
The analysis of genetic and environmental contribu-
tions to preterm birth is not straightforward in

family studies, as etiology could involve both maternal
and fetal genes. Markov Chain Monte Carlo (MCMC)
methods are presented as a flexible approach for
defining user-specified covariance structures to
handle multiple random effects and hierarchical
dependencies inherent in children of twin (COT)
studies of pregnancy outcomes. The proposed
method is easily modified to allow for the study of
gestational age as a continuous trait and as a binary
outcome reflecting the presence or absence of
preterm birth. Estimation of fetal and maternal genetic
factors and the effect of the environment are demon-
strated using MCMC methods implemented in
WinBUGS and maximum likelihood methods in a
Virginia COT sample comprising 7,061 births. In
summary, although the contribution of maternal and
fetal genetic factors was supported using both out-
comes, additional births and/or extended relationships
are required to precisely estimate both genetic
effects simultaneously. We anticipate the flexibility of
MCMC methods to handle increasingly complex
models to be of particular relevance for the study of
birth outcomes.
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The prevalence of spontaneous preterm birth has
risen progressively in the United States over the past
decade (Behrman & Butler, 2007). Preterm birth is a
multifactorial disease and genetic factors and/or gene–
environment interactions are believed to play a
significant role in its etiology (Anum, Springel, et al.,
2009; Himes & Simhan, 2008; Menon, 2008). Several

genes that have been proposed to contribute to prema-
turity and disparities among populations need to be
validated as causally linked to preterm birth, while
others remain to be identified (Anum, Springel, et al.,
2009). A better understanding of the genetic epidemi-
ology of this significant pregnancy complication will
guide gene-finding efforts and enable more precise
risk predictions.

The application of existing methodology to esti-
mate the genetic contribution of this complex disease
is not straightforward since etiology could involve
contributions of both maternal and fetal genes in addi-
tion to environmental factors and their interactions. A
number of family-based approaches take advantage of
individuals that share differing degrees of maternal
and paternal derived genes to distinguish these genetic
sources (L. J. Eaves, et al., 2005; Maes et al., 1997;
Nance & Corey, 1976; Pawitan et al., 2004; Silberg &
Eaves, 2004). In the children of twins (COT) design,
the offspring of monozygotic twins, in common with
other biological half-siblings, share one-fourth of the
additive genetic component of variance, while the off-
spring of dizygotic twins, like other first cousins, share
only one-eighth the additive genetic component. If
maternal genetic factors are in operation, they will
inflate the correlations of maternal half-siblings and
cousins related through sisters, relative to those of
paternal half-siblings and cousins related through
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brothers and unlike-sex siblings. The latter groups
related through male ancestors share only the effects
of the fetal genotype (Haley et al., 1981).

There have been few attempts to estimate either
maternal or fetal genetic sources to explain differences
in gestational age at delivery from COT studies
(Clausson et al., 2000; Kistka et al., 2008; Treloar et
al., 2000). Heritability estimates for maternal genetic
influences range from 17% to 36%, while no COT
study to date has demonstrated a contribution of fetal
genes. In these studies, for reasons of data availability
or convenience of statistical analysis, analysis is based
only on the first birth or births are pooled into a single
measure. It has been demonstrated in some cases that
including additional family members increases the
power to detect the additive effect of genes and shared
environmental factors (Posthuma & Boomsma, 2000).
Although data on repeated births of the same mother
present additional analytic challenges, the inclusion of
these observations will increase the information
content of each cousinship. For example, the covari-
ance of siblings is composed of both maternal and
fetal genetic sources, which will allow for a more
precise estimate of these variance components. The
nonindependent nature of repeated measures, in this
case multiple pregnancies within the same mother and
parents (twins) within the same family, are routinely
treated using mixed effect models (Galway, 2006).
This approach accommodates hierarchical structure,
such as family data that is by nature nested, and
allows for parameters to vary at more than one level
by the modeling of random effects. In contrast to fixed
effects, where an unknown constant is estimated from
the data, the parameters that constitute the distribu-
tion of the random effect are estimated. In the context
of quantitative genetic analysis these random effect
parameters are indicators of genetic and environmen-
tal variance components. Although mixed effects
models have been widely used in other applications,
their application to the analysis of twin data is rela-
tively recent with the increasing availability of
computing power and software to implement these
methods (Feng et al., 2009; Rabe-Hesketh et al., 2008;
Visscher et al., 2004).

