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AMALGAMS DETERMINED BY LOCALLY

PROJECTIVE ACTIONS

A. A. IVANOV and S. V. SHPECTOROV

Abstract. A locally projective amalgam is formed by the stabilizer G(x) of a
vertex x and the global stabilizer G{x, y} of an edge (containing x) in a group
G, acting faithfully and locally finitely on a connected graph Γ of valency 2n−1
so that (i) the action is 2-arc-transitive; (ii) the subconstituent G(x)Γ(x) is the
linear group SLn(2) ∼= Ln(2) in its natural doubly transitive action and (iii)
[t, G{x, y}] ≤ O2(G(x) ∩ G{x, y}) for some t ∈ G{x, y} \ G(x). D. Ž. Djoković
and G. L. Miller [DM80], used the classical Tutte’s theorem [Tu47], to show
that there are seven locally projective amalgams for n = 2. Here we use the
most difficult and interesting case of Trofimov’s theorem [Tr01] to extend the
classification to the case n ≥ 3. We show that besides two infinite series of
locally projective amalgams (embedded into the groups AGLn(2) and O+

2n
(2))

there are exactly twelve exceptional ones. Some of the exceptional amalgams
are embedded into sporadic simple groups M22, M23, Co2, J4 and BM . For
each of the exceptional amalgam n = 3, 4 or 5.

§1. Locally projective actions

An amalgam of rank m is a collection

A = {(G[i], ∗i) | 0 ≤ i ≤ m− 1}

of m groups (G[i], ∗i), 0 ≤ i ≤ m − 1, such that for all 0 ≤ i < j ≤ m − 1

the intersection G[ij] := G[i] ∩G[j] of the element sets is non-empty and the

group operations ∗i and ∗j coincide, when restricted to G[ij]. If (G, ∗) is

a group and G[0], G[1], . . . , G[m−1] are subgroups in G, then {(G[i], ∗|G[i]) |
0 ≤ i ≤ m− 1} is an amalgam.

Let A = {(G[i], ∗i) | 0 ≤ i ≤ m − 1} be an amalgam, (G, ∗) be a

group and ϕ be a mapping of the union of the element sets of the groups

constituting A into G such that for every 0 ≤ i ≤ m− 1 and all g, h ∈ G[i]

the equality

ϕ(g ∗i h) = ϕ(g) ∗ ϕ(h)
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holds (i.e., the restriction of ϕ to each G[i] is a homomorphism). Then

the pair (G,ϕ) is called a completion of A (here G is the completion group

and ϕ is the completion map). The completion is said to be faithful if ϕ

is injective and generating if G is generated by the image of ϕ. A comple-

tion (G̃, ϕ̃) is said to be universal if for every completion (G,ϕ) there is a

homomorphism ψ of G̃ into G, such that ϕ is the composition of ϕ̃ and ψ.

A universal completion is always generating and the universal completion

group is unique up to isomorphism. Furthermore, an amalgam possesses a

faithful completion (which is not always the case) if and only if its universal

completion is faithful.

Whenever the group operations are clear from the context or irrelevant,

we simply write

A = {G[i] | 0 ≤ i ≤ m− 1}

for an amalgam of rank m and also for the union of the element sets of the

groups constituting the amalgam. We will also drop the explicit reference to

the completion maps whenever it does not cause confusion (in this case by

‘completion’ we mean the completion group). It is known [K60] that for an

amalgam A = {G[0], G[1]} of rank 2 the universal completion is faithful and

the universal completion group is isomorphic to the free product of G[0] and

G[1] amalgamated over the common subgroup G[01]. The free amalgamated

product is infinite whenever G[01] is proper in both G[0] and G[1].

Let Γ be a connected undirected regular graph of finite valency k and

G be an automorphism group of Γ which acts transitively on the set of

vertices. We assume that the action of G is locally finite in the sense that

for every vertex x ∈ Γ its stabilizer G(x) is a finite subgroup of G. Let Γ(x)

denote the neighbourhood of x in Γ (the set of vertices adjacent to x), so

that |Γ(x)| = k and for a non-negative integer i put

Γi(x) = {y | y ∈ Γ, dΓ(x, y) = i},

where dΓ is the natural metric on Γ, so that Γ0(x) = {x} and Γ1(x) = Γ(x).

An s-arc in Γ is an ordered sequence (x0, x1, . . . , xs) of (s+1) vertices, such

that xi+1 ∈ Γ(xi) for 0 ≤ i ≤ s − 1 and xi+2 6= xi for 0 ≤ i ≤ s − 2.

When a subgroup H ≤ G stabilizes a subset Ξ ⊆ Γ, we write HΞ for the

permutation group on Ξ induced by H. For an integer i let Gi(x) denote

the vertex-wise stabilizer in G of the ball of radius i centred at x, so that

Gi(x) =
⋂

dΓ(x,y)≤i

G(y).
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If {x, y} is an edge of Γ, we put G(x, y) = G(x) ∩ G(y) and Gi(x, y) =

Gi(x) ∩Gi(y) for i ≥ 1.

It is well known and easy to prove that a vertex-transitive group G

is 2-arc-transitive if and only if the subconstituent G(x)Γ(x) is a doubly

transitive permutation group. When the action under consideration is s-

but not (s+ 1)-arc-transitive we say that it is strictly s-arc-transitive.

Let n ≥ 2 be an integer and q be a prime power. We say that a locally

finite, vertex-transitive action of G on Γ is locally projective of type (n, q)

if the subconstituent G(x)Γ(x) contains a normal subgroup isomorphic to

the special linear group Ln(q) acting on the set of 1-dimensional subspaces

in its natural module (an n-dimensional GF (q)-space), so that k = (qn −
1)/(q − 1),

Ln(q) EG(x)Γ(x) ≤ PΓL(n, q),

and the action is 2-arc-transitive.

The special role of locally projective actions is due to the following

result (cf. [W81]).

Proposition 1.1. Let G be a 2-arc-transitive automorphism group of

a graph Γ and suppose that the subconstituent G(x)Γ(x) is one of the known

doubly transitive permutation groups. Then either

(i) G1(x, y) = 1 for every edge {x, y} of Γ, or

(ii) the action of G on Γ is locally projective.

From the middle of the 1970s till the beginning of the 1990s the ex-

istence problem of an absolute constant c such that Gc(x) = 1 for every

locally projective action was open and considered to be extremely difficult.

The following result known as Trofimov’s theorem was announced in [Tr91a]

and proved in the sequence of papers [Tr92], [Tr95a], [Tr95b], [Tr98], [Tr00],

[Tr01], [Tr03b].

Theorem 1.2. For every locally projective action the equality G6(x) =
1 holds.

Let us recall a few standard facts concerning locally projective actions

(cf. [W77], [W78], [W82], [Tr91a], [Iv90] or Chapter 9 in [Iv99]).

Let Πx denote the projective GF (q)-space of rank n− 1 having Γ(x) as

the set of points, which is invariant under the action of G(x) (the elements
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of Πx are treated as subsets of Γ(x)). For y ∈ Γ(x) let Πx(y) be the residue

of y in Πx which is the set of subspaces from Πx properly containing y.

Then Πx(y) carries the structure of a GF (q)-projective space of rank n−2.

Proposition 1.3. Suppose that the action of G on Γ is locally projec-

tive of type (n, q) and let {x, y} be an edge of Γ. Then either

(i) G is 3-arc-transitive and G(x, y) acts flag-transitively on the direct

sum of the spaces Πx(y) and Πy(x), or

(ii) G is strictly 2-arc-transitive and there is a unique isomorphism ϕx,y

of Πx(y) onto Πy(x) which commutes with the action of G(x, y), fur-

thermore either

(a) ϕx,y is a collineation, or

(b) n ≥ 4 and ϕx,y is a correlation.

Within the proof of Trofimov’s theorem, the possible structure of the

chief factors of the vertex stabilizer G(x) in a locally projective action was

established. This brings one very close to the description of such stabilizers

up to isomorphism. The vertex stabilizer itself does not determine the

whole group G, in any reasonable sense. On the other hand G is a faithful

completion of the amalgam

A = A(G,Γ) = {G[0] = G(x), G[1] = G{x, y}}

formed by the vertex and edge stabilizers. The graph Γ itself has the (right)

cosets of G[0] in G as vertices. Two such cosets G[0]g and G[0]h are adjacent

if

G[1]k ∩G[0]g 6= ∅ and G[1]k ∩G[0]h 6= ∅

for some k ∈ G.

We can treat A as an abstract amalgam and defineG to be the universal

completion of A (which is the free product of G[0] and G[1] amalgamated

over the subgroupG[0]∩G[1]), in which case Γ is a tree. Thus the description

up to isomorphism of the amalgams A(G,Γ) arising from locally projective

actions is equivalent to the description of the locally finite automorphism

groups of trees inducing locally projective actions.

The full automorphism group of a regular tree of valency at least 3 is

‘large’ in the sense that it is uncountable and not finitely generated. Every
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locally finite automorphism group we are after is ‘small’ in the sense that

it is countable and finitely generated.

The description of the locally finite 1-arc-transitive automorphism

groups of the cubic tree goes back to the classical result of W. Tutte in

[Tu47]. There are exactly seven isomorphism types of amalgams A =

{G(x), G{x, y}} and only five isomorphism types of vertex stabilizers: Z3,

S3, S3 × 2, S4 and S4 × 2 (cf. [DM80]).

In the proof of Trofimov’s theorem technically the hardest turned out

to be the case when q = 2 and the action is strictly 2-arc-transitive of

collineation shape (the case (ii) (a) in Proposition 1.3 for q = 2). The

papers [Tr00], [Tr01], [Tr03b] deal almost solely with this case. This is not

an incident since the famous examples of locally projective actions related to

the flag-transitive Petersen geometries arise in this case. All such geometries

have been classified in [Iv99] and [IS02]. There are exactly eight of then

and among their automorphism groups we find sporadic simple groups M22,

M23, Co2, J4, BM and certain non-split extensions of these groups by

elementary abelian 3-groups.

In the present paper we give the complete classification of the amalgams

A = {G(x), G{x, y}} coming from locally projective action of type (n, q)

where n ≥ 3, q = 2 and the action is strictly 2-arc-transitive of collineation

shape. These amalgams modulo twelve rather remarkable exceptions form

two classical infinite series. The precise statement of the main result will

be given in the next section after a few further definitions.

§2. The main result

For the remainder of the paper we assume that the action of G on Γ is

locally projective of type (n, q), where q = 2 and n ≥ 3 (the case n = 2 is

covered by the classical result of W. Tutte on cubic graphs), so that

G(x)Γ(x) ∼= Ln(2) and k = |Γ(x)| = 2n − 1.

Furthermore, we assume that the action is strictly 2-arc-transitive and of

collineation shape.

Let {x, y} be an edge of Γ. Put G[0] = G(x), G[1] = G{x, y} and let

A = A(G,Γ) = {G[0], G[1]}

be the amalgam, formed by the vertex and edge stabilizers of the action

under consideration. The above conditions on the action of G on Γ possess

equivalent reformulation in group-theoretical terms:
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(1) G[0] is a finite group, such that Ḡ[0] := G[0]/O2(G
[0]) is isomorphic to

Ln(2);

(2) G[0] ∩ G[1] is the full preimage in G[0] of the stabilizer in Ḡ[0] of a

non-zero vector in its natural module U (which is an n-dimensional

GF (2)-space);

(3) [G[1] : G[0] ∩G[1]] = 2;

(4) G[1]/O2(G
[0] ∩G[1]) ∼= Ln−1(2) × 2;

(5) G[1] does not normalize proper subgroups in G[0]∩G[1] normal in G[0].

The latter condition reflects the fact that the action of G on Γ is faithful.

Thus our goal is to describe up to isomorphisms the amalgams A =

{G[0], G[1]} satisfying the conditions (1) to (5). Within an inductive ap-

proach sometimes we will deal with amalgams where (5) fails; therefore it

is convenient to have a special name for that condition. If an amalgam A

satisfies (5) it will be called simple.

Consider A = {G[0], G[1]} as an abstract amalgam and let G̃ be the

universal completion of A, so that G̃ is the free product of G[0] and G[1]

amalgamated over the common subgroup G[01] = G[0] ∩ G[1]. A faithful

completion Ḡ of A can be defined as a homomorphic image of G̃ such that

A maps bijectively onto its image Ā = {Ḡ[0], Ḡ[1]} in Ḡ. Having such a

faithful completion Ḡ we can define a graph Γ̄ = Γ(A, Ḡ) whose vertices

are the (right) cosets of Ḡ[0] in Ḡ and two such cosets are adjacent if they

intersect in a coset of Ḡ[01]. Then the natural action of Ḡ on Γ̄ is locally

projective and

A(Ḡ, Γ̄) ∼= A.

Furthermore Γ(A, Ḡ) is a tree if and only if Ḡ = G̃ and the original graph

Γ can be recovered as Γ(A, G), since G is clearly a faithful completion of

A.

When studying locally projective actions it is convenient to consider the

geometric subgraphs in Γ defined in the following way (compare Chapter 9

in [Iv99]).

Let Πx be the projective geometry on Γ(x) invariant under the action

of G(x) and let ϕx,y be the unique collineation of Πx(y) onto Πy(x), which

commutes with the action of G(x, y). Let 2 ≤ i ≤ n − 1 and ∆ ⊂ Πx

be a subspace of (linear) dimension i. We identify ∆ with its point-set,

which is a (2i − 1)-subset of Πx. A subgraph Σ in Γ is said to be geometric

determined by the subspace ∆ if it is:
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(i) connected;

(ii) contains the vertex x;

(iii) Σ ∩ Γ(x) = ∆;

(iv) if z ∈ Σ and (x0 = x, x1, . . . , xs = z) is an arc joining x with z in Σ,

then

Σ ∩ Γ(xs) = ϕxs−1,xs
(Σ ∩ Γ(xs−1)).

It is easy to see that if Σ exists then it is unique and its valency is 2i−1

(we will denote this subgraph by Γ∆). The subgraph Γ∆ always exists if Γ

is a tree.

The geometric subgraph Γ∆ can also be defined in terms of a subgroup

in G (below we assume that y ∈ ∆). Indeed, let H [0] be the stabilizer in

G(x) = G[0] of the subspace ∆ and H [1] be the stabilizer in G[1] = G{x, y}

of the set

∆ ∪ ϕx,y(∆),

in which case H [1] = 〈H [0] ∩G(x, y), τ〉, where

τ ∈ (G{x, y} \G(x, y)) ∩O2(G({x, y})),

so that τ induces the collineation ϕx,y. Put

H := 〈H [0],H [1]〉.

The following result was established in [Iv90] (cf. Lemma 9.6.4 in [Iv99])

and we sketch its proof here.

Lemma 2.1. The geometric subgraph Γ∆ exists if and only if H is a

proper subgroup of G. If Γ∆ exists then H is the full stabilizer of Γ∆ in G
and the action of H on Γ∆ is locally projective of type (i, 2).

Proof. If Γ∆ exists then it is by the uniqueness property that H is its
stabilizer in G, therefore H is a proper subgroup of G in this case. Suppose
that H is proper in G. Define Γ∆ to be the subgraph induced by the
images of x under H. Since H [0] is maximal in G[0] and H 6≤ G[0] we have
G[0] ∩ H = H [0] and similarly G[1] ∩ H = H [1]. Therefore ∆ is the set of
neighbours of x in Γ∆. Since H acts transitively on the vertex-set of Γ∆ it
is clear that Γ∆ satisfies all the imposed conditions.
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If Γ is a tree and G is the free amalgamated product of G[0] and G[1],

then H is always proper isomorphic to the free amalgamated product of

H [0] and H [1] over the subgroup H [0] ∩H [1] and Γ∆ is a subtree in Γ.

Let K denote the kernel of the action of H on Γ∆. Then K is the

largest subgroup in H [0] ∩H [1], normal in both H [0] and H [1]. Therefore

A(H/K,Γ∆) = {H [0]/K,H [1]/K}

is the amalgam formed by the vertex and edge stabilizers in the faithful

locally projective action of type (i, 2) which enables us to follow an inductive

approach. Since K is contained in G[0] it can not be normal in G unless it

is trivial and by Lemma 2.1 this gives the following.

