] \
V(M1)≤lex [n] \V(M2), where≤lex is the usual lexicographic order onP([n]), that is, A≤lex B if
minA�B ∈A. Now, letM ⊆H be a matching of maximum size which is (subject to being of max-
imum size) maximumwith respect to≺. Assuming the statement is false, gives an A⊆ [n] \V(M)
with |A| ≥ 3βn. Let us call a pair of vertices inH true if it is not an edge in GH . Since
(GH)≤ βn,
we can find 2βn distinct vertices v1, . . . , vβn,w1, . . . ,wβn ∈A such that all the pairs viwi are true.
Without loss of generality assume that vi <wi. Notice that all the neighbours of each such pair lie
inside V(M), otherwise adding the respective edge toM would lead to a larger matching. In what
follows, we will show two properties and afterwards deduce the statement from them.

Firstly, we have that for each viwi, there are at least αn
3 edges inM in which viwi has at least two

neighbours: Let us first consider a pair viwi with vi ≤ n
2 . For any edge abc of the matching with

a ∈N(vi,wi), we have that min{b, c} ≤ vi as otherwise E(M) \ {abc} ∪ {aviwi} would be the edge
set of a matching M′ with the same size as M but with M ≺M′, contradicting our choice of M.
This means that in each edge ofM which contains only one neighbour of viwi there is at least one
vertex ≤ vi. Thus, (and since all those edges are disjoint), at most vi neighbours of viwi can lie in
edges that contain no further neighbour of viwi. Hence, recalling d(vi,wi)≥ vi + αn, at least αn

3
edges inM contain at least two neighbours of viwi. For a pair viwi with vi ≥ n/2, there exist at least
αn
3 edges in M containing more than one neighbour of viwi as well since d (vi,wi) ≥ n

2 + αn but
e(M)≤ n/3.

Secondly, note that any edge of M that contains at least two neighbours of one true pair
viwi cannot contain a neighbour of any other true pair vjwj: Assume for contradiction there
were true pairs viwi and vjwj together with an edge abc ∈ E(M) such that a ∈N(vi,wi) and
|{abc} ∩N(vj,wj)| ≥ 2. Then b or c, without loss of generality b, is a neighbour of vjwj and
E(M) \ {abc} ∪ {aviwi, bvjwj} is the edge set of a matching in H contradicting the maximum size
ofM.

Summarised, for each of the βn true pairs viwi in [n] \V(M), we get a set of at least αn
3 edges

inM that contain more than one neighbour of the respective pair, and thus all those sets of edges
are pairwise disjoint. Therefore, we have αn

3 × βn distinct edges inM which is a contradiction to
1/n� α, β . SoM was indeed a matching satisfying v(M)≥ (1− 3β)n. �

We are now ready to prove Proposition 2.5. For that we will apply the Weak Hypergraph
Regularity Lemma to H (actually to a slightly smaller subgraph), obtain a pair degree condition
for the reduced hypergraph and hence find a matching in it by the previous Lemma. Lastly, we
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will “unfold” the edges of that matching to paths in H by Lemma 6.2 and connect these to a long
path by the Connecting Lemma (Lemma 2.1).

Proof of Proposition 2.5. Let α, ϑ be given as in the Proposition and set α′ = α − ϑ − ϑ2.
Next choose ξ , δ, t0 such that we have 1/t0 � δ � ξ � ϑ � α′. Applying the Weak Hypergraph
Regularity Lemma 6.1 to δ and t0 gives us a T0 and by the hierarchy in the Proposition, we
may assume 1/n� 1/T0. Now let H, R, and PA be given as in the statement. Notice that
H′ =H[[n] \ (R∪V(PA))] after a renaming of the vertices can be seen as a 3-graphH′ = ([n′], E′)
with n′ ≥ (1− ϑ2 − ϑ)n and satisfying the usual degree condition: d(i, j)≥min

(
i, j, n

′
2

)
+ α′n′

for all ij ∈ [n′](2).
For H′, the statement of the Weak Hypergraph Regularity Lemma provides an integer t ∈