There is an extensive literature on fitting struc-
tural models to continuous (multivariate normal)
data from kinships (L. J. Eaves et al., 1978; Fulker,
1973; Martin & Eaves, 1977). Such models are easily
fitted to multivariate normal data from kinships
using any of a number of programs for structural
modeling such as Mx (Neale et al., 1999; Neale &
Cardon, 1992), M-Plus (Muthen & Muthen, 1998),
Mendel (Lange et al., 1988) and LISREL (Joreskog &
Sorbom, 1996). However, estimation by numerical
optimization of the likelihood is far less tractable for
non-normal outcomes, such as categorical data,
symptom counts and survival data because computa-
tion of the likelihood itself requires integration over
all values for the (multivariate) distribution of liabil-

ity for each family. Although this task is feasible for
hierarchical models when the number of dimensions
(‘individuals’) is relatively low, it becomes very labor-
intensive for larger kinships, where the number of
random effects to estimate increases with pedigree
complexity, and number of outcomes to the point
where computation of confidence intervals is virtually
precluded by the need for repeated optimization of
the same likelihood function for small fixed changes
in each of the model parameters.

A series of applications have demonstrated the
Markov Chain Monte Carlo (MCMC) approach
implemented in the freely available WinBUGS program
(D. Spiegelhalter et al., 2003) allows for the efficient
calculation of parameter estimates and model compari-
son statistics for a wide range of genetic problems that
have proved virtually intractable on far more powerful
main-frame computers by conventional maximum-like-
lihood (ML; L. Eaves & Erkanli, 2003; L. Eaves, et al.,
2005; L. Eaves, et al., 2003). See the reference Gilks et
al. (Gilks et al., 1996) for a detailed account of
MCMC methods in practice and references Eaves &
Erkanli (2003) and Eaves et al. (2005) for a summary
of the key features of this method as applied to genetic
problems. MCMC has been widely used in other
genetic applications including linkage analysis (Brock
et al., 2007; George et al., 2005; Sobel & Lange, 1996)
and model selection in following up genome wide asso-
ciation studies (Lunn et al., 2006). The key to MCMC
is the construction of a series of successive samples
(i.e., the ‘Markov Chain’) whose distribution over
repeated samples converges to the target, posterior dis-
tribution of parameters conditional upon the data (i.e.,
the ‘stationary distribution’). Thus, not only do the
means of the distribution yield the estimates of the
parameters, but also the repeated samples may be used
to estimate sampling errors, confidence intervals and
other parameters of the sampling distribution of the
estimates that lie beyond the practical limitations of
ML algorithms. A variety of algorithms have evolved
to implement MCMC, including the Gibbs sampler
(Gilks et al., 1996).

In this study, we demonstrate the application of
MCMC methods to estimate the genetic and environ-
mental parameters of interest in pregnancy history data
and address the inherent modeling difficulties that are
a consequence of the nested twin family structure and
occurrences of multiple births of the same mother.
Using birth records from offspring of a sample of
Virginia twins we illustrate how to estimate fetal and
maternal genetic sources and the contribution of the
familial environment to differences in the timing of
birth. The outcome measure is treated as both a con-
tinuous measure (gestational age) and a binary trait
(preterm birth liability) to examine differences in
parameter estimates that may occur when thresholds
are applied to normally distributed data. Identical
variance component models are fit using ML methods
for comparison.
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MCMC Method to Estimate Fetal 
and Maternal Genetic Effects
Genetic Model

Inspection of the algebraic expectations in Table 1 for
the six essential correlations shows that they contain
the information necessary to estimate the contribution
of fetal (VF) genetic, maternal (VM) genetic and shared
familial (VC) environmental effects in COT studies.
For example, the difference between the correlation in
pregnancy outcome for female MZ twins and that for
the spouses of male MZ twins provides an estimate of
the contribution of maternal genotype. Similarly,
under the simple model there are several contrasts that
provide information about the effect of the fetal geno-
type, for example between the correlation of spouses
of male MZ twins and the correlation between preg-
nancies of the spouses of male DZ twins. The shared
environmental component is estimated from the
sibling correlation and reflects the idiosyncratic envi-
ronmental influences of the nuclear family shared by
all offspring.