Lemma 2.2. If K 6= 1 then H is proper in G and Γ∆ exists.

Certainly the structure of H depends on the particular choice of G. On

the other hand, the isomorphism types of the kernel K and the amalgam

A(H/K,Γ∆) are internal characteristics of the amalgam A(G,Γ). Another

important characteristic is the group

Ĥ := H/(KCH(K)),

isomorphic to the image of H in the group of outer automorphisms of K.

We refer to [P94] for basic definitions concerning diagram geometries.

Suppose that Γ (with respect to the action of G) contains a complete family

of geometric subgraphs (i.e., Γ∆ exists for every vertex x and every i-

dimensional subspace ∆ in Πx for 2 ≤ i ≤ n − 1). Define a geometry

G = G(G,Γ) of rank n over the set of types {0, 1, . . . , n − 1} in which the

elements of types zero and one are, respectively the vertices and edges and

for 2 ≤ i ≤ n − 1 the elements of type i are the geometric subgraphs

Γ∆ where ∆ is an i-dimensional subspace in Πx for some vertex x. The

incidence relation is via inclusion. Then G belongs to a diagram of the

shape

1
◦

X

2
◦

2
◦ · · ·

2
◦

2
◦,

where
1
◦ X

2
◦ is the geometry of vertices and edges of a geometric sub-

graph of valency 3 (the types on the diagram increase rightwards). Notice

that for a vertex x ∈ Γ its residue resG(x) in G coincides with Πx. The

action of G on G is flag-transitive.
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Let {y} ⊂ ∆[2] ⊂ · · · ⊂ ∆[n−1] be a maximal flag in Πx, Σ[i] = Γ∆[i]

and G[i] be the stabilizer of Σ[i] in G for 2 ≤ i ≤ n− 1. Then

{x} ⊂ {x, y} ⊂ Σ[2] ⊂ · · · ⊂ Σ[n−1]

is a maximal flag in G and

{G[0] = G(x), G[1] = G{x, y}, G[2], . . . , G[n−1]}

is the corresponding amalgam of maximal parabolics.

For an element α ∈ G let res+
G (α) and res−G (α) denote the set of elements

incident to α whose type is greater than the type of α and less than the type

of α, respectively. Let G
[i]
+ , G

[i]
− and G

[i]
0 denote the element-wise stabilizers

in G[i] of res+G (Σ[i]), res−G (Σ[i]) and resG(Σ[i]), respectively. Then G
[i]
− is

the kernel of the action of G[i] on Σ[i] and it is the largest subgroup in

G(x, y) ∩G[i] normal in both G(x) ∩G[i] and G{x, y} ∩G[i].

As above put

Ĝ[i] = G[i]/(G
[i]
−CG[i](G

[i]
− ))

and say that G is constrained at level i if CG[i](G
[i]
− ) ≤ G

[i]
− .

Let G be an arbitrary geometry of rank n belonging to the above di-

agram and G be a flag-transitive automorphism group of G such that the

stabilizer in G of a zero-type element induces the full automorphism group

Ln(2) of the corresponding residue. Let Γ be the derived graph of G which

is a graph on the set of elements of type zero in G in which two such ele-

ments are adjacent if in G they are incident to a common element of type

one. Then the action of G on Γ is locally projective of type (n, 2). This

observation enables us to switch from graph to geometry and back.

Now before formulating the main results it only remains to recall some

known examples.

Example 1. Let Vn(2) be an n-dimensional GF (2)-space and G =
AGLn(2) be the group of affine transformations of Vn(2). Let Γ ∼= K2n

be the complete graph on the set of vectors in Vn(2). Then the natural
action of G on Γ is locally projective of type (n, 2), G1(x) = 1, Γ contains
a complete family of geometric subgraphs which are cosets of the proper
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subspaces in Vn(2), Ĝ[i] ∼= Li(2), G is not constrained, the geometry G(G,Γ)
is the affine space with the diagram

1
◦

c

2
◦

2
◦ · · ·

2
◦

2
◦

and
A(AGLn(2),K2n ) = {Ln(2), 2n−1 : Ln−1(2) × 2}.

Example 2. Let V2n(2) be a 2n-dimensional GF (2)-space equipped
with a non-degenerate quadratic form f of plus type, n ≥ 3. Let G = O+

2n(2)
be the corresponding orthogonal group (which contains the simple group
Ω+

2n(2) with index 2). Let Γ = D+(2n, 2) be the dual polar graph which is
the graph on the set of maximal (n-dimensional) totally singular subspaces
in V2n(2) with respect to the form f , where two subspaces are adjacent if
their intersection has dimension n−1. Then (cf. [CP82]) the action ofG on Γ
is locally projective of type (n, 2), G2(x) = 1, G1(x) is the exterior square of
x (when the latter is considered as a natural module for G(x)Γ(x) ∼= Ln(2)).
Γ contains a complete family of geometric subgraphs, which are indexed by
the subspaces in V2n(2) totally singular with respect to f , Ĝ[i] ∼= O+

2i(2),
the group G is constrained, the geometry G(G,Γ) is the building with the
diagram

1
◦

2
◦

2
◦ · · ·

2
◦

2
◦,

a geometric subgraph of valency 3 is the complete bipartite graph K3,3 with
the automorphism group S3 o S2

∼= O+
4 (2).

Example 3. Let G be a P -geometry (a Petersen type geometry [Iv99])
of rank n ≥ 3 with the diagram

1
◦

P

2
◦

2
◦ · · ·

2
◦

2
◦,

where
1
◦ P

2
◦ is the geometry of vertices and edges of the Petersen graph,

whose automorphism group is S5
∼= O−

4 (2). If G is a flag-transitive auto-
morphism group of G then the action of G on the derived graph of G is
locally projective of type (n, 2). It is known [Iv99], [IS02] that there are
exactly eight flag-transitive P -geometries:

G(M22), G(3 ·M22), G(M23), G(Co2),

G(323 · Co2), G(J4), G(BM), G(34371 ·BM).

Every flag-transitive automorphism group of G is constrained at level 2.
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Example 4. Let V = V4(2) be a 4-dimensional GF (2)-space, L =
GL(V ) ∼= L4(2) and δ be an outer automorphism of L of order 2 (so that
〈L, δ〉 ∼= S8

∼= O+
6 (2)). Let H = {(A,B) | A,B ∈ L} be the direct product

of two copies of L. Let σ1 and σ2 be automorphisms of H such that

σ1 : (A,B) 7−→ (B,A) and

σ2 : (A,B) 7−→ (Aδ , Bδ).

Notice that σ1 and σ2 commute. Let G be the semidirect product (with re-
spect to the natural action) of H and 〈σ1, σ2〉 ∼= 22. Let ∆ be the conjugacy
class of σ1 in G. It is easy to see that ∆ = {σ(l) | l ∈ L} and

CH(σ(l)) = {(A,Al) | A ∈ L}

(isomorphic to L).
Let P1 be the stabilizer of a non-zero vector u ∈ U , so that P1

∼=
23 : L3(2) and the non-identity elements in O2(P1) are the transvections
having u as the centre. Let X be the subgroup in G generated by σ1 and
{(A,A) | A ∈ P1} ≤ CH(σ1). Then

X ∼= P1 × 〈σ1〉 ∼= 23 : L3(2) × 2

and X is self-normalized in G. Let l be a transvection from O2(P1) and
let W be the axis of l. Then W is a 3-subspace in U containing u and if
P3

∼= 23 : L3(2) is the stabilizer of W in L, then

P1 ∩ P3 = CL(l) ∼= 21+4
+ .S3.

Let Y be the subgroup in G, generated by σ(l) and {(A,Al) | A ∈ P2} ≤
CH(σ(l)). Then X and Y are conjugate in G and the intersection X ∩ Y is
generated by σ1, σ(l) and

{(A,A) | A ∈ P1 ∩ P3 = CL(l)}.

Furthermore, the intersection has index 7 in both X and Y .
Let Γ be the graph whose vertices are the G-conjugates of X and whose

edges are the images of {X,Y } under G (acting by conjugation). Then Γ
is connected, G induces on Γ a locally projective action of type (3, 2) with
G2(x) ∼= 2, G1(x)/G2(x) ∼= 23.

A geometric subgraph Σ[2] of valency 3 in Γ containing X and Y can
be obtained as follows. Let U be a 2-space containing u and contained in
W and P2 be the stabilizer of U in AutL = 〈L, δ〉. Then

P2
∼= 24 : O+

4 (2)

https://doi.org/10.1017/S0027763000008989 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008989


30 A. A. IVANOV AND S. V. SHPECTOROV

is the semidirect product of Q2 := O2(P2) which is elementary abelian of
order 24 and O+

4 (2) ∼= S3 o S2, so that Q2 is the natural module for the
latter.

Then Σ[2] is formed by the subgroups (conjugates ofX in G), each being
generated by σ(l) for some l ∈ Q2 and {(A,A) | A ∈ R} ≤ CH(σ(l)) for the
stabiliser R of a 1-subspace contained in U or of a 3-subspace containing
U (therefore Σ[2] contains exactly 16 × 6 = 96 vertices). It is easy to see

that the vertex-wise stabilizer G
[2]
− of Σ[2] is elementary abelian of order 25

generated by σ1 and {(A,A) | A ∈ Q2}. This subgroup is selfcentralized in
G and

Ĝ[2] ∼= P2
∼= 24 : O+

4 (2),

in particular G is a completion of {G(x), G{x, y}} which is constrained at
level 2 (this example first appeared on pp. 191–192 in [Tr00].)

Theorem 1. Let Γ be a graph and G be a group of locally finite auto-

morphisms of Γ whose action is locally projective of type (n, 2) for n ≥ 3.
Suppose further that the action is strictly 2-arc-transitive of collineation

shape. Let {x, y} be an edge of Γ and A = A(G,Γ) = {G(x), G{x, y}} be

the amalgam formed by the vertex and edge stabilizers. Then exactly one of

the following holds:

(i) A ∼= A(AGLn(2),K2n );

(ii) A ∼= A(O+
2n(2), D+(2n, 2));

(iii) A is isomorphic to one of the twelve exceptional amalgams in Table 1.

If A is one of the amalgams A
(2)
2 , A

(5)
3 , A

(1)
4 , A

(3)
4 , A

(4)
4 and A

(2)
5 and G

is the group given in the last column of the row corresponding to A, then A

is formed by the stabilizers in G of a vertex and an edge in the derived graph

of the Petersen geometry G(G). The amalgam A
(4)
3 is from Example 4. The

amalgam A
(1)
5 corresponds to the locally projective action of the fourth

Janko group J4 on a graph of valency 31 (cf. [Iv87] and [SW88]). The

remaining amalgams will be discussed within the proof of Theorem 1.

Corollary 1. Let A be an amalgam in Theorem 1 for some n ≥ 3.
Let G be a faithful completion of A and 2 ≤ i ≤ n − 1. Then one of the

following holds:

(i) G
[i]
− is non-trivial ;
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Table 1: Exceptional Amalgams

completions
n A G[0]/O2(G[0])

O2(G[0])

bG[2]

K[2]

bG[3]

K[3]

bG[4]

K[4] constrained
at level 2

3 A
(1)
3

L3(2)
23

S3oS2

24 -

A
(2)
3

L3(2)
23

S5

24 M22

A
(3)
3

L3(2)
23

S5
24 -

A
(4)
3

L3(2)
23×2

24:(S3oS2)
25 (S8 o 2)

+

A
(5)
3

L3(2)
23×2

S5
25 AutM22

4 A
(1)
4

L4(2)
1

S5
24:3

1
1 M23

A
(2)
4

L4(2)
26

S5×2
21+8
+ :S3

L6(2)
26 A64

A
(3)
4

L4(2)
21+4+6

S5
24+10.S3

Aut M22
210 Co2

A
(4)
4

L4(2)
24+4+6

S5
23+12+2 .S3

3·Aut M22

21+12
+

J4

A
(5)
4

L4(2)
24+4+6

S5×2
23+12+2 .S3

L6(2):2

21+12
+

A256

5 A
(1)
5

L5(2)
210

S5
23+12.L3(2)

Aut M22

21+12
+ :3

1
1 J4

A
(2)
5

L5(2)
25+5+10+10

S5
23.[232].L3(2)

Aut M22
22+10+20 .S3

Co2

21+22
+

BM
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(ii) A ∼= A
(1)
4 and i = 3;

(iii) A ∼= A
(1)
5 and i = 4.

Furthermore, if A is neither A
(1)
4 nor A

(1)
5 , then Γ(A, G) contains a com-

plete family of geometric subgraphs.

Proof. Consider G = AGLn(2) as a completion of A(AGLn(2),K2n ).

Then G
[i]
− is the vector-wise stabilizer in G of an i-dimensional subspace

in the n-dimensional affine space. It is easy to check that this subgroup
is non-trivial for 2 ≤ i ≤ n − 1. Similarly, if G = O+

2n(2) is considered as

a completion of A(O+
2n(2), D(2n, 2)) then G

[i]
− is the elementwise stabilizer

of the set of maximal totally singular subspace in the 2n-dimensional or-
thogonal space that contain a given totally singular 2(n − i)-dimensional
subspace. This subgroup is also known to be non-trivial (cf. [Iv04] for de-
tails). For the exceptional cases the result is immediate from Table 1. The
last sentence of the assertion is by Lemma 2.2.

For both A
(1)
4 and A

(1)
5 we know completions where some geometric

subgraphs are missing. If A ∼= A
(1)
5 and G ∼= J4 then Σ[4] does not exist. In

this case the subamalgam

{G[4] ∩G(x), G[4] ∩G{x, y}}

is isomorphic to A
(4)
4 and it generates the whole J4. A completion of A

(1)
4

where Σ[3] does not exist was constructed in [IP04] (the completion group

is isomorphic to SL20(13)).

By Corollary 1 if the amalgams A
(1)
4 and A

(1)
5 are excluded then there is

a complete family of geometric subgraphs and hence G acts flag-transitively

on a geometry with diagram of the form

1
◦

X

2
◦

2
◦ · · ·

2
◦

2
◦.

In fact there are some restrictions on the leftmost edge in the diagram

(which symbolises the geometry of vertices and edges of Σ[2]). Indeed, let Ξ

be the cubic graph associated with the embedding into Ĝ[2] of the images in

Ĝ[2] of G[2] ∩G[0] and G[2] ∩G[1]. Then Σ[2] possesses a local isomorphism

onto Ξ which commutes with the action of G[2]. On the other hand in

all cases in Table 1 the group G[2] possesses a homomorphism either onto

O+
4 (2) ∼= S3 o S2 or onto O−

4 (2) ∼= S5. This observation incorporated with

the well known properties of the classical amalgams give the following
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Corollary 2. Let G be a geometry of rank n ≥ 3 over the set {0, 1,
. . . , n− 1} of types. Suppose that G belongs to a diagram of the form

1
◦

X

2
◦

2
◦ · · ·

2
◦

2
◦.

Let G be a flag-transitive automorphism group of G such that the stabilizer

of an element of type zero induces Ln(2) on the corresponding residue. Let

Φ be a flag of type {2, 3, . . . , n − 1}, F be the residue of Φ in G (with the

diagram
1
◦ X

2
◦ ) and F be the action induced on F by the stabilizer of

Φ in G. Then F possesses a morphism χ commuting with F onto one of

the following three geometries:

(a) the affine plane
1
◦ c

2
◦ of order 2 (the complete graph K4) with

the automorphism group S4;

(b) the generalized digon
1
◦

2
◦ (the complete bipartite graph K3,3)

with the automorphism group S3 o S2
∼= O+

4 (2);

(c) the Petersen graph
1
◦ P

2
◦ with the automorphism group S5

∼=

O−
4 (2).