[t0, T0] and a partition V =V0∪̇V1∪̇V2∪̇ · · · ∪̇Vt satisfying all three points of Lemma 6.1. Setting
m= |V1| = · · · = |Vt|, we have that n′

t ≥m≥ 1−δ
t n′ and recall that |V0| ≤ δn′. Note that for

vi ∈Vi, we have vi ≥ i ·m− n′
t0 . Summarised, we have the following hierarchy:

1
n′ � 1

T0
,
1
t
,
1
t0

� δ � ξ � ϑ � α′ � 1 (6.1)

Let us write e×(Vijk)= |{e ∈ E′ : |e∩Vi| = |e∩Vj| = |e∩Vk| = 1}| for the number of crossing
edges in Vijk, and we call a triplet Vijk dense, if e×

(
Vijk

)
≥ α

′m3

2 .
Now we will show that we can almost “transfer” the pair degree condition to a reduced hyper-

graph. We will do this in two steps: First, we show that every pair ViVj belongs to many dense
triplets Vijk, and second, we show that we can almost keep that up when restricting ourselves to
quasirandom triplets.

Claim 6.4. For every ij ∈ [t](2), there are at least min
(
i, j, t2

)+ α
′t
3 many k ∈ [t]− {i, j} such that

Vijk is a dense triplet.

Proof. Suppose for a contradiction there is a pair ViVj, ij ∈ [t](2), belonging to less than
min

(
i, j, t2

)+ α
′t
3 dense triplets Vijk. Let S be the set of hyperedges in H′ that contain one ver-

tex in Vi, one in Vj and a third vertex outside of Vi∪̇Vj. By invoking the pair degree condition of
H′ and with the hierarchy (6.1), we get that

|S| ≥m2
[
min

(
i ·m− n′

t0
, j ·m− n′

t0
,
n′

2

)
+ α′n′ − 2m

]

>
n′3

t2

(
min

(
i
t
,
j
t
,
1
2

)
+ 7

8
α′
)

Wewill derive a contradiction by finding a smaller upper bound on |S|. To this aim, we split S into
two parts. By S1 let us denote the set of those edges in S that lie in a dense triplet Vijk, for some
k ∈ [t] \ {i, j}, (we say an edge e lies or is in Vijk if we have |e∩Vi| = |e∩Vj| = |e∩Vk| = 1). Since
in one triplet there are at most m3 edges and by assumption ViVj does not belong to many dense
triplets, we get

|S1| <
(
min

(
i, j,

t
2

)
+ α′t

3

)
m3 ≤ n′3

t2

(
min

(
i
t
,
j
t
,
1
2

)
+ α′

3

)

Let S2 = S \ S1 be the set of edges in S lying in triplets that are not dense or that contain a vertex
in V0. There are less than α

′
2 m

3 crossing edges in each triplet that is not dense and ViVj belongs
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to at most t triplets. Further, there are at most δ n′3
t2 edges containing one vertex in each of Vi, Vj,

and V0. Hence,

|S2| < α′

2
m3 × t + δ

n′3

t2
≤ n′3

t2

(
α′

2
+ δ

)
.

Summarised, we have

n′3

t2

(
min

(
i
t
,
j
t
,
1
2

)
+ 7

8
α′
)

< |S| = |S1| + |S2| < n′3

t2

(
min

(
i
t
,
j
t
,
1
2

)
+ 6α′

7

)
,

which is a contradiction. �
From theWeak Hypergraph Regularity Lemma we also get that in total at most δt3 triplets Vijk

are not δ-quasirandom.
Let us now complete the “reduction” of the hypergraph and notice that we can find an almost

perfect matching in the reduced hypergraph. Denote byD the hypergraph on the vertex set [t] with
ijk being an edge if and only if the tripletVijk is dense. Let, on the other hand, IR be the hypergraph
on the vertex set [t] with ijk being an edge if and only ifVijk is not weakly δ-quasirandom inH′. In
the following, we will remove a few vertices in such a way that D− IR induced on the remaining
vertices satisfies our pair degree condition for almost all pairs.