Six assumptions are made initially that can be
relaxed in extensions of the proposed model: (1) with
the exception of effects of the maternal genotype and
the residual shared environmental, all other environ-
mental effects are pregnancy-specific and uncorrelated
between successive pregnancies of the same mother;
(2) separate genes contribute to the maternal and fetal
genetic components of pregnancy outcome; (3) the
influence of fetal and maternal genetic differences are
the same for male and female fetuses (i.e., genetic
effects are autosomal and not X-linked or sex-limited);
(4) genetic effects are additive; (5) mating is random;
(6) apart from measured covariates (e.g., SES), other
random aspects of parental phenotype do not affect
pregnancy outcome (i.e., no ‘vertical cultural inheri-
tance’). In the absence of multigenerational pregnancy
histories (e.g., the pregnancy histories of grandmoth-
ers), it is still possible to test for joint failure of
assumptions 1, 4, 5 and 6 because each will lead to an
apparent excess of the nonfetal contribution to differ-
ences (‘shared sibling environment’) and inflate the
correlation in the outcomes of successive pregnancies
from the same mother relative to those of twin

mothers. Sex-dependent gene expression will lead to
lower correlation between the outcomes of unlike-sex
than like-sex fetuses. In theory, sex-limited effects of
fetal and maternal genotype may also be resolved by
analyzing the profile of resemblance between siblings
and cousins as a function of whether the pregnancies
involve like- or unlike-sex fetuses.

The latent genetic and environmental variables to
be estimated contribute to the differences in preg-
nancy outcomes as defined by the structural model.
The model follows a hierarchical form since multiple
births serve as repeated measures within the same
mother and the estimation of fetal and maternal con-
tributions are constrained to follow expectations by
twin type as presented in Table 1. Appendix A shows
the implementation of this model as a BUGS script
and the logic of the code reflects the process by
which genetic and environmental effects are distrib-
uted in families (c.f., Eaves & Erkanli, 2003). The
notes enumerate the principal steps in the process
and the code implements the algebra of the underly-
ing model and supplies details of the matrix algebra
and array handling. The model for the kth pregnancy
of the jth twin of the ith pair can be written as a vari-
ance components model,

yijk = μ + Fijk + Mijk + Cijk + Eijk (1)

where the overall mean is μ, Fijk ~ N(0,σ 2
F) is the fetal

genetic component, Mijk ~ N(0,σ 2
M) is the maternal

genetic component, Cijk ~ N(0,σ 2
C) is the shared envi-

ronmental component and Eijk ~ N(0,σ 2
E) is the unique

environmental component. Generally, for each nuclear
family the number of pregnancies, k, is not restricted.
Since the variance components are assumed to be
independent their sum equals the total variance, var
(yijk). Covariances between twin offspring within a twin
or within a cousinship are specified as a function of
twin type (Table 1). Different covariance matrices of
random effects can be easily specified in WinBUGS
with the use of separate looping structures for each
twin type implemented during the sampling stage of the
algorithm (see Appendix A). Because of the widespread
use of the multifactorial threshold model in kinship
studies, we also implemented this model in our applica-
tion by expressing the probability of a binary outcome
as a probit function of the normal liability of each preg-
nancy given the random effects of maternal and fetal
genotype and shared sibling environment.