Remark. There is another instance when the rank 2 geometries in (a)
to (c) above appear together. Let Q be the generalized quadrangle of order
(2, 2) with the automorphism group Sp4(2) ∼= S6. Then Q possesses exactly
three classes of geometric hyperplanes with representatives H0, H+ and H−

and stabilizers 2 × S4, O
+
4 (2) and O−

4 (2), respectively. The complement of
H0 has the geometry

1
◦ c

2
◦ as a quotient, while the complements to H+

and H− are the geometries
1
◦

2
◦ and

1
◦ P

2
◦, respectively.

It must be clear that Corollary 2 follows already from the classification

of the amalgams for n = 3.

The following proposition is a summary of the known characterisations

of the completions of the amalgams in Theorem 1 that are constrained

at level 2 (more specifically when the morphism χ in Corollary 2 is an

isomorphism).

Proposition 2.3. Let A be one of the amalgams in Theorem 1 and

G be the universal completion of A. Let M be a complement to Z(G
[2]
− ) in
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CG[2](G
[2]
− ) (if such a complement exists at all), let N be the normal closure

of M in G. Let Ḡ be a faithful completion of A such that the kernel K of

the natural homomorphism of G onto Ḡ contains N . Then

(i) if A ∼= A
(1)
3 or A

(3)
3 then Ḡ does not exist ;

(ii) if A ∼= A(O+
2n(2), D+(2n, 2)) then K = N and Ḡ ∼= O+

2n(2);

(iii) if A ∼= A
(2)
3 then either K = N and Ḡ ∼= 3 ·M22 or [K : N ] = 3 and

Ḡ ∼= M22;

(iv) if A ∼= A
(5)
3 then either K = N and Ḡ ∼= 3 · AutM22 or [K : N ] = 3

and Ḡ ∼= AutM22;

(v) if A ∼= A
(1)
4 then K = N and Ḡ ∼= M23;

(vi) if A ∼= A
(3)
4 then either K = N and Ḡ ∼= 323 · Co2 or [K : N ] = 323

and Ḡ ∼= Co2;

(vii) if A ∼= A
(4)
4 or A

(1)
5 then K = N and Ḡ ∼= J4;

(viii) if A ∼= A
(2)
5 then either K = N and Ḡ ∼= 34371·BM , or [K : N ] = 34371

and Ḡ ∼= BM .

Proof. Put Γ̄ = Γ(A, Ḡ). Then the geometric subgraph Σ̄[2] in Γ̄ is
either the complete bipartite graphK3,3 or the Petersen graph, in particular
the girth (the length of the shortest cycle) of Γ is 3, 4 or 5. If the girth of
Γ̄ would be 3 it would be the complete graph, which is clearly impossible.
In the girth 4 case we apply the main result of [CP82] which gives (ii) and

excludes the case of A
(1)
3 -amalgam. In [Iv90] (cf. Proposition 9.9.2 and

Section 9.11 in [Iv99]) the girth 5 case was reduced to the flag-transitive
P -geometries classified in [Iv99] and [IS02]. Notice that at this stage we

are not using any information on the amalgams A
(1)
3 and A

(3)
3 besides those

given in Table 1. The point is that the only group acting locally projectively
on D+(6, 2) is O+

6 (2) ∼= S8 and the only group acting locally projectively
on the derived graph of the P -geometry of 3 ·M22 with vertex stabilizer
isomorphic to 23 : L3(2) is 3 ·M22 itself. Thus there is no space for extra
amalgams.

In Section 10 we will use the following characterization of Co2 as a

completion of A
(3)
4 .

Proposition 2.4. Let G be a faithful completion of the amalgam A
(3)
4

that is constrained at level 3 (so that G[3] ∼= 210.AutM22). Then G ∼= Co2.
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Proof. If Γ = Γ(A
(3)
4 , G), then by our hypothesis the action G[3]/G

[3]
−

of G[3] on Σ[3] is isomorphic to AutM22 and therefore Σ[3] is isomorphic to
the derived graph of the P -geometry G(M22). Hence Σ[2] is the Petersen
graph and by Proposition 2.3 (vi) G is either 323 · Co2 or Co2. Finally
G ∼= 323 · Co2 is not constrained at level 3, since G[3] ∼= (210 × 3) · AutM22

in that case, hence the result.

Our terminology and notation are mostly standard if A, B and C are

groups and ϕ : A→ C, ψ : B → C are surjective homomorphisms then the

sub-direct product of A and B with respect to ϕ and ψ (also known as the

pull-back) is defined as the subgroup in the direct product A×B = {(a, b) |
a ∈ A, b ∈ B} consisting of the pairs (a, b) such that ϕ(a) = ψ(b). Usually

the homomorphisms ϕ and ψ are determined by C and we talk about the

sub-direct product of A and B with respect to C.

§3. Some cohomology of Ln(2)

Let L ∼= Ln(2) for n ≥ 3 and U be a natural module of L, i.e., an

n-dimensional GF (2)-space on which L acts in the natural way. In the case

when L = G(x)/G1(x), in order to distinguish U from its dual we assume

that there is a bijection ι of Γ(x) onto the set of non-zero vectors in U which

commutes with the action of L. Let U [i] denote the i-exterior power of U ,

so that U = U [1], dimU [i] =
(n

i

)
for 0 ≤ i ≤ n and U [n−1] is the dual of U

which will also be denoted by U ∗.

Sometimes we will identify Γ(x) and U# through the bijection ι, so that

y ∈ Γ(x) is considered as a vector in the natural module U . If 1 ≤ i ≤ n

then by
[

U
i

]
we denote the set of all i-dimensional subspaces in U . It is

well-known (cf. Lemma 3.1.3 in [IS02]) that there is an injection

di :

[
U

i

]
−→ U [i],

which commutes with the action of L, namely

di(W ) = e1 ∧ e2 ∧ · · · ∧ ei,

where e1, e2, . . . , ei is a basis of W ∈
[

U
i

]
. The images under di satisfy the

following relations: whenever W1,W2,W3 ∈
[

U
i

]
are pairwise distinct with

dim〈W1,W2,W3〉 = i+ 1 and dim(W1 ∩W2 ∩W3) = i− 1, we have

di(W1) + di(W2) + di(W3) = 0.
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We call these the basic relations of the exterior power. By Lemma 3.1.3 in

[IS02] the basic relations together with the obvious ones stating that the

images are involutions, form an abstract presentation for U [i] in terms of

generators and relations. The following lemma is a direct consequence of

the basic relations of the exterior powers.

Lemma 3.1. Let w ∈ U#, W ∈
[

U
n−1

]
, w 6∈W , K0 be the stabilizer in

L of the direct sum decomposition

U = 〈w〉 ⊕W.

Put

U [i](w) =
〈
di(s)

∣∣∣ s ∈
[
U

i

]
, s ∼ w

〉
, U [i](W ) =

〈
di(s)

∣∣∣ s ∈
[
U

i

]
, s ∼W

〉
,

where ∼ is the incidence relation in the projective geometry of U .

Then

(i) K0
∼= Ln−1(2);

(ii) K0 stabilizes the direct sum decomposition U [i] = U [i](w) ⊕ U [i](W ),
where U [i](w) ∼= W [i−1] and U [i](W ) ∼= W [i] as K0-modules.

Notice that if P1 and P2 are the stabilizers in L of w andW , respectively,

then K0 = P1 ∩ P2, P1 = Q1 : K0, P2 = Q2 : K0, where Q1 is the group of

transvections with centre w, Q2 is the group of transvections with axis W ,

both Q1 and Q2 are elementary abelian 2-groups of rank n− 1.

Lemma 3.2. ([JP76]) The first cohomology group H 1(Ln(2), U [i]) is tri-

vial except for the following cases where it is 1-dimensional : (a) n = 3, i = 1
or 2; (b) n = 4, i = 2.

Thus the semidirect product of U [i] and Ln(2) with respect to the nat-

ural action possesses a unique conjugacy class of complements except for

the cases (a) and (b) in Lemma 3.2 where there are exactly two classes of

complements.

Lemma 3.3. ([B78]) The second cohomology group H 2(Ln(2), U [i]) is

trivial except for the following cases where it is 1-dimensional : (a) n = 3,
i = 1 or 2; (b) n = 4, i = 1 or 3; (c) n = 5, i = 1 or 4.
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Let 2n · Ln(2) denote a non-split extension by Ln(2) of its natural

module. By Lemma 3.3 and the obvious duality such extension exists only

if n = 3, 4 or 5 in which case it is unique. The extension 25 ·L5(2) is known

as the Dempwolff group.

Lemma 3.4. ([K87]) The Schur multiplier of the group Ln(2) is trivial

for n ≥ 5 and it is of order 2 for n = 3 and 4.

The non-split extension 2 · L3(2) is isomorphic to the group SL2(7)

(recall that L3(2) ∼= L2(7)) and the extension 2 ·L4(2) is isomorphic to the

covering group Â8 of the alternating group A8
∼= L4(2).

3.1. n = 3

By Lemma 3.2 there exists a unique indecomposable extension W of

the natural module U of L = L3(2) by 1-dimensional module (this means

that dimW = 4 and U is the unique proper submodule of W ). Consider the

semidirect product F = W : L with respect to the natural action. Then ac-

cording to the standard principle F contains a unique class of complements

to W = O2(F ) and if w ∈W \ U then w, acting by conjugation induces an

outer automorphism of the group H = U : L which is trivial on both U and

H/U ∼= L. It follows from the transitivity of L on Wi \ U
[i] that CL(w) is

the Frobenius group F 3
7 of order 21. Let P1 and P2 be the stabilizers in L

of a 1-dimensional and containing it 2-dimensional subspaces from U . For

i = 1 and 2 set Hi = U : Pi, Qi = O2(Hi), let Ti be a Sylow 3-subgroup in

Hi and Fi = W : Pi. Then

Lemma 3.5. The following assertions hold :

(i) H1
∼= 21+4

+ : S3, Q1 is the extraspecial group of plus type; Q1 contains

exactly three elementary abelian subgroups of order 8, say A1 = U ,

A2 and A3; T1 normalizes each Ai and acts fixed-point freely on

Q1/Z(Q1); the action of w on Q1 coincides with the unique element

from AutQ1
∼= 24 : O+

4 (2) which commutes with H1/Q1
∼= S3; w per-

mutes A2 and A3 and if T1 is chosen so that it is normalized by w,

then w induces an outer automorphism of NH1(T1) ∼= S3 × 2;

(ii) H2
∼= 24 : (S3 × 2), so that R2 := [T2, Q2] is elementary abelian of

order 24; T2 acts fixed-point freely on R2, H2/(R2T2) ∼= 22 together

with w generate a Sylow 2-subgroup D8 in OutQ2T2
∼= PΓL2(4) ∼= S5.
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Next we discuss the structure of certain GF (2)-permutation modules

for L. Let P is the GF (2)-permutation module of a group F acting transi-

tively on a set Ω. Then P is the space of GF (2)-valued functions on Ω, each

such function being identified with its support. Then F preserves on P a

bilinear form f defined by the rule that f(A,B) is |A ∩B| taken modulo 2

(here A and B are elements of P treated as subsets of Ω). The the unique

1-dimensional submodule Pc of P consists of the two constant functions

and the unique codimension 1 submodule Pe consists of the even subsets

of P (known as the even half of P). We have Pe = P⊥
c where perp is with

respect to the above defined bilinear form f .

Lemma 3.6. Let S, A and F be the GF (2)-permutation modules of L
acting on the cosets of P1

∼= S4, P
′
1
∼= A4 and F 3

7 , respectively. Then

(i) S = Sc ⊕ Se and S is the unique indecomposable extension of U ∗ by

U ;

(ii) Fc is the unique minimal submodule in F and Fe/Fc
∼= U ⊕ U∗;

(iii) A contains a submodule C such that C ∼= A/C ∼= S;

(iv) if Ce is the codimension 1 submodule in C, then Ae/Ce is indecompos-

able while its unique codimension 3 submodule is semi simple.

Proof. The submodule structure of S is well known (cf. Sections 3.2
and 3.3 in [IS02]), while the uniqueness is by Table I in [B78]. Let T be a
Sylow 2-subgroup in L. Then |T | = 8 and T acts transitively on the set of
eight F 3

7 -cosets in L, therefore Fc = CF (T ) is the unique minimal, while
Fe = F⊥

c is the unique maximal submodules in F . Since L acts transitively
on Wi\U

[i] with stabilizer F 3
7 , Wi is a quotient of F . Hence Fe/Fc possesses

both U [1] and U [2] as quotients and (ii) follows. (iii) is quite clear. The dual
W ∗

i of Wi is an indecomposable extension of the 1-dimensional module by
U [3−i] = (U [i])∗. If L would have a 7-orbit on the vectors in W ∗

i , the latter
would be a quotient of S (3−i), contrary to (i). Hence L is transitive on
the non-zero vectors in W ∗

i and the latter is a quotient of A(3−i). If the
corresponding kernel would contain C(3−i), by (iii) this again would be a
contradiction with (i). Hence (iv) follows.

Notice that W is a quotient of F while W ∗ is a quotient of A.

Lemma 3.7. H1(L3(2),W
∗) is trivial.
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Proof. To establish the claim it is sufficient to show the non-existence of
an indecomposable extension of 1-dimensional module by W . Suppose that
X is such an extension and ϕ : X → W is the canonical homomorphism.
As stated in the paragraph before Lemma 3.5, L acts transitively on W \U
with stabilizer F 3

7 . Since the latter group has no subgroups of index 2, L has
two orbits on ϕ−1(W \U). Each of these orbits is of length 8 and generates
X (since X is indecomposable). Therefore X is a quotient of F over a
3-dimensional irreducible submodule, which is impossible by Lemma 3.6
(ii).

Lemma 3.8. With H = U : L as above let Ĥ be the covering group of

H and for X ≤ H let X̂ denote the preimage of X in Ĥ. Let L1 and L2 be

representatives of two classes of complements to U in H. Then

(i) L̂1
∼= L̂2

∼= SL2(7);

(ii) Z(Ĥ) is elementary abelian of order 4 and its non-identity elements

c, z1, z2 are such that

(a) 〈zi〉 = Z(L̂i) for i = 1, 2;

(b) Û = 〈z1〉 ⊕ [Û , Ĥ ] (where [Û , Ĥ] ∼= W ∗ is the indecomposable

extension of 〈c〉 by U).

Proof. By (3.4) the Schur multiplier of L3(2) ∼= H/O2(H) is of order
2 and of course O2(H) is a 2-group. This immediately implies that Z(Ĥ)
is a 2-group and if Û is the preimage of U in Ĥ then Û = O2(Ĥ). We
claim that Û is an elementary abelian 2-group. Let Â be the commutator
subgroup of Û and B̂ be the subgroup of Û generated by the squares of the
elements of Û . Suppose that Â and/or B̂ are non-trivial. Let Â1 and B̂1

be subgroups of index 2 in Â and B̂, respectively. Then the mappings:

(û, v̂) 7−→ [û, v̂]Ã1/Â1

and
û 7−→ ûB̂1/B̂1

define a bilinear alternating and quadratic forms on U = Û/Z(Ĥ), respec-
tively and these forms are invariant under L. Since L induces the full linear
group of U , there are no such non-zero forms and the claim follows. By
Lemma 3.2 H1(L,U) is 1-dimensional, hence [Û , Ĥ ] ∩ Z(Ĥ) is of order (at
most) 2, generated by an element c, say. Then Û/〈c〉 is decomposable and
we can factor out a complement to Z(Ĥ)/〈c〉 in Û/〈c〉. The resulting group
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is a perfect central extension of H/U ∼= L3(2), i.e., a quotient of SL2(7).
Therefore Z(Ĥ) is of order at most four. Considering the semidirect prod-
uct of W ∗ and SL2(7) with the centre of the latter acting trivially, we see
that the bound is attained. Since Ĥ is the universal covering group, an
outer automorphism of H which sends L1 onto L2 extends to an automor-
phism of Ĥ, which gives (i). Suppose that Z(L̂1) = Z(L̂2). Then Ĥ/Z(L1)
is a semidirect product of W ∗ and L3(2) with two classes of complements,
whose existence contradicts Lemma 3.7, hence (ii) follows.