We call a pair ij ∈ [t]2 amalicious pair if it belongs to more than
√

δt edges of IR. Since e(IR)≤
δt3, there are at most 3

√
δt2 malicious pairs. Let B be the graph on vertex set [t] in which the

edges are given by the malicious pairs. We call a vertex i amalicious vertex if dB(i)> δ1/4t, that is,
if it belongs to many malicious pairs. The upper bound on the number of malicious pairs implies
that there are at most 6δ1/4t malicious vertices. Now we remove these malicious vertices and set
D′ := D[[t] \ {v ∈ [t] : v is malicious}] and B′ = B[[t] \ {v ∈ [t] : v is malicious}].

The reduced hypergraph that we wished to obtain is now given by K =D′ − IR, in which edges
encode dense, δ-quasirandom triplets. In K, every pair ij ∈V(K)(2) with ij /∈ E(B′) satisfies

dK(i, j)≥min
(
i, j,

t
2

)
+
(

α′

3
− 6δ1/4 − √

δ

)
t ≥min

(
i, j,

t
2

)
+ α′

4
t.

Thus, we have that the graph GK on vertex set V(K) with ij being an edge if and only if ij does not
satisfy the degree condition dK(i, j)≥min

(
i, j, v(K)2

)
+ α

′
4 v(K) is a subgraph of B′. Therefore, and

since v(K)≥ (1− 6δ1/4)t, we have


(GK) ≤ 

(
B′)≤ δ1/4t ≤ 2δ1/4v(K)

and we can apply Lemma 6.3 to K with α
′
4 in place of α and 2δ1/4 instead of β and obtain a

matchingM in K covering all but at most 6δ1/4t vertices of K.
Finally, notice that each triplet Vijk with ijk being an edge in K is (δ, dijk)-quasirandom with

dijk ≥ α
′
2 − δ ≥ α

′
3 . Hence, we may apply Lemma 6.2 (with ξ as in (6.1), dijk ≥ α

′
3 in place of d and

δ as δ) to each of the triplets Vijk that corresponds to an edge in M. Doing so and recalling the
definition of H′, we notice that in H we can cover at least

n− ((
δ + 6δ1/4 + 6δ1/4 + ξ

)
n′ + |R| + v (PA)

)≥ n− (
2ϑ2n+ v (PA)

)
vertices with paths of length at least

α′
3 ξ3−δ

2 m− 2 that are all disjoint to R and V(PA). We can
connect all those at most 3t

α
′
3 ξ3−δ

paths in H through R to a path Q by Lemma 2.3 since until we
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connect the last one we have still only used at most

(L− 2) · 3t
α
′
3 ξ 3 − δ

< ϑ4n

vertices fromR (recall the hierarchy (6.1)). In fact, we have thatQ has at most a small intersection
withR, that is, |V(Q)∩R| ≤ ϑ4n and it covers many vertices, that is, v(Q)≥ (1− 2ϑ2)n− v(PA).
Hence, Q is a path satisfying the claims in the statement. �

7. Concluding remarks
We would like to finish by pointing to some related problems. Firstly, as mentioned in the intro-
duction, our result can be seen as a stepping stone towards a complete characterisation of those
pair degree matrices that force a 3-graph to contain a Hamiltonian cycle.

Potentially, our proof could be generalised to show the following statement. For every α > 0,
there is some n0 such that for n≥ n0, every k-uniform hypergraphH = ([n], E) satisfying the (k−
1)-degree condition

dk−1(i1, . . . , ik−1)≥min
(
i1, . . . , ik−1,

n
2

)
+ αn ,

where dk−1(i1, . . . , ik−1)= |{e ∈ E : {i1, . . . , ik−1} ⊆ e}|, contains a Hamiltonian cycle.
Another interesting problem is to get a similar result for the vertex degree, strengthening the

result by Reiher, Rödl, Ruciński, Schacht, and Szemerédi in [16]: What is the smallest γ such
that every 3-graphH = ([n], E) with d(i)≥ (min

(
max

( i
n , γ

)
, 59
)+ α

) (n
2
)
contains a Hamiltonian

cycle if n is large? The proof of Theorem 1.3 in [16] (which implies that γ ≤ 5/9) depends on the
existence of robust subgraphs for every vertex, for which one needs the factor 5/9.