Parameter Estimation and Model Comparison 

Application of MCMC to genetic problems has been
facilitated enormously by the development of freely
distributed software package by staff of the MRC
BUGS project in Cambridge, England (http://www.
mrc-bsu.cam.ac.uk/bugs/). WinBUGS is the PC imple-
mentation (Spielgelhalter et al., 2003) that employs a
flexible and transparent ‘R-like’ code (see example code
in Appendix A). All MCMC models in WinBUGS are
first subjected to a ‘burn-in’ period to mitigate the
influence of initial values. Numerical estimates of para-
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Table 1

Expected Covariance Between Pregnancy Outcomes as a Function 
of Relationship Between Offspring

Parental Relationship Fetal relationship Expected covariance

MZ female twins Cousin (‘Half-sibling’) ¼ VF + VM

DZ female twins Cousin 1⁄8 VF + ½ VM

MZ male twins Cousin (‘Half-sibling’) ¼ VF

DZ male twins Cousin 1⁄8 VF

DZ male-female twins Cousin 1⁄8 VF

Sibship Sibling ½ VF + VM + VC

Note: VF = fetal genetic, VM = maternal genetic, VC = shared familial environment
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meters are obtained by subsequent sampling from the
(presumed) stationary distribution. Successive samples
of parameter values from the joint posterior distribu-
tion over all iterations are monitored from which
summary statistics, such as means, standard errors and
confidence intervals, are calculated. In contrast to the
amount of computation required to generate second
derivatives and plot contours of likelihood surfaces,
the ease with which the sampling properties of the
estimates are available to MCMC is a significant by-
product. A related benefit is the ease with which the
sampling distributions of functions of the model para-
meters (e.g., heritability estimates, proportions of
variance) can be derived.

The familiar likelihood-ratio tests of ML are not
readily available in MCMC because the approach
also estimates a very large number of random effects
as well as the fixed effects and other model parame-
ters. The deviance information criterion (DIC), which
uses an empirical estimate of the number of model
parameters (pD), is used to penalize improvements
in likelihood for changes in model complexity.
Spiegelhalter et al. propose using the DIC for model
comparison in a Bayesian framework (Spiegelhalter et
al., 2002). The DIC is analogous to the widely used
Akaike Information Criteria (Akaike, 1987) that
seeks to optimize the balance between goodness of fit
and model parsimony. The model with the smallest
DIC value is estimated to best predict a replicate
dataset while being mindful of parsimony. A ‘rule of
thumb’ suggests that differences of 10 in the DIC of
successive models indicate improvements in predictive
value that need to be taken seriously and changes of 5
are at least suggestive. It should be cautioned the use
of DIC is not recommended when the sampled poste-
rior distributions are skewed, bimodal or truncated
(Ntzoufras, 2009; Spiegelhalter et al., 2003), which
from our experience is in itself an indicator of poor
model performance resulting from over-fitting or lack
of sufficient data to estimate parameters with ade-
quate precision.

Application of MCMC Parameter Estimation 
to Pregnancy Histories of Virginia Twins
Sample

Pregnancy histories of twin parents were obtained by
merging birth records from the Virginia Department
of Health Office of Vital Records (VDH) with regis-
tered participants in the Mid-Atlantic Twin Registry
(MATR) at Virginia Commonwealth University School
of Medicine. The details of the MATR and sample
characteristics are described elsewhere (Anderson et
al., 2002). Matches were performed at the VDH by
merging the parent SSN on the birth record for off-
spring born after 1989 with the SSN of twins provided
by the MATR. Virginia Commonwealth University
IRB approved sample collection and study design
(VCU IRB# HM11443). Offspring exclusion criteria,
based on data available from birth certificates, include
multiple birth, any congenital anomalies, hydram-
nios/oligohydramnios, pregnancies complicated by
pregnancy induced hypertension and eclampsia, Rh
sensitization, abruptio placenta and placenta previa,
or any medically necessitated preterm delivery. To
avoid the influence of extreme values that may be
associated with different etiologic factors we omitted
gestational ages that deviated beyond 2.5 standard
deviations from the mean. A binary preterm outcome
measure was indicated as gestational age less than 37
completed weeks. The size of sibships, k, was limited
to the first four births (99.5% of all births) in order to
balance gains with computational load.