As a consequence of Lemma 3.8 and its proof we have the following

Lemma 3.9. Let F be a group such that Z(F ) is or order 2, F/Z(F ) ∼=
H ∼= U : L and O2(F ) is isomorphic to W ∗ as a module for F/O2(F ) ∼=
L3(2). Let K1 and K2 be the preimages in F of representatives of the

two classes of complements to U in H. Then (up to renumbering) K1
∼=

L3(2)× 2 while K2
∼= SL2(7). In particular F is determined uniquely up to

isomorphism as the semidirect product of W ∗ and O2(K1) with respect to

the natural action.

Proof. Since F is a perfect extension of H by a centre of order 2, in
terms of Lemma 3.8 there is a homomorphism of Ĥ onto F , whose kernel
is 〈zi〉 for i = 1 or 2, hence the result.

Lemma 3.10. H1(L3(2),Se) is 1-dimensional.

Proof. Notice first that Se is self-dual. By Lemma 3.6 (iv) Ae/Ce

is an indecomposable extension of a 1-dimensional module by Se, hence
H1(L3(2),Se) is at least 1-dimensional. Suppose it is more than 1-dimen-
sional. Then there exists an indecomposable extension Y of a 1-dimensional
module by Ae/Ce. It is easy to see that the latter is a quotient of A, i.e.,
contains a generating orbit of length 14 with stabilizer A4. Since the latter
group has no subgroups of index 2, Y must also be a quotient of A, which
contradicts Lemma 3.6.

Lemma 3.11. Let Y be a group, such that Y/O2(Y ) ∼= L3(2), O2(Y ) is

elementary abelian, isomorphic to the unique indecomposable extension Se

of U∗ by U (cf. Lemma 3.6 (i)). Suppose further that (identifying U ∗ with

the corresponding submodule in O2(Y )) Y/U ∗ ∼= H = U : L. Let M1 and

M2 be the preimages in Y of representatives of two classes of complements

to U in H. Then, up to renumbering, M1
∼= U∗ : L (semidirect product),

while M2
∼= 23 · L3(2) (non-split extension).
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Proof. Let Ŷ be the largest group subject to the following properties:
(1) Ŷ /O2(Ŷ ) ∼= L3(2); (2) O2(Ŷ ) is an elementary abelian 2-group; (3)
Ŷ possesses a homomorphism ϕ onto H = U : L and if X is the kernel
of ϕ then J is a direct sum of Ŷ /O2(Ŷ )-modules, each isomorphic to U ∗;
(4) if T is a subgroup in Ŷ such that TJ = Ŷ , then T = Ŷ . We prove
that such largest group exists by establishing a bound on its order and
by showing that the bound is attained. Let R be the smallest submodule
in O2(Ŷ ) such that O2(Ŷ )/R is a direct sum of copies of U ∗. Then R is
an indecomposable extension of the direct sum of, say i copies of U ∗ by U .
Since there is a unique indecomposable extension of U ∗ by U (cf. Lemma 3.6
(i)), we have i ≤ 1. Next consider Ŷ /R which is by (3) and (4) must be
a non-split extension of the direct sum of, say j copies of U ∗ by L3(2).
Since H2(L3(2), U

∗) is 1-dimensional (cf. Lemma 3.3), we have j ≤ 1 and
the bound is established. Now consider the semidirect product of Se and
M̂1

∼= 23 · L3(2) with O2(M̂1) acting trivially and M̂1/O2(M̂1) acting in
the natural way, we observe that the resulting group satisfies (1)–(4) and
its order attains the bound, hence it is the group Ŷ we are after. By the
maximality property every automorphism ofH extends to an automorphism
of Ŷ . Hence the preimage of every L3(2)-complement fromH does not split.

Let M̂1, M̂2 be subgroups in Ŷ , both isomorphic to 23 ·L3(2) such that their

images in H are not conjugate. We claim that O2(M̂1) 6= O2(M̂2). Indeed,

otherwise Ŷ /O2(M̂1) would be a semidirect product of Se and L3(2) with
four classes of complements contrary to Lemma 3.10. Therefore J = V1⊕V2,
where Vi = O2(Vi) for i = 1, 2 and V3 = J ∩ R is the third non-trivial
submodule in J . Now the group Y in the hypothesis of the lemma is the
quotient of Ŷ over Vi for i = 1 or 2 and the result follows.

3.2. n = 4

Let L = L4(2), U be a natural module of L, Ω be a set of size eight

of which L ∼= A8 is the alternating group and E be the GF (2)-permutation

module of L on Ω. Let P1 and P2 be the stabilizers in L of a 1-subspace

〈w〉 and a 3-subspace W in U , respectively, where w ∈ U \ W , so that

P1
∼= P2

∼= 23 : L3(2).

Lemma 3.12. The group L ∼= L4(2) contains exactly three conjugacy

classes of subgroups isomorphic to L3(2). Representatives K0, K1 and K2

of these classes can be chosen in such a way that

(i) K0,Ki ≤ Pi for i = 1, 2;
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(ii) K0 is a Levi complement in P1 and P2, and it is the stabilizer of the

direct sum decomposition U = 〈w〉 ⊕W ;

(iii) both K1 and K2 act indecomposably on U ;

(iv) K0 acts transitively on Ω while Ki for i = 1 or 2 stabilizes a point in

Ω and acts transitively on the remaining points, so that Ki < A7 <
A8

∼= L;

(v) there is an outer automorphism τ of L such that K τ
i = K3−i for

i = 1, 2, τ normalizes K0 and 〈K0, τ〉 ∼= PGL2(7).

Proof. This is all well known and easy to verify. If we treat L as the
alternating group A8 then the automorphism τ in (v) is induced by an odd
permutation and 〈L, τ〉 ∼= S8. If we consider L as the linear group L4(2),
then τ is induced by a conjugate of the inverse-transpose automorphism, it
maps the natural module U onto its dual and normalizes U [2].

Lemma 3.13. Let L̂ ∼= 2 · L4(2) be the covering group of L and for

a subgroup X of L let X̂ denote its preimage in L̂. Then in terms of

Lemma 3.12 the following assertions hold

(i) K̂1
∼= K̂2

∼= SL2(7), K̂0
∼= L3(2) × 2;

(ii) for i = 1 and 2 O2(P̂i) is the indecomposable extension of Z(L̂) =
Z(K̂i) by O2(Pi) ∼= 23.

Proof. The result can be deduced from the well known fact (cf. [K87])
that the involutions in L acting fixed-point freely on Ω lift to involutions in
L̂ while the products of pairs of commuting transpositions lift to elements
of order 4.

The exterior square U [2] of U is the natural module for L, treated as

the simple orthogonal group Ω+
6 (2). On the other hand U [2] ∼= Ee/Ec. This

shows that the automorphism τ as in Lemma 3.12 extends to an automor-

phism δ of the semidirect product

D = U [2] : L.

It is well known that E is uniserial and in view of Lemma 3.2 this means

that E/Ec is the unique indecomposable extension of U [2] by a 1-dimensional

module and Ee is the unique indecomposable extension of a 1-dimensional

module by U [2]. Thus (E/Ec) : L contains D with index 2 and an element
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from (E/Ec)\(Ee/Ec) induces an outer automorphism σ of D permuting two

classes of L4(2)-complements and acting trivially on D/O2(D). There are

two orbits on such elements with stabilizers isomorphic to A7 (the stabilizer

of an element in Ω) and (S3 × S5)
+ (the stabilizer of a 3-subset in Ω),

respectively. By Lemma 3.12 (iv) we can chose such an element to commute

with Ki for i = 1 or 2, but not for i = 0. We record this in the following

Lemma 3.14. The semidirect product D = U [2] : L contains two classes

of L4(2)-complements. If L∗ is a complement not in the class of L then ei-

ther L ∩ L∗ ∼= A7 or L ∩ L∗ ∼= (S3 × S5)
+, in particular K0 6≤ L∗.

Let q denote the non-degenerate quadratic form (of plus type) on U [2]

preserved by L ∼= Ω+
6 (2).

Lemma 3.15. The group L = L4(2) has two orbits, Σ1 and Σ2 on the

set of non-zero vectors in U [2], such that

(i) |Σ1| = 35, if α ∈ Σ1, then q(α) = 0, L(α) ∼= 24 : (S3 × S3) ∼= 24 :
Ω+

4 (2) is the stabilizer of a 2-subspace in U ;

(ii) |Σ2| = 28, if α ∈ Σ2, then q(α) = 1, L(α) ∼= S6
∼= Sp4(2) is the

stabilizer of a non-singular symplectic form on U .

Let d2 be the mapping from the set
[

U
2

]
of 2-subspaces in U into U [2]

as defined before Lemma 3.1 (so that Σ1 is the image of d2) and adopt the

notation of that lemma.

Lemma 3.16. The following assertions hold

(i) U [2](w) = CU [2](O2(P1)), as a module for P1/O2(P1) the subspace

U [2](w) is isomorphic to U/〈w〉 and it is the unique non-trivial K1-

submodule in U [2];

(ii) U [2](W ) = CU [2](O2(P2)), as a module for P2/O2(P2) the subspace

U [2](W ) is isomorphic to W ∗ and it is the unique non-trivial K2-

submodule in U [2];

(iii) K0 is the stabilizer in L of the direct sum decomposition U [2] =
U [2](w) ⊕ U [2](W ), furthermore U [2](w) ∼= W , while U [2](W ) ∼= W ∗

(as K0-modules).

Proof. Again this is well known and easy to verify.
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Let us classify up to isomorphism the 2-constrained groups D̃ of the

form 21+6
+ .L4(2). Thus O2(D̃) is extraspecial of order 27 and of plus type,

D̃/O2(D̃) ∼= L4(2) and C eD
(O2(D̃)) ≤ O2(D̃). Then

D̃/Z(D̃) ∼= D ∼= U [2] : L4(2)

is determined uniquely up to isomorphism and in order to accomplish our

goal we calculate the Schur multiplier of D. Let σ and δ be the above

defined outer automorphisms of D. Recall that σ permutes the classes of

L4(2)-complements and commutes with D/O2(D), while δ normalizes such

a complement and induces on it an outer automorphism. It is easy to

check that AutD = 〈InnD,σ, δ〉 and OutD ∼= 22. Clearly δ and σ lift to

automorphisms of the covering group of D and we denote these liftings by

the same letters.

Lemma 3.17. The Schur multiplier of D is elementary abelian of order

8. If D̂ is the covering group of D, then Z(D̂) is generated by elements c,
π, z, such that

(i) C = 〈c〉 is the commutator subgroup of O2(D̂);

(ii) (Z(D̂) ∩ [O2(D̂), D̂])/C = 〈c, π〉/C;

(iii) if L4(2) ∼= L ≤ D and L̂ is the preimage of L in D̂, then 〈z〉 =
Z([L̂, L̂]) (independently on the choice of the complement L);

(iv) δσ centralizes Z(D̂) while both σ and δ centralize 〈c, z〉 and map π
onto πc.

Proof. Since L preserves on U [2] a unique non-zero alternating form
(namely the one associated with q), the commutator subgroup C of O2(D̂)
is of order at most 2. Since H1(L4(2), U

[2]) is 1-dimensional, we have (ii).
Then Z(D̂)/〈c, π〉 is complemented in O2(D̂)/〈c, π〉 and the quotient over
the complement is a perfect central extension of D/O2(D) ∼= L4(2). Now
to establish (iii) it remains to show that whenever L1 and L2 are two
L4(2)-complements in D and L̂1, L̂2 are their preimages in D̂, we have
Z([L̂1, L̂1]) = Z([L̂2, L̂2]). If L1 and L2 are in the same class, this is obvi-
ous, otherwise by Lemma 3.14 we can assume that L1 ∩L2

∼= A7. Since the
preimage of A7 in the covering group of A8 does not split, (iii) follows.

In order to show that the bound 8 on the order of Z(D̂) is attained and
to determine the action of OutD on Z(D̂) we construct a group E such
that E′ ∼= D̂ has centre of order 8 and E/Z(E ′) ∼= AutD. The construction
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is inspired by the following observation. Let R ∼= O+
8 (2) ∼= Ω+

8 (2) : 2 act on
its natural module V and v ∈ V # be an isotropic vector. Then

R(v) ∼= 26 : S8
∼= 〈D, δ〉.

Let S be a complement to O2(R(v)) in R(v), which is not a Levi complement
(i.e., S does not stabilize maximal totally singular subspaces in V ). Then
S acts irreducibly on v⊥/〈v〉 and has an orbit of length 8 on the set of
isotropic vectors outside v⊥ (recall that V : R ∼= Aut 21+8

+ ).
Let Q be a group generated by elements ai, 1 ≤ i ≤ 8 and c subject to

the following relations:

a2
i = c2 = [ai, c] = 1, [ai, aj ] = c, 1 ≤ i, j ≤ 8, i 6= j.

Then Q is extraspecial of order 29 and of plus type. Notice that every
element of Q possesses a unique presentation of the form ai1ai2 · · · aimc

x,
where 0 ≤ m ≤ 8, 1 ≤ i1 < i2 < · · · < im ≤ 8, x ∈ {0, 1}. The symmetric
group S ∼= S8 acts naturally on {ai | 1 ≤ i ≤ 8} and this action extends
to an automorphism group of Q. There is a natural S-homomorphism
ϕ : Q→ E , where E is the 8-dimensional GF (2)-permutation module of S.

The centralizer T of S ′ ∼= A8 in Q is elementary abelian of order 22

with the non-identity elements

c, π = a1a2a3 · · · a8, πc = a2a1a3 · · · a8

and ϕ(T ) = Ec. If s ∈ S \ S ′ then πs = πc. It follows from the basic
properties of extraspecial groups that if P = CQ(T ) then P has index 2 in

Q and πq = πc for q ∈ Q \ P . Furthermore, ϕ(P ) = Ee. Let Ŝ ∼= 2 · S8

be a representation group of S (so that Ŝ/Z(Ŝ) ∼= S8 and the commutator
subgroup of Ŝ is the covering group of A8). Let E be the semidirect product
of Q and Ŝ with Z(Ŝ) acting trivially and Ŝ/Z(Ŝ) ∼= S acting in the above
defined way. Then the commutator subgroup E ′ of E is P Ŝ′ has index 4.
The centre of E ′ is elementary abelian of order 8 generated by c, π and
z, where the latter element is the generator of Z(Ŝ); E′/Z(E′) ∼= D and
the elements s and q as above induce on D the automorphisms δ and σ,
respectively. Now the result is clear.

As a consequence of Lemma 3.17 and its proof we have the following.

Lemma 3.18. There are two isomorphism classes of 2-constrained

groups of the form 21+6
+ .L4(2) with representatives D̃1 = D̂/〈π, z〉 and
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D̃2 = D̂/〈π, zc〉, where O2(D̃i) is complemented in D̃i for i = 1 but not

for i = 2. The automorphism δσ of D extends to automorphisms of D̃1 and

D̃2 and (abusing the notation)

〈D̃1, δσ〉/Z(D̃1) ∼= 〈D̃2, δσ〉/Z(D̃2) ∼= 26 · S8

(a non-split extension of U [2] by S8
∼= O+

6 (2)).

§4. The vertex stabilizer

As we have already mentioned, within the proof of Trofimov’s theorem

the structure of chief factors of the vertex stabilizer in a locally projec-

tive action was established (cf. [Tr03a]). In the case of type (n, 2) ac-

tion which is strictly 2-arc-transitive of collineation shape all non-trivial

chief factors inside G1(x) are exterior powers of the natural module U for

L = G(x)/G1(x) ∼= Ln(2). More precisely the following statement holds.