Lastly, one could try to improve Theorem 1.4 by lowering the pair degree condition to d(i, j)≥
min

(
i, j, n2

)
, that is, without the additional αn term, as Rödl, Ruciński, and Szemerédi did for the

minimum pair degree condition in [19].

Acknowledgements
This article is based onmymaster’s thesis at the University of Hamburg from summer 2018 which
was supervised by Christian Reiher. I would like to thank him for introducingme to the absorption
method and to this problem. Further, I would like to thank an anonymous referee for suggest-
ing to try to improve the original result and for several suggestions that lead to an improved
presentation.

References
[1] Bowtell, C. and Hyde, J. (2022) A degree sequence strengthening of the vertex degree threshold for a perfect matching

in 3-uniform hypergraphs. SIAM J. Discrete Math. 36(2) 1038–1063. doi: 10.1137/20M1364825.
[2] Buß, E., Hàn, H. and Schacht, M. (2013) Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform

hypergraphs. J. Comb. Theory Ser. B 103(6) 658–678. doi: 10.1016/j.jctb.2013.07.004.
[3] Chung, F. R. K. (1991) Regularity lemmas for hypergraphs and quasi-randomness. Random Struct. Algorithms 2(2)

241–252. doi: 10.1002/rsa.3240020208.
[4] Chvátal, V. (1972) On Hamilton’s ideals. J. Comb. Theory Ser. B 12 163–168.
[5] Czygrinow, A. and Molla, T. (2014) Tight codegree condition for the existence of loose Hamilton cycles in 3-graphs.

SIAM J. Discrete Math. 28(1) 67–76. doi: 10.1137/120890417.
[6] Dirac, G. A. (1952) Some theorems on abstract graphs. Proc. Lond. Math. Soc. (3)2 69–81. doi: 10.1112/plms/s3-2.1.69.
[7] Frankl, P. and Rödl, V. (1992) The uniformity lemma for hypergraphs. Graphs Comb. 8(4) 309–312.

doi: 10.1007/BF02351586.
[8] Han, J. and Zhao, Y. (2015) Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs.

J. Comb. Theory Ser. B 114 70–96. doi: 10.1016/j.jctb.2015.03.007.

https://doi.org/10.1017/S096354832300007X Published online by Cambridge University Press

https://doi.org/10.1137/20M1364825
https://doi.org/10.1016/j.jctb.2013.07.004
https://doi.org/10.1002/rsa.3240020208
https://doi.org/10.1137/120890417
https://doi.org/10.1112/plms/s3-2.1.69
https://doi.org/10.1007/BF02351586
https://doi.org/10.1016/j.jctb.2015.03.007
https://doi.org/10.1017/S096354832300007X


Combinatorics, Probability and Computing 781

[9] Janson, S., Łuczak, T. and Rucinski, A. (2000) Random Graphs, Wiley-Interscience Series in Discrete Mathematics and
Optimization. Wiley-Interscience.

[10] Katona, G. Y. and Kierstead, H. A. (1999) Hamiltonian chains in hypergraphs. J. Graph Theory 30(3) 205–212.
doi: 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.3.CO;2-F.

[11] Kühn, D. and Osthus, D. (2006) Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. J. Comb.
Theory Ser. B 96(6) 767–821. doi: 10.1016/j.jctb.2006.02.004.

[12] Lang, R. and Sanhueza-Matamala, N. (2022) Minimum degree conditions for tight Hamilton cycles. J. Lond. Math. Soc.
105(4) 2249–2323. doi: 10.1112/jlms.12561.

[13] McDiarmid, C. (1989) On the method of bounded differences. In Surveys in Combinatorics, 1989 (Norwich, 1989), Vol.
141 of London Mathematical Society Lecture Note Series. Cambridge University Press, pp. 148–188.

[14] Polcyn, J., Reiher, C., Rödl, V. and Schülke, B. (2021) On Hamiltonian cycles in hypergraphs with dense link graphs.
J. Comb. Theory Ser. B 150 17–75. doi: 10.1016/j.jctb.2021.04.001.

[15] Pósa, L. (1962) A theorem concerning Hamilton lines.Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 225–226.
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