Results 

The data-merge between the VDH and MATR
resulted in 7,061 total births from 810 (264) MZ
female, 529 (131) DZ female, 680 (166) MZ male,
465 (90) DZ male and 1201 (208) unlike-sex pairs.
Numbers in parenthesis indicate the number of pairs
where at least one birth was reported for both twins.
The prevalence of preterm birth was 5.7%, average
gestational age was 39.0 (SD = 1.4), mothers’ age at
birth of first child 27.6 (SD = 5.5), fathers’ age at
birth of first child 30.6 (SD = 6.0) and self-reported
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Table 2

MCMC and ML Model Comparison Summary Statistics

Trait MCMC ML

Model distribution k DIC Δ DICa –2LL p valueb AIC

VF, VM, VC Continuous 5 24027.9 — 24436.120 — 10324.120
VF, VM Continuous 4 24013.1 –14.8 24436.437 0.574 10322.437
VM Continuous 3 24006.4 –21.5 24437.300 0.554 10321.300
VF Continuous 3 24023.3 –4.6 24450.932 0.001 10334.932

VF, VM, VC Binary 5 2178.6 — 2766.777 — –11353.223
VF, VM Binary 4 2178.9 0.3 2766.769 1.00 –11355.231
VM Binary 3 2594.8 416.2 2768.255 0.478 –11355.745

VF Binary 3 1595.8 –582.8 2767.463 0.710 –11356.537

Note: aΔ DIC = change in deviance information criteria or bchi-square test of –2 log-likelihood difference from submodel versus full model containing VF, VM and VC.
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race for first child was 84.7% European American
and 14.2% African–American.

Estimates of fetal (VF) and maternal (VM) genetic
effects and the contribution of the shared environment
(VC) were obtained using the MCMC approach imple-
mented in WinBUGS. A series of models were fitted
following a program of a 10,000 iteration burn-in
period followed by 50,000 subsequent samplings (see
Table 2). ML estimates using the structural equation
modeling program Mx (Neale et al., 1999) were also
obtained for comparison. Nested models were com-
pared to the full model that included both genetic
sources and the effect of the shared environment.
Results for the continuous outcome indicated a lack
of support for the contribution of the shared environ-
ment. This is evident from the zero lower bound of
this parameter yielding a highly skewed posterior
distribution of Vc (not shown). Removal of this para-
meter is also indicated by the lack of significant
difference in model fit reflected in the likelihood-ratio
test of the ML method (p value = 0.574). Of the
remaining models containing only genetic effects, the
model including only maternal genetic effects per-
formed best by DIC and AIC. Estimates of the
variances due to the random effects show close agree-
ment between the Bayesian and ML approaches. The
results for the binary outcome differed in that the best
fitting model contained only the effects of fetal genes.
The parameter estimates and 95% confidence inter-
vals for the best fitting models for both outcomes are
listed in Table 3, but we note these models were pre-
ferred over the model including both the fetal and
maternal genetic contributions based on very small
changes in the AIC. The greater ambiguity of the
results for the binary outcome reflects the marked
loss in the amount of information associated with
dichotomizing a continuous outcome. Even these rela-
tively large samples do not permit the effects of
maternal and fetal effects to be estimated with ade-
quate precision for them to be resolved unequivocally.
Model summary statistics and paramter estimates
were similar when fitting models that included only
the predominant racial classification.

Discussion
This study introduces a flexible MCMC approach for
the estimation of fetal and maternal genetic effects

using pregnancy histories from the offspring of female
and male twin pairs. The models handle data on mul-
tiple offspring from the same pregnancy to increase
the information from each cousinship and enable
more precise estimation of fetal and maternal genetic
effects and the shared environment effect. The struc-
tural model was fitted efficiently using widely
distributed Mx software for linear structural models
(Neale et al., 1999) and similar parameter estimates
and confidence intervals were obtained. The flexibility
of MCMC for our application, however, is the relative
ease with which the same basic structural model can
be generalized to include other kinds of outcomes such
as binary traits. Alternative mathematical models for
the distribution of the outcome variables are easily
implemented by changing the link function relating
liability to outcome. Because of the widespread use of
the multifactorial threshold model in kinship studies
we implemented this model in our application by
expressing the probability of a binary outcome as a
probit function of the normal liability of each preg-
nancy given the random effects of maternal and fetal
genotype and shared sibling environment. Other link
and distribution functions may be used to explore
other definitions of premature birth, including time-
to-event (length of gestation), multiple categories (e.g.,
grades of ‘severity’ of outcome) or counts of multiple
symptoms or events.