Proposition 4.1. Let the action of G on Γ be locally projective of type

(n, 2), n ≥ 3. Suppose further that the action is strictly 2-arc-transitive of

collineation shape. Then one of the following holds:

(i) G1(x) = 1;

(ii) G2(x) = 1, G1(x) ∼= U [n−2] and G(x) splits over G1(x);

(iii) n = 3, G3(x) = 1, G1(x)/G2(x) ∼= U , |G2(x)| = 2, G1(x) is elemen-

tary abelian isomorphic to the direct sum of U and a 1-dimensional

trivial module, and G(x) splits over G1(x);

(iv) n = 4, G1(x)/G2(x) ∼= U [2], G2(x)/G3(x) ∼= U , |G3(x)| = 2, G4(x) =
1;

(v) n = 4, G1(x)/G2(x) ∼= U [2], G2(x)/G3(x) ∼= U , G3(x) ∼= U [3],

G4(x) = 1;

(vi) n = 5, G1(x)/G2(x) ∼= U [3], G2(x)/G3(x) ∼= U [2], G3(x)/G4(x) ∼= U ,

G4(x) ∼= U [4], G5(x) = 1.

Proof. The case (iii) where n = 3 was accomplished already in [Tim84].
The cases (iv), (v) where n = 4 proved in [Tr00] and the case (vi) where
n = 5 - in [Tr01]. Finally in [Tr03b] it was shown that G2(x) = 1 for n ≥ 6.
For (ii) see [Tr91b].

We will use the following easy methods of identifying rank 2 amalgams.
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Lemma 4.2. Let A = {G[0], G[1]} and Ã = {G̃[0], G̃[1]} be amalgams,

such that

[G[1] : G[0] ∩G[1]] = [G̃[1] : G̃[0] ∩ G̃[1]] = 2.

Suppose there is an isomorphism ϕ of G[0] onto G̃[0] and elements t ∈
G[1] \G[0], t̃ ∈ G̃[1] \ G̃[0], such that

(i) ϕ(G[0] ∩G[1]) = G̃[0] ∩ G̃[1];

(ii) for every s ∈ G[0] ∩G[1] the equality ϕ(t−1st) = t̃−1ϕ(s)t̃ holds;

(iii) ϕ(t2) = t̃2.

Then A and Ã are isomorphic.

Proof. The mapping which coincides with ϕ on G[0] and sends t onto
t̃ extends in the obvious way to the required isomorphism of A onto Ã.

By Lemma 4.2 the isomorphism type of A = {G[0], G[1]} is determined

by the choice of

(a) G[0] up to isomorphism;

(b) G[0] ∩ G[1] ≤ G[0] up to conjugation in the automorphism group of

G[0];

(c) an automorphism ψ of G[0] ∩ G[1] (induced by an element t ∈ G[0] \

G[1]), which does not normalize subgroups in G[0]∩G[1] normal in G[0]

and whose square is an inner automorphism;

(d) an element q ∈ G[0] ∩G[1] centralized by ψ (such that t2 = q).

It is clear that the choice of t and hence of ψ is not unique. For instance

we can change t by tg for any g ∈ G[0] ∩ G[1] (this effects in multiplying

ψ by the inner automorphism induced by g). Similarly we can multiply ψ

by any automorphism of G[0] ∩G[1], which extends to an automorphism of

G[0]. We formulate this in the following lemma.

Lemma 4.3. The automorphism ψ in (c) above can be chosen up to

multiplication by elements from the image I of NAut G[0](G[0] ∩G[1]) in A =
AutG[0] ∩ G[1]. Choosing ψ from different cosets of I in A one gets non-

isomorphic amalgams.
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§5. G1(x) = 1

The case G1(x) = 1 was settled for locally projective actions of all types

independently in Theorem 1.1 from [Ch99] and Lemma 2.1 from [IP98].

In the considered situation (case (i) in Proposition 4.1) G(x, y) is the

semidirect product of Ln−1(2) and its natural module. By Lemma 3.2

this group is complete unless n = 4. Thus either G{x, y} ∼= G(x, y)× 2 and

A ∼= A(AGLn(2),K2n ) or n = 4, O2(G{x, y}) is the unique indecomposable

extension of the natural module of L3(2) by the 1-dimensional module and

G{x, y} splits over O2(G{x, y}). In this case A ∼= A(M23,Γ(M23)), where

Γ(M23) is the derived graph of the rank 4 P -geometry related to M23.

§6. G2(x) = 1

In this section we consider the case (ii) in Proposition 4.1.

Proposition 6.1. The following assertions hold :

(i) G(x, y) = ZABK, where K ∼= Ln−1(2), while A, B and Z are ele-

mentary abelian 2-groups of rank n− 1, n− 1 and (n− 1)(n − 2)/2,
respectively, normalized by K, furthermore

(a) A and B are isomorphic to the dual W ∗ of the natural module

of K, while Z is isomorphic to the exterior square of W ∗;

(b) Z is the centre of Q := O2(G(x, y)) = ZAB;

(c) if ϕX : X → (W ∗)[α] is the isomorphism commuting with the

action of K for X = A,B or Z with α = 1, 1 or 2, respectively,

and d2 :
[

W ∗

2

]
→ (W ∗)[2] is as define before Lemma 3.1, then for

a ∈ A, b ∈ B we have [a, b] = 1 whenever ϕA(a) = ϕB(b) and

[a, b] = ϕ−1
Z (d−1

2 〈ϕA(a), ϕB(b)〉)

otherwise;

(ii) the permutation of Z ∪A∪B ∪K, which centralizes Z ∪K and maps

a ∈ A onto ϕ−1
B (ϕA(a)) ∈ B extends to a unique automorphism τ0 of

G(x, y);

(iii) if C = 〈ab | a ∈ A, b ∈ B,ϕA(a) = ϕB(b)〉, then

(d) {AZ/Z, BZ/Z, CZ/Z} is the complete set of proper KZ/Z-sub-

modules in Q/Z;
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(e) C is a direct sum of irreducible K-submodules if and only if n =
3;

(iv) if n ≥ 6 then OutG(x, y) is of order 2, generated by the image of τ0.

Proof. In the considered situation G(x) is the semidirect product with
respect to the natural action ofM ∼= Ln(2) and the exterior square (U ∗)[2] ∼=
U [n−2] of the dual natural module U of M ∼= L. Let ι : Γ(x) → U# be
the bijection commuting with the action of M . Let w = ι(y), W be a
hyperplane in U disjoint from w and K be the stabilizer in M of the direct
sum decomposition U = 〈w〉 ⊕ W . Put A = O2(M ∩ G(x, y)), so that
M ∩G(x, y) = AK and A ∼= W ∗ (as K-modules). By Lemma 3.16 (iii) K
is the stabilizer in M of the direct sum decomposition

U [n−2] ∼= G1(x) = Z ⊕B ∼= U [n−2](W ) ⊕ U [n−2](w).

By Lemma 3.1 (i) Z ∼= W [n−3] = (W ∗)[2] and B ∼= W [n−2] ∼= W ∗ (as K-
modules). Now (a) follows while (b) and (c) are easy to deduce from the
known action of M on G1(x). So (i) is established.

Now (ii) is immediate from (i). Since aba′b′ = aa′bb′[b, a′] and by (c)
[b, a′] is non-identity if ϕA(a′) 6= ϕB(b), the set of generators of C (together
with the identity element) is not closed under multiplication and (e) is
rather clear.

Suppose now that n ≥ 6 and let τ be an automorphism of G(x, y).
Then by Lemma 3.2 every complement to Q in G(x, y) is a conjugate of
K. Hence, adjusting τ by an inner automorphism we can assume that τ
normalizes K. Since G(x, y) contains chief factors isomorphic to W ∗ and
not to W , τ can’t perform an outer automorphism of K and hence τ can be
adjusted to centralize K. Since Z is the centre of Q is it normalized by τ
and since Z ∼= (W ∗)[2] is absolutely irreducible K-module (and τ centralizes
K), τ must centralize Z. We claim that τ either normalizes A or maps it
onto B. Indeed, let a ∈ A#. Then CK(a) acts fixed-point freely on Z
(since n 6= 3) and centralizes a unique non-zero vector b = ϕ−1

B ϕA(a) in B.
Since τ commutes with K, the claim follows from (e). Premultiplying τ
by τ0, if necessary we can assume that τ normalizes both A and B. Since
they are absolutely irreducible K-modules, τ must be the identity and (iv)
follows.

Lemma 6.2. If n = 3 then

(i) G(x, y) contains two classes of L2(2) ∼= S3-complements to Q, per-

muted by OutG(x, y);
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(ii) CAut G(x,y)(K) ∼= S3 acts faithfully on {AZ,BZ,CZ};

(iii) OutG(x, y) ∼= S3 × 2.

Proof. In the considered case Q is extraspecial of order 25 and plus
type with T = O3(K) acting fixed-point freely on Q/Z. Since T is a Sylow
3-subgroup of G(x, y) and NG(x,y)(T ) = K × Z, (i) follows. If KZ is the
second complement to Z in K × Z then an automorphism λ of G(x, y)
which maps K onto KZ can be chosen to be an involution centralizing
O2,3(G(x, y)) = O2(G(x, y)) = QT . Since T acts fixed-point freely on Q/Z,
the normalizer of K in AutQ ∼= 24 : (S3 o S2) is isomorphic to S3 which
gives (ii) in view of Lemma 6.1 (d). Finally (iii) is immediate from (i) and
(ii).

Lemma 6.3. If n = 4 then

(i) G(x, y) contains six classes of L3(2)-complements to Q;

(ii) |CAut G(x,y)(K)| = 2;

(iii) OutG(x, y) acts transitively on the set of L3(2)-complements to Q in

G(x, y);

(iv) OutG(x, y) ∼= S3 × 2.

Proof. Consider first the quotient Q̄ = Q/Z. As a module for K̄ =
KZ/Z ∼= L3(2) it is isomorphic to the direct sum of two copies of W ∗. For
E ∈ {A,B,C} let K̄E be the image of K̄ under an outer automorphism
of (EZ/Z)K̄ ∼= 23 : L3(2). Since C is indecomposable as K-module, the
preimage of K̄C in G(x, y) does not split over Z by Lemma 3.11. On the
other hand, the preimages of K̄A and K̄B are semidirect products of Z with
the images KA and KB of K under outer automorphisms of AK and BK,
respectively. Thus, modulo Z, the group G(x, y) contains three classes of
L3(2)-complements. Now for S ∈ {K,KA,KB} let SZ be the image of S
under an outer automorphism of ZS ∼= 23 : L3(2). Then

R = {K,KZ ,K
A,KA

Z ,K
B,KB

Z }

is the complete set of representatives of the classes of L3(2)-complements
and (i) follows.

Let S ∈ R. Since Z is the centre of Q, whenever s ∈ S and s′ = sZ∩SZ ,
we have qs = qs′ for every q ∈ Q. Therefore a mapping µ which commutes
with Q and maps s onto s′ for every s ∈ S, is an automorphism of G(x, y)
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which maps S onto SZ . We claim that µ acts fixed-point freely on the
classes of complements. Indeed, we can choose the complements in R so
that all the six share a subgroup F ∼= F 3

7 . Let T be a Sylow 3-subgroup in F .
Then for S ∈ R the normalizer of T in S is isomorphic to S3 and together
with F they generate S. It is clear from the structure of G(x, y) that
N := NG(x,y)(T )/T is elementary abelian of order 24; C := CG(x,y)(T ) ≤ Q
and C/T is a hyperplane in N . Since µ centralizes C it induces on N a
transvection with axis C/T , hence the claim follows.

It is immediate from the proof of Proposition 6.1 that τ0 is the only
non-identity automorphism of G(x, y) which centralizes K, hence (ii) is
established. It is clear that τ0 maps {KA,K

Z
A} onto {KB ,K

Z
B}.

Since H1(L4(2), U
[2]) is non-trivial, there is an automorphism σ0 of

G(x) which permutes two classes of L4(2)-complements to G1(x). Let us
discuss how the restriction σ of σ0 to G(x, y) acts on the classes of L3(2)-
complements. By Lemma 3.14 we can assume that Lσ0 ∩ L ∼= A7. Then
Aσ0 ∩ A = 1 but σ0 centralizes a complement to A in AK. Since the
complement, which is centralized is not a Levi complement, we can assume
that σ centralizes KA. Since σ normalizes BZ = G1(x) and does not
normalize AZ it must map the latter onto C = CZ. This shows that σ
maps {K,KZ} onto {KB ,K

Z
B}. Thus 〈µ, τ0, σ〉 permutes transitively the

classes of complements and (iii) is proved.

By the above discussion OutG(x, y) induces S3 on the set of pairs of
classes of L3(2)-complements with representatives {S, SZ}, the kernel is
generated by the image of µ and the image generates a direct factor. Hence
we obtain (iv).

Lemma 6.4. If n = 5 then OutG(x, y) is elementary abelian of order

22.

Proof. In terms of Proposition 6.1 in the considered situationH 1(K,X)
is trivial for X = A, B and 1-dimensional for X = Z (cf. Lemma 3.2). Thus
there are two classes of complements to Q in G(x, y) with representatives
K and KZ where the latter is the image of K under an automorphism ν0 of
ZK ∼= 26 : L4(2), which acts trivially on both Z and ZK/Z. Since Z is the
centre of Q, K and KZ have the same image in the automorphism group
of Q. Hence ν0 extends to an automorphism ν of G(x, y). By our choice ν
commutes with both Q and G(x, y)/Q, which immediately shows that ν is
an involutive automorphism and the result follows.
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As above let τ0 denote the automorphism of G(x, y) as in (ii) in Propo-

sition 6.1. For n = 3, 4 and 5 let τ1 be the product of τ0 with an auto-

morphism which commutes with both Q and G(x, y)/Q and permutes the

classes of complements to Z in ZK (the latter automorphism is denoted by

λ, µ and ν in Lemmas 6.2, 6.3 and 6.4, respectively).

Lemma 6.5. The following assertions hold :

(i) CG(x,y)(τ0) ∼= 2n(n−1)/2.Ln−1(2);

(ii) CG(x,y)(τ1) is isomorphic to

(a) 23 : 3 for n = 3;

(b) 23+3 : F 3
7 for n = 4 and

(c) 26+4 : A7 or 26+4 : (S5 × S3)
+ for n = 5.

Proof. (i) is by the definition; for (ii) see the first paragraph in Sub-
section 3.1 and Lemma 3.14.

Lemma 6.6. Let A = {G(x), G{x, y}} be the amalgam associated with

a locally projective action which corresponds to case (ii) in Proposition 6.1.
Then one of the following holds:

(i) there is t0 ∈ G{x, y} which induces on G(x, y) the automorphism τ0,
furthermore either

(a) t20 = 1 and A ∼= A(O+
2n(2), D+(2n, 2)), or

(b) n = 3, t20 is the unique non-identity element in Z and A ∼= A
(1)
3 ;

(ii) n = 3, 4 or 5 and there is t1 ∈ G{x, y} which induces the automor-

phism τ1 on G(x, y), furthermore either

(c) t21 = 1 and A is isomorphic to A
(2)
3

∼= A(M22,Γ(G(M22)), A
(2)
4

or A
(1)
5 , respectively, or

(d) n = 3, t21 is the unique non-identity element in Z and A ∼= A
(3)
3 .

Proof. By Lemmas 6.1 (iv), 6.2, 6.3, 6.4 and in view of Lemmas 4.2
and 4.3 we have the possibilities (i) and (ii) (notice that for n = 3, 4 by
Lemma 3.2 the group OutG(x) is of order 2). For instance in the case
n = 4 the group OutG(x, y), isomorphic to S3 × 2 by Lemma 6.4 contains
7 involutions. Three of these involutions normalize BZ = G1(x) (which is
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already normal in G(x)). The remaining four involutions are contained in
two cosets of the image in OutG(x, y) of

NAut G(x)(G(x, y)) = 〈InnG(x), σ0〉.

Finally, the images of τ0 and τ1 represent different cosets.
Since CG(x,y)(τi) ≤ CG(x,y)(ti), by Lemmas 6.1 and 6.5 the square of ti

(i = 0 or 1) must be in the centre of G(x, y), which is trivial unless n = 3,
in which case it is of order 2.

Let Γ be the graph of valency 31 on which G ∼= J4 acts 2-arc-transitively

with vertex stabilizer isomorphic to 210 : L5(2) (cf. [Iv87] and [SW88]).