The application of this approach to a set of
Virginia COT data suggested that the contribution of
both maternal and fetal genetic effects to gestational
age and did not support the contribution of shared
environmental factors. Model results differed by
outcome with 27.1% of the continuous trait variance
accounted for by maternal genetic factors while fetal
genetic factors explained 87.2% of liability to risk of
preterm birth when applied to the binary outcome. As
noted previously, the selection of the optimal model
for both outcome measures over the maternal/fetal
combined genetic model was based on small differ-
ences in model summary statistics. In addition, the
confidence intervals around the fetal genetic variance
component were wide and approached the upper limit
of the parameter bounds, which suggests that it was
difficult for either method to estimate this parameter
using the current sample. Increased variability in para-
meters of the random effects model is seen for the
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Table 3

Parameter Estimates and 95% Confidence Intervals of Best Fitting Models for MCMC and ML Methods

Trait distribution Method Fetal genetic Maternal genetic Unique environment

Continuous MCMC — 0.526 (0.452, 0.600) 1.412 (1.344, 1.484)
Continuous ML — 0.525 (0.453, 0.600) 1.411 (1.342, 1.484)
Binarya MCMC 87.20 (65.57, 94.03) — 12.08 (5.97, 34.43)
Binary ML 86.40 (62.00, 99.9) — 13.60 (0.001, 38.00)

Note: aThe sum of parameter estimates for the binary case are constrained to equal one.

https://doi.org/10.1375/twin.12.4.333 Published online by Cambridge University Press

https://doi.org/10.1375/twin.12.4.333


binary outcome because substantial information is lost
in dichotomizing a truly continuous phenotype.

The lack of strong support for a fetal genetic effect
in this study and absence in others (Kistka et al.,
2008) is curious since birth timing has been described
as a culmination of series of physiologic and anatomic
changes in both mother and fetus (Chaudhari et al.,
2008; Lye et al., 2007). Indeed, genetic disorders
affecting the fetus including certain forms of Ehlers-
Danlos syndrome are known to predispose to early
birth resulting from preterm premature rupture of the
fetal membranes (PPROM), whereas Ehlers-Danlos
syndrome in the mother with an unaffected fetus does
not predispose to preterm birth (Anum, Hill et al.,
2009). Association studies have also indicated that
certain genetic variants carried by the fetus increase
risk of PPROM (Anum, Springel et al., 2009). It is
possible that fetal contributions to preterm birth are
population-specific. PPROM is a more common cause
of preterm birth in African–Americans than non-
Hispanic whites (Plunkett et al., 2008; Shen et al.,
2008). Consequently, the smaller proportion of
African–Americans in the Virginia COT sample may
have obscured the fetal contribution.

In the case of COT designs, the most direct
methods of increasing power to detect genetic effects
are to increase the number of twin pairs or to include
pregnancy history on additional family members, for
instance, by the inclusion of avuncular relationships
and/or the offspring of sibling pairs. In addition, the
models presented in this study provide a framework to
include multiple births per mother, which, as opposed
to pooling offspring measures, facilitates the inclusion
of covariates in genetic models that could help to
uncover genetic effects. For instance, when available,
covariate measures can be used to test the effect of
gene–environment interaction by examining the mod-
ulation of the contribution of genetic variation by the
level of salient environmental attributes.

In MCMC, random effects (‘liabilities’) are
assigned values conditional upon the data that are as
much parameters of the model as the components of
variance and regression coefficients. If covariates can
be specified, the random effects for missing subjects are
estimated conditional on the data available from other
members of the family and covariate values, on the
assumption that missing values are sampled from the
same distribution as valid observations. Although this
is typically regarded as a convenient way of handling
missing data, it also has implications for counseling
and follow-up since risks to future pregnancies may
be estimated, together with their confidence intervals,
by including such putative pregnancies as additional
‘missing’ observations. Furthermore, the estimates of
the individual components of the random effects (e.g.,
the effect of the maternal and/or fetal genotypes)
provide an informed basis for sampling (or excluding)
families for subsequent follow-up to identify those
that are likely to be most informative for genotyping

with respect to the candidate genes that are hypothe-
sized to affect either the maternal or fetal components
of liability.

Although MCMC methods have been applied to the
analysis of pedigree data (Brock et al., 2007), their
application to data on twins and their relatives is rela-
tively recent. Benchmark studies (L. Eaves & Erkanli,
2003) show that, for problems that are tractable with
Mx, such as fitting a simple structural model to multi-
variate normal data, ML and MCMC yield comparable
answers, as also observed in this application. In such
cases the ML algorithm in Mx is far faster and easier to
use and remains the algorithm of choice. However, the
advantage quickly reverses for a wide range of models
that cannot currently be implemented in ML packages
because of the excessive demands of repeated numeri-
cal integration. A wide range of applications to real
and simulated twin data are now published that illus-
trate the flexibility of MCMC. These include: genetic
survival analysis of the timing of menarche in twins
(Do et al., 2000); nonlinear latent growth curve models
(L. Eaves & Erkanli, 2003); analysis of genetic and
environment components of the relative timing of
pubertal change in multiple indicators of puberty;
‘genetic’ IRT models for large numbers of multi-cate-
gory items (L. Eaves et al., 2005; van den Berg et al.,
2006); the interaction and correlation of genetic liabil-
ity and exposure to life events in the etiology of
adolescent depression (L. Eaves et al., 2003); and the
genetic control of developmental change in multivariate
indictors of childhood fears (L. J. Eaves & Silberg,
2008). The above examples illustrate the flexibility of
MCMC to tackle a range of hitherto intractable prob-
lems in the analysis of twin data.

The structural model for this application is rela-
tively simple, assuming that genetic effects do not
depend on sex, that mating is random and that there
are no correlations between successive pregnancies
apart from the effects of the maternal genotype and
the correlation between offspring for the effects of the
fetal genotype. Each of these assumptions may be
modified by altering the structural model appropri-
ately. Heath et al. (1985), Truett et al. (1994), Maes et
al. (1997), and Eaves et al. (L. Eaves, et al., 1999; L. J.
Eaves, et al., 1986), provide more general models for
the correlations between relatives in the kinships of
twins in which it is possible to allow for effects such
as assortative mating, sex-limited gene expression,
carry-over effects from previous pregnancies, develop-
mental change, nonadditive genetic effects and other
shared nongenetic influences. Although MCMC is
astonishingly flexible, the approach is not a panacea
and may share many of the limitations that character-
ize numerical algorithms that maximize the likelihood.
Typically, these problems result from multicollinearity,
under-identification, or less than optimal model para-
meterization that results in slow convergence (‘mixing’)
of the MCMC algorithm.
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In conclusion, we show how MCMC methods can
be applied to the full pregnancy history from COT
samples. Although further study is warranted with
larger samples, we anticipate the flexibility of these
methods to handle increasingly complex models to be
of particular relevance for the study of birth outcomes.
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Appendix A

#====================================================================#
# Estimation of maternal/fetal genetic, shared/unique environmental factors to birth outcomes.
# Comments are to the right of ‘#’.
# Outcome is continuous trait (e.g., gestational age); Binary trait can be specified as indicated.
# ‘.m’ is a maternal parameter.
# ‘.p’ is a paternal (fetal in this context) parameter.
#===================================================================#
model;
{
# Specify priors
mu ~ dnorm(39,0.001) #overall mean
s.m ~ dunif(0.0,10) # s.d. of random maternal effects
s.f ~ dunif(0.0,10) # s.d. of random fetal (‘paternal’) effects; ‘cousin effects’
s.ec ~ dunif(0,10) # s.d. of random shared environmental effects
s.e ~ dunif(0,15) # s.d. of random within sibship environmental effects
v.m <- s.m*s.m
v.f <- s.f*s.f
v.ec <- s.ec*s.ec
v.e <- s.e*s.e