Then the amalgam {G(x), G{x, y}} is isomorphic to A
(1)
5 . The graph Γ con-

tains geometric subgraphs of valency 3 (Petersen subgraphs) and 7 (derived

graphs of the P -geometry G(M22)), but there are no geometric subgraphs

of valency 15 and this explains the information given in Table 1.

A completion of A
(2)
4 in A64 that is constrained at level 2 was con-

structed in [IP04].

By Corollary 2.3 (i) neither A
(1)
3 nor A

(3)
3 possesses a constrained com-

pletion. One can observe that AutM22 is a (non-constrained) completion

of the amalgam A
(3)
3 .

§7. G3(x) = 1

In this section we consider the case (iii) in Proposition 4.1. Thus G(x)

is the direct product of G2(x) = Z(G(x)), which is of order 2 and the

commutator subgroup of G(x) (we denote this commutator subgroup by

G(x)∗). In turn G(x)∗ is isomorphic to the semidirect product of L ∼=
G(x)/G1(x) ∼= L3(2) and G1(x)/G2(x), the latter being the natural module

for L. Thus

G(x) ∼= G(x)∗ ×G2(x) ∼= 23 : L3(2) × 2.

Lemma 7.1. In the considered situation OutG(x, y) ∼= D8 × S3.

Proof. Let G(x, y)∗ = G(x)∗ ∩ G(x, y). Then G(x, y)∗ ∼= 21+4
+ : S3

is isomorphic to the subgroup G(x, y) in Lemma 6.1 when n = 3. Hence
OutG(x, y)∗ ∼= S3 × 2 by Lemma 6.2 (iii). The whole of G(x, y) is of course
the direct product of G(x, y)∗ and G2(x), which is of order 2.

Let Z = Z(G(x, y)), Q = O2(G(x, y)) and Z (0) = Q′. Then by the
above paragraph Z = Z(G(x, y)∗)×G2(x) is elementary abelian of order 4;
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Q = O2(G(x, y)∗) × G2(x) ∼= 21+4
+ × 2 and Z(0) = Z(G(x, y)∗). With Z(0)

as above let {Z (0), Z(1), Z(2)} be the set of subgroups of order 2 in Z. Let
H = O2(G(x, y)). Then H ∼= 21+4

+ .3 and G(x, y)/H is elementary abelian
of order 4.

Thus there are exactly four ways to present G(x, y) as a direct product
A× B where A is of order 2 from the centre of G(x, y) and B ∼= G(x, y)∗.
Namely, A is either Z (1) or Z(2) and B is the preimage in G(x, y) of a
subgroup of order 2 in G(x, y)/H other than Z (1)H/H = Z(2)H/H. Since
OutG(x, y)∗ is known to be of order 12, we conclude that OutG(x, y) is of
order 48.

Let T ∈ Syl 3(G(x, y)) and M be the normalizer of T in AutG(x, y).
Then by Frattini argument we have

AutG(x, y) = InnG(x, y)M.

Let S = NG(x,y)(T )/T . Then S is elementary abelian of order 8 and
S1 = ZT/T is a hyperplane in S. Hence there are exactly four comple-
ments to Q in G(x, y), containing T and these complements are transitively
permuted by M . Since AutG(x, y) induces an action of order 2 on Z, we
conclude that M induces on S the group D8. On the other hand, the image
of AutG(x, y) in Out(G(x, y)/Z) is isomorphic to S3. Let ν be an automor-
phism of G(x, y) which centralizes Z and a complement R to O2(G(x, y)∗)
in G(x, y)∗ containing T (in particular ν normalizes G(x, y)∗). We assume
further that ν does not normalize O2(G(x)∗) (such an automorphism exists
by the proof of Lemma 6.2). Then ν fixes the hyperplane S1 in S and the
vector R/T , which is outside the hyperplane. Hence ν acts trivially on S and
at the same time it induces an outer automorphism of G(x, y)/Z ∼= 24 : S3.
Hence the result.

Lemma 7.2. Suppose we are in case (iii) of Proposition 4.1. Then A

is isomorphic either to A
(4)
3 or A

(5)
3 .

Proof. We follow notation introduced in the proof of Lemma 7.1. Let
t ∈ G{x, y} \G(x, y), τ ∈ AutG(x, y) be automorphism of G(x, y) induced
by t and τ̄ be the image of τ on OutG(x, y). Then t2 ∈ G(x, y) and hence
τ̄2 = 1. In addition t does not normalize neither G2(x) nor O2(G(x)∗).
Hence τ̄ is an involution and by Lemma 7.1 (in view of Lemma 4.3) we
have two possibilities for τ̄ , which we denote by τ̄1 and τ̄2. Without loss of
generality we assume that t normalizes T and then it induces a transposition
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on the set S \ S1. In particular t commutes with a complement R ∼= S3 to
O2(G(x, y)) in G(x, y). This shows that

t2 ∈ Z0 = CG(x,y)(R) ∩CG(x,y)(t).

We claim that Zt contains an involution. In fact, let zi denote the unique
non-identity element of Zi, i = 0, 1, 2. Then t−1z1t = z2 and z0z1z2 = 1.
Suppose that t2 = z0. Then (tz1)

2 = t2t−1z1tz1 = t2z2z1 = 1 and the claim
follows. By Lemmas 4.2 and 4.3 the isomorphism type of A is uniquely
determined by the choice between τ̄1 and τ̄2.

§8. Co2-type amalgam

In this section we deal with case (iv) of Proposition 4.1. Therefore we

assume that n = 4, G1(x)/G2(x) ∼= U [2], G2(x)/G3(x) ∼= U and |G3(x)| = 2

(where U is the natural module for L = G(x)/G1(x) ∼= L4(2)). Some

further information on the structure of G(x) was announced in [Tr00], while

in [Tr03b] the group G(x) was specified up to isomorphism. Unfortunately

the terms in which the specification was made is not very convenient for

our purpose, so we will not use it and only apply the above information

on G(x). We will prove eventually (cf. Proposition 8.23) that the amalgam

A = {G(x), G{x, y}} (and particularly the vertex stabilizer G(x)) is unique

up to isomorphism and corresponds to the action of Co2 on the derived

graph of its P -geometry.

8.1. G(x)/Z(G(x))

We first need some technical results.

Lemma 8.1. The following assertions hold :

(i) there is a unique indecomposable extension V of a natural module U
for L4(2) by its exterior square U [2];

(ii) H1(L4(2), V ) is trivial ;

(iii) H1(L4(2), V
∗) is 1-dimensional.

Proof. The assertion (i) follows from Table I in [B78], since by a stan-
dard result the number of extensions under consideration equals to the
number of non-identity elements in

H1(L4(2),HomGF (2)(U,U
[2])).

The extension V is known as the module of quadratic forms on U .
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Let P be the GF (2)-permutation module for L4(2) acting on the 1-
subspaces in U . It is well known (cf. Sections 3.2 and 3.3 in [IS02]) that P =
Pe⊕Pc, where Pc is 1-dimensional and Pe possesses the unique composition
series

Pe = X (1) > X (2) > X (3) > X (4) = 0,

where X (i)/X (i + 1) ∼= U [i] for 1 ≤ i ≤ 3. Similarly, if H is the GF (2)-
permutation module of L4(2) acting on the 3-subspaces (hyperplanes) in U ,
then H = Hc ⊕He, where Hc is 1-dimensional and

He = Y(1) > Y(2) > Y(3) > Y(4) = 0

is the unique composition series for He, where Y(i)/Y(i + 1) ∼= U [4−i] ∼=
(U [i])∗. By (i) this means that V ∼= Y(2) and V ∗ ∼= X (1)/X (3).

By Lemma 3.2 each H1(L4(2), V ) and H1(L4(2), V
∗) is either trivial or

1-dimensional. Suppose that H1(L4(2), V ) is non-trivial. Then, according

to a general principle there exists an indecomposable extension Ṽ ∗ of a 1-
dimensional trivial module by V ∗. By the previous paragraph L4(2) acting
on V ∗ contains an orbit Ω of length 15 indexed by the hyperplanes in U
and V ∗ is generated by the vectors in Ω. Thus the stabiliser S in L4(2) of
a vector from Ω is isomorphic to 23 : L3(2). Let Ω̃ be the preimage of Ω in

Ṽ ∗. Since S does not contain subgroups of index 2, Ω̃ is the union of two
L4(2)-orbits of length 15 each. Since Ṽ ∗ is an indecomposable extension

of V ∗, each of the two orbits generates Ṽ ∗, in particular Ṽ ∗ is a quotient
of H. By the above paragraph the latter contains a unique 1-dimensional
composition factor which is a direct summand. Thus the module Ṽ ∗ with
the required properties does not exist, which proves (ii).

In order to prove (iii) recall that U [2] is isomorphic to the heart of the
GF (2)-permutation module E of L4(2) ∼= A8 acting naturally on 8 points.
Furthermore E possesses the unique composition series

E > Ee > Ec > 0,

where both E/Ee and Ec are 1-dimensional and Ee/Ec
∼= U [2]. Now consid-

ering the sub-direct product of V and Ee with respect to U [2], we obtain an
indecomposable extension of the 1-dimensional module by V . Applying the
general principle once again, we see that H1(L4(2), V

∗) is 1-dimensional.

We follow notation introduced in Subsection 3.2 for L ∼= L4(2), its

subgroups and modules. In particular D denotes the semidirect product of
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U [2] and L with respect to the natural action. Furthermore, we identify U

with the corresponding L-submodule in V (as in Lemma 8.1 (i)) and U [2]

with V/U .

Lemma 8.2. Let X be a group such that X/O2(X) ∼= L ∼= L4(2),
O2(X) is elementary abelian isomorphic to V as an L-module. Let N1

and N2 be the preimages in X of representatives of the two classes of com-

plements to O2(D) in X/U ∼= D. Then, up to renumbering, N1
∼= U : L

(semidirect product), while N2
∼= 24 · L4(2) (the non-split extension). In

particular H2(L4(2), V ) is trivial.

Proof. Let N̂1
∼= 24 ·L4(2) be the unique non-split extension of U by L.

Let X̂ be the semidirect product of V and N̂1 with O2(N̂1) acting trivially
and N̂1/O2(N̂1) acting in the natural way. Then, arguing as in the proof of
Lemma 3.11 and applying Lemmas 3.3 and 8.1 (i), we observe that X̂ is the
largest group subject to the following properties: (1) X̂/O2(X̂) ∼= L4(2);
(2) O2(X̂) is elementary abelian; (3) X̂ possesses a homomorphism onto D
whose kernel J is a direct sum of modules isomorphic to U ; (4) if T is a
subgroup in X̂ such that X̂ = TJ , then T = X̂ . Let σ be the automorphism
of D which permutes the classes of L4(2)-complements and commutes with
D/O2(D). Then by the maximality property and since σ preserves the
natural module U , σ extends to an automorphism of X̂ . Let N̂2 be the image
of N̂1 under this extension. Since H1(L4(2), V ) is trivial by Lemma 8.1 (ii)
we observe that O2(N̂1) 6= O2(N̂2), that J = O2(N̂1)⊕O2(N̂2) and that the
group X in the hypothesis of the lemma is the quotient of X̂ over O2(N̂i)
for i = 1 or 2. Now the last sentence in the claim is immediate in view of
Lemma 3.3 (which tells us that L4(2) always splits over the exterior square
of its natural module).

The description in the proof of Lemma 8.1 of the L-module V as a

submodule of the GF (2)-permutation module on the hyperplanes in U gives

the following (compare the characterization of the exterior powers of U in

Lemma 3.1.3 in [IS02]).

Lemma 8.3. There is a injection d of the set of 2-subspaces in U into

V #. If s1, s2, s3 are 2-subspaces such that 〈s1, s2, s3〉 is a hyperplane and

s1 ∩ s2 ∩ s3 is a 1-subspace generated by u ∈ U#, then

d(s1)d(s2)d(s3) = u.
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Notice that if we consider U as a submodule in V , so that V/U ∼= U [2]

then the mapping which sends a 2-subspace s of U onto d(s)U coincides with

the mapping d2 defined before Lemma 3.1. We continue to use notation from

Subsection 3.2. Recall that U = 〈w〉⊕W is a direct sum decomposition of U ,

P1 and P2 are the stabilizers in L of 〈w〉 and W , respectively and K0 (called

the Levi complement) is the stabilizer of this direct sum decomposition. Let

V (w) = 〈d(s) | s ∼ w〉 and V (W ) = 〈d(s) | s ∼W 〉

be subspaces in V (compare the definition before Lemma 3.16).

Lemma 8.4. The following assertions hold :

(i) V (w) = CV (O2(P1));

(ii) V (W ) = CV (O2(P2));

(iii) V (w), as a module for P1/O2(P1) ∼= L3(2), is the direct sum of 〈w〉
and a 3-dimensional submodule isomorphic to U/〈w〉;

(iv) V (W ), as a module for P2/O2(P2) ∼= L3(2), is isomorphic to the even

half of the GF (2)-permutation module on the 2-subspaces in W ;

(v) the Levi complement K0 is the stabilizer in L of the direct sum de-

composition V = V (w) ⊕ V (W ).

Proof. It is immediate from the definition that V (w)U/U = U [2](w)
and V (W )U/U = U [2](W ). Furthermore, it is easy to deduce from the
relations in Lemma 8.3 that V (w) ∩ U = 〈w〉 and V (W ) ∩ U = W . There-
fore, particularly, dimV (w) = 4, dimV (W ) = 6 and V (w) ∩ V (W ) = 0.
Since O2(P1) centralizes every generator of V (w), the latter is contained in
CV (O2(P1)). On the other hand CU [2](O2(P1)) = U [2](w) by Lemma 3.16
(i) and clearly CU (O2(P1)) = 〈w〉, hence (i) follows. Similar argument
establishes (ii).

By the definition V (w) is a quotient of the GF (2)-permutation module
of P1 acting of the 1-subspaces in U/〈w〉 while V (W ) is a quotient of the
GF (2)-permutation module of P2 acting on the 2-subspaces in W . Now (iii)
and (iv) are immediate in view of Lemma 3.6 (i) and the dimensions of V (w)
and V (W ). Notice that the complement to 〈w〉 in V (w) is generated by the
elements d(s)w taken for all the 2-subspaces in U containing w. Since K0 is
the stabilizer in L of the direct sum decomposition U = 〈w〉 ⊕W assertion
(v) follows from Lemma 3.16 (iii).
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Lemma 8.5. Suppose that the case (iv) in Proposition 4.1 holds. Then

the following assertions hold :

(i) G2(x) = Z(G1(x)), in particular G1(x) is non-abelian;

(ii) G2(x) is an elementary abelian 2-group and as an L-module it is iso-

morphic to the direct sum of G3(x) = Z(G(x)) and U ∼= G2(x)/G3(x);

(iii) G(x)/G3(x) = V : M̄ , where M̄ ∼= L ∼= L4(2) and V = G1(x)/G3(x)
is the indecomposable L-module as in Lemma 8.1 (i);

(iv) the group G(x)/G3(x) is complete.

Proof. Let W = G2(x). Since the two chief factors of G(x) in W are
4-dimensional and 1-dimensional, W is elementary abelian. Considering it
as a G(x)-module, we further observe that G1(x) acts trivially on W , since
G1(x)/W is 6-dimensional irreducible. Thus, G(x) induces on W the group
L4(2). It now follows from Lemma 3.2 that W is semi-simple. Let E2 be
the 4-dimensional submodule in W . Clearly, E2 is normal in G(x).

Next, let Zx = G3(x) and consider the group V = G1(x)/Zx. We claim
that V is elementary abelian. Indeed, let V0 be the image of W in V . The
mapping vV0 7→ v2 is a well-defined mapping from V/V0 to V0, and this
mapping clearly commutes with the action of G(x). By Lemma 3.15 the
latter group has two orbits (of lengths 28 and 35) on the nonzero vectors
of V/V0, corresponding to the stabilizers S6 and 24 : (S3 × S3) (stabilizer
of a 2-subspace from the natural module). None of these two stabilizers
fixes a vector in V0. Hence the above mapping sends every vector from
V0/V to zero. This means that V is elementary abelian. In particular, the
commutator subgroup of G1(x) is contained in Zx.

We now argue that G1(x) is non-abelian, which implies that [G1(x),
G1(x)] = Zx. If G1(x) is abelian then also G1(y) is abelian. Observe that
G1(y) ≤ G(x) and G1(y) 6≤ G1(x). Therefore, G1(y) acts non-trivially on
W , which is a contradiction since W ≤ G1(y). Thus, G1(x) is non-abelian.

The mapping from G1(x)/W to Zx defined by gW 7→ g2 is a nontrivial
(and hence non-degenerate) G(x)-invariant quadratic form. Since the orbits
of G(x) on (G1(x)/W )# are of lengths 28 and 35, this form is of plus type.
Setting E1 to be the full preimage in G1(x) of an arbitrary complement
to V0 in V , we see that E1 is extraspecial of plus type with centre Zx,
completing the proof of (i) and (ii).

We next show that V is indecomposable as a G(x)-module. (Clearly,
G1(x) acts trivially on V and hence G(x) induces on V the group L4(2)).
Let X = G{x, y}, R = O2(G(x, y)), and let t ∈ X be an element mapping
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to the involution in the centre of X/R ∼= 2×L3(2). If V is semi-simple then
E1 can be chosen to be normal in G(x). In that case it is also normal in R.
Also Et

1 is normal in R. Since Zy = Zt
x 6= Zx and Zt

x = G3(y) ≤W , we get
that T = E1 ∩ Et

1 is a normal subgroup of Et
1 not containing Z t

x. This is
impossible, because Et

1 is extraspecial. Therefore, T = 1, implying that R =
E1×E

t
1. Consequently, [R,R] is of order four. This is a contradiction, since

R acting on V/V0 already produces a 3-dimensional commutator subspace.
We have shown that V is an indecomposable extension of a 4-dimen-

sional V0 by 6-dimensional module V/V0. Such an extension is unique by
Lemma 8.1 (i), hence it is as claimed in (iii). By Lemma 8.2, G(x)/Zx splits
over V , completing the proof of (iii).

Let τ be an automorphism of G(x)/Zx. In order to prove (iv) we have
to show that τ is inner. By (iii) and Lemma 8.1 (ii) we can assume that τ
normalizes a complement M̄ ∼= L4(2) to V = O2(G(x)/Zx). Suppose that
τ induces an outer automorphism of M̄ . Then it maps the natural module
G2(x)/Zx onto its dual and the latter is not involved in G(x)/Zx. Hence
we can assume that τ centralizes M̄ . Since both E1/Zx and E2Zx/Zx are
absolutely irreducible M̄ -modules and not dual to each other, we conclude
that τ centralizes V which completes the proof.

Remark. The above lemma specifies H := G(x)/Zx up to isomor-
phism, as the semidirect product of V and M̄ ∼= L4(2) with respect to
the natural action.

To list all the possibilities for the structure of G(x), we have so far, we

need to compute the Schur multiplier of H.

Lemma 8.6. The Schur multiplier of H = G(x)/Zx is elementary

abelian of order eight.

Proof. Let Ĥ be the covering group of H. Since L does not preserve
non-zero alternating forms on U and H1(L4(2), U

∗) is trivial, arguing ex-
actly as in the proof of Lemma 3.17, we show that the order of Z(Ĥ) is at
most 8. On the other hand, if D̂ be the covering group of D ∼= 26 : L4(2) as
in Lemma 3.17. Then the subdirect product of H and D̂ with respect to D
is a perfect central extension of Z(D̂) by H which is the universal extension
by the order reason.

Lemmas 8.5 and 8.6 determine the structure of G(x) up to four possi-

bilities. (Indeed, G(x) is obtained from Ĥ be factoring over one of the four
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central subgroups of order four not containing the commutator subgroup of

order 2 of O2(Ĥ).) In two of those groups the preimage M of the comple-

ment M̄ is isomorphic to 2×L4(2) and in the other two it is isomorphic to

the full covering group of 2 ·L4(2) of L4(2). Notice that these four quotients

are pairwise non-isomorphic by Lemma 8.5 (iv). The information on G(x)

given in Lemma 8.5 (i), (ii), (iii) and the fact that M ∼= 2 · L4(2) was an-

nounced in [Tr00]. As we have just seen this still leaves two possibilities for

the isomorphism type of G(x) (as we have already mentioned, the structure

of G(x) was specified up to isomorphism in [Tr03b]).

8.2. G(x, y)/Z(G(x, y))

We now turn our attention to the group G{x, y}. Let t ∈ G{x, y} be as

above. That is, t maps onto the involution in the centre of G{x, y}/O2(G(x,

y)) ∼= 2 × L3(2). Let E = G3(x)G3(y) = ZxZ
t
x, R = G2(x)G2(y) and

Q = G1(x)G1(y). Clearly, these subgroups are normal in G{x, y}. Set

A = R/E and B = Q/R.

Lemma 8.7. The groups E, A and B are elementary abelian 2-groups,

and O2(G(x, y)) acts on these GF (2)-spaces trivially. Viewing them as

modules for G(x, y)/O2(G(x, y)) ∼= L3(2), we have the following :

(i) E = G3(x) ⊕ G3(y) is a direct sum of two 1-dimensional modules

permuted by t;

(ii) A = G2(x)/E⊕G2(y)/E is a direct sum of two isomorphic irreducible

3-dimensional modules permuted by t;

(iii) B = G1(x)/R⊕G1(y)/R is also a direct sum of two isomorphic irre-

ducible 3-dimensional modules permuted by t; and

(iv) B is dual to A.

Furthermore, Q = O2(G(x, y)).

Proof. Since O2(G(x, y))/G1(x) is an irreducible module for G(x, y)/
O2(G(x, y)) ∼= L3(2) and since G1(x) is not normal in G{x, y}, we obtain
that Q = O2(G(x, y)).

Part (i) holds because G3(x) = Zx is in the centre of G(x), but it is not
normal in G{x, y}. Now observe that E ≤ G2(x) and that G2(x)/E ∼= 23 is
invariant under G(x, y), which induces on it L3(2) acting irreducibly. This
yields that Q acts on G2(x)/E trivially. Now (ii) follows since again G2(x)
cannot be invariant under t. Part (iii) can be proved similarly. Finally part
(iv) follows because the two chief factors of G(x, y) in G1(x)/G2(x) are dual
to each other.
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We will view the chief factors of G(x, y) found in A as the natural

modules for G(x, y)/Q ∼= L3(2), and the chief factors found in B as the

dual natural modules.

Choose a complement M̄ to V in G(x)/Zx (all such complements are

conjugate by Lemma 8.1 (ii)), and let M be the full preimage of M̄ in

G(x). Then M ∼= 2 × L4(2) or M ∼= 2 · L4(2). Let N = G(x, y) ∩M . Then

N̄ = N/Zx
∼= 23 : L3(2) is the stabilizer in M̄ ∼= L4(2) of the 1-dimensional

subspace E/Zx in the natural module U = G2(x)/Zx. Choose a Levi com-

plement L3(2) in the parabolic N̄ and let T be the commutator subgroup in

the full preimage in M of this Levi complement. By Lemma 3.13 we have

the following.

Lemma 8.8. The G(x, y) splits over Q = O2(G(x, y)), namely T ∼=
L3(2) ∼= G(x, y)/Q.

We follow the notation introduced before Lemma 8.7 and study further

the structure of G(x, y). Recall that this subgroup is the preimage in G(x)

of the stabilizer in L = G(x)/G1(x) of the 1-subspace 〈w〉 = E/Zx in the

natural module U = G2(x)/G3(x). Then G(x, y)/G1(x) coincides with the

parabolic P1
∼= 23 : L3(2) in L = G(x)/G1(x). By Lemma 8.8 G(x, y) splits

over Q = O2(G(x, y)). We will classify the classes of L3(2)-complements

in G(x, y) and show that t must preserve one of those classes. Our nearest

goal is to study the structure (the classes of L3(2)-complements, the Schur

multiplier and the automorphism group) of

F := G(x, y)/E.

Notice that by Lemma 8.5 (iii) the group F is determined uniquely up to

isomorphism independently of the choice between the four possibilities for

G(x) we have so far (cf. the paragraph after the proof of Lemma 8.6).

Let P = O2(F ), which is the image of Q = 〈G1(x), G1(y)〉 in F . Then

in terms of Lemma 8.7 A is a normal subgroup of F contained in P and

B = P/A. Put A(x) = G2(x)/E, A(y) = G2(y)/E and let A(e) be the third

3-dimensional F/P -submodule in A (here e symbolises the edge {x, y}).
Similarly put B(x) = G1(x)/R, B(y) = G1(y)/R and let B(e) be the third

3-dimensional F/P -submodule in B. Thus for α ∈ {x, y, e} A(α) is the

natural module for F/P ∼= L3(2) and B(α) is the dual natural module. It

is clear that the automorphism of F induced by t ∈ G{x, y} \G(x, y) swaps

A(x) with A(y) and B(x) with B(y). Therefore it stabilizes A(e) and B(e).
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As in Lemma 8.8 let T be commutator subgroup of the full preimage

in M of a Levi complement in the parabolic N̄ ∼= 23 : L3(2) (sometimes

we will identify T with its isomorphic image in F ). We can assume that T

stabilizes the direct sum decomposition

U = 〈w〉 ⊕W,

where 〈w〉 = E/Zx and W is a hyperplane in U = G2(x)/Zx. Consider

V (w) and V (W ) defined before Lemma 8.4 as subgroups in G1(x)/Zx
∼= V ,

let Y (w) and Y (W ) be their respective images in P ∼= V/〈w〉 (we consider

these images as T -modules).

Lemma 8.9. The following assertions hold :

(i) Y (W ) ∼= V (W ), Y (W ) ∩A = A(x) and Y (W )A/A = B(x);

(ii) Y (w) = A(α) for α = y or α = e;

Proof. This is immediate from Lemmas 8.4 and 8.7.

Let N be as in the paragraph before Lemma 8.8, and I be the image

in F of O2(N) (notice that I ∼= O2(N)/Zx
∼= 23).

Lemma 8.10. The following assertions hold :

(i) IA/A = B(β) for β = y or β = e;

(ii) IA is elementary abelian and as a T -module it is the direct sum I ⊕
A(x) ⊕A(y).

Proof. Since N̄ = N/Zx is the stabilizer of 〈w〉 = E/Zx in M̄ ∼= L4(2),
O2(N)/Zx is the group of transvections with centre w. Therefore I and
W ∗ are isomorphic as T -modules and (i) follows. Furthermore, I commutes
with both A(x) = U/〈w〉 and Y (W ). Hence (ii) follows from Lemmas 8.7
(ii) and 8.9 (ii).

For a 2-subspace s in W let i(s) denote the transvection in O2(N)/Zx

with axis 〈w, s〉 and centre w (sometimes we will identify this transvection

with its image in I).

Lemma 8.11. Let P ′ be the commutator subgroup of P = O2(F ). Then

(i) P ′ = A(e);
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(ii) Y (w) = A(y);

(iii) A is the centre of P .

Proof. By Lemma 8.7 B = P/A is elementary abelian and hence P ′ ≤
A. By Lemmas 8.9 and 8.10 A is in the centre of P . Furthermore both
Y (W ) and I are abelian and P = Y (W )IA. Therefore P ′ is generated by
the images in F of the commutators [d(s1), i(s2)] taken for all the pairs s1,
s2 of 2-subspaces in W . If s1 = s2 then clearly the commutator is trivial. So
let s1 6= s2 and s1 ∩ s2 = 〈u〉, where u ∈W#. Then i(s2)d(s1)i(s2) = d(s3)
where s3 is the 2-subspace in U which is the image of s1 under i(s2). Since
s3 contains u there is a unique 2-subspace s4 other than s1 and s3 contained
in the hyperplane 〈s1, s3〉 and containing u. Then

[d(s1), i(s2)] = i(s2)d(s1)i(s2)d(s1) = d(s3)d(s1)

= d(s4)d(s4)d(s3)d(s1) = d(s4)u,

where the latter equality is by Lemma 8.3. Since s4 contains both w and u,
in terms of Lemma 8.9 and its proof, we have [d(s1), i(s2)] = χ(u)u. This
shows that P ′ is a T -invariant subgroup of order 23 in A. By Lemma 8.9 we
observe that P ′ 6= A(x) and clearly P ′ 6= Y (w). Since P ′ is characteristic
in F , we conclude that P ′ = A(e) and hence Y0(w) = A(y), which gives (i),
(ii) and (iii).

Let J0(W ) denote the subgroup in G(x)/Zx generated by the elements

d(s)i(s) taken for all the seven 2-subspaces s in W . We have seen within

the proof of Lemma 8.11 that whenever s1 ∩ s2 = 〈u〉, the equality

[d(s1), i(s2)] = χ(u)u

holds and χ(u)u ∈ A(e) ≤ A = Z(P ). This enables us to check that the

generators of J0(W ) pairwise commute. Therefore J0(W ) is elementary

abelian and as a T -module it is a quotient of the permutation module on

2-subspaces in W . Let {s1, s2, s3} be the triple of such subspaces containing

a given vector u ∈W#. The the above commutator equality gives

3∏

j=1

d(sj)i(sj) = χ(u).

Since χ(u) ∈ A(y) by Lemmas 8.9 and 8.11 (ii), we obtain the following
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Lemma 8.12. The following assertions hold :

(i) J0(W ) (as a T -module) is isomorphic to the even half of the permu-

tation module on the set of 2-subspaces in W ;

(ii) J0(W ) is isomorphic to its image J(W ) in F ; J(W ) ∩ A = A(y),
J(W )A/A = B(y) and I = B(e).

As an immediate consequence of Lemmas 8.9, 8.10 (ii) and 8.12 (iii) we

obtain the following.

Lemma 8.13. IA/A = B(e).

8.3. Some automorphisms of G(x, y)/Z(G(x, y))

In order to deduce certain properties of the automorphism group of F

we need to know the classes of complements to O2(F ) in F .

Lemma 8.14. The group F = G(x, y)/Z(G(x, y)) contains exactly 8
classes of L3(2)-complements to P = O2(F ).

Proof. Here we identify the subgroup T ∼= L3(2) from Lemma 8.8 with
its (isomorphic) image in F , so that T is one of the L3(2)-complements
we are after. Consider first F̄ = F/A which is the semidirect product of
T̄ and the direct sum of two copies of the dual natural module of T̄ . For
α ∈ {x, y, e} the group B(α)T̄ ∼= 23 : L3(2) contains two classes of L3(2)-
complements. Let T̄α denote the image of T̄ under an outer automorphism
of B(α)T̄ . By Lemmas 8.9, 8.12 the preimages of B(x) and B(y) involve
an indecomposable T -module (the even half of the permutation module
of dimension 7), while the preimage of B(e) is semi-simple. Hence (cf.
Lemma 3.11) the preimages of T̄ x and T̄ y involve the non-split extension
23 · L3(2), while the preimage of T̄ e splits over A and we denote by T e

the corresponding L3(2)-complement. Therefore modulo A the group F
contains exactly two classes of complements with representatives T and T e.
Next, for S being one of these representatives and β ∈ {x, y, e} the group
A(β)S ∼= 23 : L3(2) contains two classes of complements. Let Sβ be a
complement, which is not in the class of S. Then

T = {T, Tx, Ty, Te, T
e, T e

x , T
e
y , T

e
e }

is a complete set of representatives of the classes of L3(2) complements and
the result follows.
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Next we discuss the possibilities for the action of t ∈ G{x, y} \G(x, y)

on the classes of L3(2)-complements to P in F (sometimes we identify a

complement R ∈ T with the class it represents). Put T0 = {T, Tx, Ty, Te}

and T1 = {T e, T e
x , T

e
y , T

e
e }.

Lemma 8.15. Let i ∈ {0, 1}, Tα, Tβ ∈ Ti and ϕ = ϕ(α, β) be the map-

ping which sends k ∈ Tα onto Ak ∩ Tβ. Then

(i) ϕ is an isomorphism of Tα onto Tβ;

(ii) for every p ∈ P we have pk = pϕ(k);

(iii) ϕ extends uniquely to an automorphism of F which commutes with

P .