# Specify covariances between offspring of twins
c.mzm <- 0.25*v.f #MZ paternal
c.dzm <- 0.125*v.f #DZ paternal
c.mzf <- 0.25*v.f + v.m #MZ maternal
c.dzf <- 0.125*v.f + 0.5*v.m #DZ maternal
c.dzo <- 0.125*v.f #DZ opp sex
v.w <- 0.5*v.f + v.e #Within sibship deviations
csib <- v.m + 0.5*v.f + v.ec #Covariance of siblings
r.mzm <- csib - c.mzm
r.dzm <- csib - c.dzm
r.mzf <- csib - c.mzf
r.dzf <- csib - c.dzf
r.dzo <- csib - c.dzo

# Precision of cousin effects
tau.c.mzm <- 1/c.mzm
tau.c.dzm <- 1/c.dzm
tau.c.mzf <- 1/c.mzf
tau.c.dzf <- 1/c.dzf
tau.c.dzo <- 1/c.dzo

# Precision of between sibship differences within cousinships
tau.r.mzm <- 1/r.mzm
tau.r.dzm <- 1/r.dzm
tau.r.mzf <- 1/r.mzf
tau.r.dzf <- 1/r.dzf
tau.r.dzo <- 1/r.dzo

# Precision of within sibship deviations
tau.w <- 1/v.w

#Simulate twin liabilities: DZ.m
for (pair in 1:NDZ.m) {
mucous[pair] ~ dnorm(mu,tau.c.dzf) # simulate cousin means
for (twin in 1:2) {
mupair[pair,twin] ~ dnorm(mucous[pair],tau.r.dzf) }} #simulate means of sibpair
#Simulate twin liabilities: MZ.m
for (pair in (NDZ.m+1):(NDZ.m+NMZ.m)) {
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mucous[pair] ~ dnorm(mu,tau.c.mzf)
for (twin in 1:2) {
mupair[pair,twin] ~ dnorm(mucous[pair],tau.r.mzf) }}

#Simulate twin liabilities: DZ.p
for (pair in (NDZ.m+NMZ.m+1):(NDZ.m+NMZ.m+NDZ.p)) {
mucous[pair] ~ dnorm(mu,tau.c.dzm)
for (twin in 1:2) {
mupair[pair,twin] ~ dnorm(mucous[pair],tau.r.dzm) }}

#Simulate twin liabilities: MZ.p
for (pair in (NDZ.m+NMZ.m+NDZ.p+1):(NDZ.m+NMZ.m+NDZ.p+NMZ.p)) {
mucous[pair] ~ dnorm(mu,tau.c.mzm)
for (twin in 1:2) {
mupair[pair,twin] ~ dnorm(mucous[pair],tau.r.mzm) }}

#Simulate twin liabilities: DZO
for (pair in (NDZ.m+NMZ.m+NDZ.p+NMZ.p+1):(NDZ.m+NMZ.m+NDZ.p+NMZ.p+NDZ.o)) {
mucous[pair] ~ dnorm(mu,tau.c.dzo)
for (twin in 1:2) {
mupair[pair,twin] ~ dnorm(mucous[pair],tau.r.dzo) }}

# Compute likelihood for every offspring
# For the binary case an additional loop is needed to compute subject specific endorsement probabilities.
# Binary model assumes sharp threshold at ‘a’ such that p[pair,twin,child]=1 if x[pair,twin,child]>a, else p=0.
for (pair in 1:N){
for (twin in 1:2){
for (child in 1:NCHILD){
y[pair, twin, child] ~ dnorm(mupair[pair, twin],tau.w) }}}

} #end of model
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