Proof. (i) is immediate from the proof of Lemma 8.14. Since A = Z(P )
by Lemma 8.11 (iii), (ii) follows. Finally (iii) is clear since F = PTα = PTβ.

Let O0 be the subgroup in the automorphism group of F which stabi-

lizes the classes of L3(2)-complements represented in T0. Then by Lemma

8.15 O0 permutes transitively the four classes in T0. Furthermore, the

results in Lemmas 8.9 to 8.13 are true if instead of T we take any other

L3(2)-complement, whose class is represented in T0. The next lemma shows

that the situation is different for the complements in T1.

Lemma 8.16. B(x)A/A(x) is an indecomposable T e-module.

Proof. By the construction I = B(e) maps onto O2(P1) in L =
G(x)/G1(x), while T and T e map onto representatives of two classes of
complements to O2(P1) in P1. On the other hand, by Lemmas 8.4, 8.7
and 8.9 B(x)A/A(x) is the image in P of U [2] = V/U . Now the result is
immediate from Lemma 3.16 (i).

Lemma 8.17. If t ∈ G{x, y}\G(x, y), then the class of T t is contained

in T0.

Proof. By Lemma 8.7 t permutes A(x) and A(y) as well as B(x) and
B(y), normalizing A(e) and B(e). By Lemma 8.12 B(y)A = J(W ) ⊕ A(x)
(as a T -module). Therefore

B(x)A = (B(y)A)t = J(W )t ⊕A(y)
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as a T t-module. If T t 6∈ T0, then by Lemma 8.15, without loss of generality,
we can assume that T t = T e. But then the above equality contradicts
Lemma 8.16.

Define a mapping ψ of Y (W ) onto J(W ) which sends d(s) onto d(s)i(s)

for every 2-subspace s inW . Then clearly ψ is an isomorphism of T -modules

and it extends uniquely to an automorphism ψ(T ) of F which commutes

with T .

Lemma 8.18. There are four matching (graphs of valency 1) ΓS, S ∈
{A(x), A(y), A(e), I} on T . Furthermore,

(i) if R ∈ Ti and R′ ∈ Tj are adjacent in ΓS, then i 6= j if S = I and

i = j otherwise;

(ii) if a ∈ O0, then (ΓS)a = ΓSa;

(iii) O0 ∼= D8 acts faithfully on T0.

Proof. We assume that the complements in T share the normalizer Y
of a Sylow 7-subgroup isomorphic to F 3

7 . Let X be a Sylow 3-subgroup in
this normalizer. Then we define R,R′ ∈ T to be adjacent in ΓS if and only
if

〈NR(X), NR′ (X)〉 ∩ P ≤ S.

Now (i) and (ii) are clear from the proof of Lemma 8.14. Notice that T
is adjacent in ΓS to Tx, Ty, Te and T e for S = A(x), A(y), A(e) and
I, respectively. The automorphism ψ defined before this lemma and the
automorphisms ϕ(α, β) from Lemma 8.15 generate D8 on T0. Since A(e) =
[P, P ], ΓA(e) is stable under O0, so (iii) follows.

Lemma 8.19. The element t induces on T either the permutation

(T )(Tx, Ty)(Te)(T
e)(T e

x , T
e
y )(T e

e ) or the permutation (Tx)(T, Te)(Ty)(T
e
x )

(T e, T e
e )(T e

y ).

Proof. We know that t permutes A(x) and A(y). Hence it permutes
ΓA(x) and ΓA(y). Now the result is immediate by Lemmas 8.15 (iii) and 8.17.

By Lemma 8.19 the automorphism of F = G(x, y)/Z(G(x, y)) induced

by t modulo inner automorphisms coincides either with the automorphism

ψ(T ) defined before Lemma 8.18 or with the automorphism ψ(Tx) defined
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similarly. As in the proof of Lemma 8.18 we assume that the complements in

T share the normalizer Y of a Sylow 7-subgroup (clearly Y is self-normalized

in F ) and furthermore that t normalizes Y . In this case t permutes the

complements in T .

We believe that the full automorphism group of F permutes transitively

eight classes of L3(2)-complement but this is irrelevant to our main purpose,

so in this paper we are not going to investigate this matter further.

8.4. The amalgam A

Now it is time to recall that the group G(x) (and hence G(x, y) as

well) is specified up to four possibilities. Namely G(x) is a quotient of the

covering group Ĥ of G(x)/Z(G(x)) over a subgroup of order 4 in Z(Ĥ)

which trivially intersects the commutator subgroup of O2(Ĥ). By the proof

of Lemma 8.6 Ĥ possesses a surjective homomorphism onto the covering

group D̂ of D ∼= 26 : L4(2). We denote the generators of Z(Ĥ) by the same

letters c, π, z as the generators of Z(D̂). Then c generates the commutator

subgroup of O2(Ĥ), 〈c, π〉 = [O2(Ĥ), Ĥ ] and z generates the centre of the

commutator subgroup of the preimage in Ĥ of an L4(2)-complement in H.

Notice that the automorphism of D̂ which permutes π and πc does not

extend to an automorphism of Ĥ (since the latter group is complete by

Lemma 8.15 (iv)). Then the kernel N of the homomorphism of Ĥ onto

G(x) is one of the following subgroups of Z(Ĥ):

〈z, π〉, 〈z, πc〉, 〈zc, π〉, 〈zc, πc〉.

We emphasize again that the quotients of Ĥ over these four subgroups are

pairwise non-isomorphic.

Let F̂ be the preimage in Ĥ of G(x, y)/Zx and for a subgroup X ≤ F

let X̂ denote its preimage in F̂ . Then Z(F̂ ) = 〈̂w〉 and hence it is of order

24. Furthermore, since L4(2) does not preserve non-zero alternating forms

on U and H1(L4(2), U
∗) is trivial, Û ∼= Z(Ĥ) ⊕ [Û , Ĥ ], the latter direct

summand being isomorphic to U . Thus Z(F̂ ) is generated by elements

c, π, z, ŵ, where

〈ŵ〉 = [Û , Ĥ ] ∩ Z(F̂ ).

We have two possibilities, ψ(T ) and ψ(Tx) for the automorphism induced

by t on F . We are going to employ the condition that this automorphism

must extend to an automorphism of G(x, y) = F̂ /N in order to specify N
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and to make the choice between ψ(T ) and ψ(Tx). Notice that the extended

automorphism must not centralize 〈c, π, z〉/N = Zx.

Let R ∈ T . Since the Schur multiplier of R ∼= L3(2) is of order 2

(cf. Lemma 3.4), R̃ := [R̂, R̂] is a quotient of SL2(7). Let k(R) denote the

generator of Z(R̂) (which is of order 1 or 2). First we calculate the elements

k(R) for every complement in T .

Lemma 8.20. In the above terms we have the following : k(T ) =
k(Tx) = 1, k(Ty) = k(Te) = π, k(T e) = z, k(T e

x) = zŵ, k(T e
y ) = zc,

k(T e
e ) = zcŵ.

Proof. It is convenient to consider Ĥ as the subdirect product with
respect to D of H and the covering group D̂ of D ∼= 26 : L4(2). Then T̂
is the preimage of a Levi complements from a complement to O2(D) in D.
Hence arguing as in the proof of Lemma 8.8 we observe that T̂ splits over
Z(Ĥ). Since U = 〈w〉 ⊕ W as a module for T , T̂ splits over the whole

Z(F̂ ) and k(T ) = 1. Now as a module for T̃ ∼= L3(2) the preimage Â(x) is

isomorphic to the direct sum of Z(F̂ ) and A(x) while Â(y) is the direct sum
of 〈c, z, ŵ〉 and an indecomposable extension of 〈π〉 by A(y) (compare the
model for D̂ in the proof of Lemma 3.17). By Lemma 3.9 this shows that
k(Tx) is trivial while both k(Ty) and k(Te) are π (we can make distinction

between π and cπ by declaring that 〈π〉 = [Â(y), T̃ ]).

Now let us turn to T e. It corresponds to the non-Levi complement
to maximal parabolic in an L4(2)-complement to O2(H) in H. Therefore,

firstly k(Te) = z by Lemma 3.13, secondly, as T̃e-modules Â(x) is the direct

sum of Z(Ĥ) and an indecomposable extension of 〈ŵ〉 by A(x) while Â(y) is
the direct sum of 〈π, c, ŵ〉 and an indecomposable extension of 〈c〉 by A(y).
Now another application of Lemma 3.9 completes the proof.

Lemma 8.21. The element t can not induce the automorphism ψ(T ).

Proof. Suppose to the contrary that t induces ψ(T ) and try to extend
it to F̂ /N for N being one of the above four subgroups. Since ψ(T ) maps
Tx onto Ty we immediately conclude that π ∈ N . We claim that z ∈ N .
Suppose not, then zc ∈ N . But zw could not be in N , since 〈c, w〉 maps
bijectively onto the centre of G(x, y). This contradicts Lemma 8.20 since
ψ(T ) maps T e

x onto T e
y . Thus N = 〈π, z〉. By the proof of Lemma 8.20

in this case in the quotient F̂ /N the preimage of A splits and we can

https://doi.org/10.1017/S0027763000008989 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008989


70 A. A. IVANOV AND S. V. SHPECTOROV

factor it out and consider the subgroup F̄ which is a central extension of
Y = Z(F̂ )/N (of order 4) by F/A. Since z ∈ N , the preimage of B(e)
splits over Y as a module for the image of T while the preimage of B(x)
does not split over 〈c〉N/N as we can see from the model of D̂. Hence the
commutator of T with B intersects Z(F̂ )/N in 〈c〉N/N which is impossible,
since then t must normalize the latter.

Lemma 8.22. The following assertions hold.

(i) t induces the automorphism ψ(Tx);

(ii) N = 〈π, zc〉.

Proof. (i) is immediate from Lemmas 8.19 and 8.21. Since ψ(Tx) maps
T onto Te, we have π ∈ N by Lemma 8.20. Since ψ(Tx) maps T e onto T e

e ,
the extension ψ(Tx) must map 〈z〉N onto 〈zcŵ〉N . Since either z or zc is
in N , the result follows.

Finally we have arrived to the main result of the section.

Proposition 8.23. In the case (iv) of Proposition 4.1 the amalgam A

is isomorphic to the amalgam A
(3)
4

∼= A(Co2,Γ(G(Co2)).

Proof. By Lemma 8.22 N is determined which specifies G(x) up to
isomorphism and hence G(x, y) as a subgroup of G(x). The action of t on
G(x, y)/Z(G(x, y)) coincides with ψ(Tx) and the action of t on Z(G(x, y))
is clear from the proof of Lemma 8.22. Since G(x, y) does not split over its
centre the action of t on the whole G(x, y) is determined. We claim that t
can be chosen to be an involution. Indeed by the construction t2 induces
the trivial automorphism hence either t2 = 1 or t2 is the unique element in
Z(G(x, y)) centralized by t. In the latter case instead of t we take at where
a is an involution in Z(G(x, y)) not centralized by t.

§9. J4-type amalgams

In this section we deal with the case (v) in Proposition 4.1. Therefore,

we assume that n = 4, G1(x)/G2(x) ∼= U [2], G2(x)/G3(x) ∼= U , G3(x) ∼=
U [3] ∼= U∗, where U is the natural module for L = G(x)/G1(x) ∼= L4(2).

It was announced in [Tr00] that in the considered situation the structure

of the vertex stabilizer is specified up to isomorphism as follows.
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Proposition 9.1. Let H ∼= L5(2), Ū be a natural module of H, V
be the exterior square of the dual of Ū . Let W̄ be a hyperplane in Ū and

H(W̄ ) ∼= 24 : L4(2) be the (set-wise) stabilizer of W̄ in H. Then the vertex

stabilizer G(x) in a locally projective action corresponding to the case (v)
in Proposition 4.1 is isomorphic to the semidirect product of V and H(W̄ )
with respect to the natural action.

It is easy to check (compare Lemmas 3.2 and 3.16) that if we put

R = O2(H(W̄ )), then CV (R) is the only proper H(W̄ )-invariant submodule

in V and that R and CV (R) are dual to each other. We have

G3(x) = CV (R);

G2(x) = CV (R)R;

G1(x) = V R.

Therefore R ∼= U while W̄ ∼= CV (R) ∼= U∗, in particular G(x, y) is the

centralizer in G(x) of an involution from R.

Since we know G(x) up to isomorphism and G(x, y) up to conjuga-

tion in G(x), in order to apply Lemmas 4.2 and 4.3 we need to study the

automorphism group of G(x, y). We start with the following

Lemma 9.2. The subgroup V is the unique largest normal elementary

abelian subgroup in G(x).

Proof. Suppose that F is an elementary abelian normal subgroup in
G(x), which is not contained in V . Then V F/V is a non-identity normal
2-subgroup in H(W̄ )V/V ∼= 24 : L4(2), hence it must coincide with RV/V .
But then F ∩V is contained in CV (R), which is only 4-dimensional. Hence
|F | ≤ 28 (in fact G2(x) = RCV (R) attains this bound) and the result
follows.

In view of Lemma 4.3 the following result is useful.

Lemma 9.3. The group G(x) is complete.

Proof. Let M ∼= L4(2) be a complement to R in H(W̄ ). Then by Lem-
ma 9.1 M is a complement to G1(x) = O2(G(x)) in G(x). By Lemma 9.2
V is characteristic in G(x). Suppose first that α preserves the class of M .
Then we can assume that α normalizes M . Since V involves U ∗ but not U ,
α induces an inner automorphism of M and hence we can assume that α
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commutes with M . Since V is a direct sum of a non-isomorphic M -modules
(isomorphic to U ∗ and U [2]), α must centralize V . Also G3(x)R is abelian,
normalized by M . Since O2(G(x))/G3(x) is a direct sum of non-isomorphic
M -modules, we see that G3(x)R is normalized by α. But G3(x)R is also
a direct sum of non-isomorphic M -modules, hence it is centralized by α
and the latter is the identity automorphism. Now suppose that the class
of M is not preserved by α. By Lemma 3.2 G(x) contains at most two
classes of complements to O2(G(x)). In fact a complement not in the class
of M can be obtained as the image of M under an outer automorphism σ
of D := 26 : L4(2) which permutes two classes of complements to O2(D) in
D. We claim that σ can not be extended to an automorphism of the whole
G(x). Indeed, consider the action of D on G3(x)R. Under the action of
O2(D) there are 64 images of R and M σ acting on these images has two
orbits with lengths 8 and 56 (compare Lemma 3.14). Therefore G3(x)R is
indecomposable as Mσ-module and the claim follows.

Let us turn to the subgroup G(x, y). It is immediate form Lemma 9.1

that G(x, y) splits over O2(G(x, y)), but we prefer to deal with a specific

complement T (which we called a Levi complement):

T = H(w̄) ∩H(W̄ ) ∩H(W̄1) ∩H(w̄1),

where w̄ is a vector from W̄ , w̄1 is a vector from Ū \ W̄ and W̄1 is a

hyperplane in Ū containing w̄1, but not w̄. Notice that W̄ and W̄1 are

considered as 1-subspaces in Ū∗ while w̄ and w̄1 are hyperplanes in Ū∗. In

what follows the 3-dimensional subspace w̄ ∩ w̄1 of Ū∗ will be called the

natural module of T .

Lemma 9.4. As a T -module, V = V0⊕V1⊕V2⊕V3, where V0 and V1 are

the natural modules, V2 is the dual natural module and V3 is 1-dimensional

trivial module.

Proof. Since V = (Ū∗)[2] we can use notation similar to those in
Lemma 3.1. In these terms

V0 = V (w̄) ∩ V (W̄ ), V1 = V (w̄1) ∩ V (W̄1),

V2 = V (w̄) ∩ V (w̄1), V3 = V (W̄ ) ∩ V (W̄1).
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As we have already mentioned, G(x, y) is the centralizer in G(x) of an

element r ∈ R# and we can chose r acts on Ū as the transvection whose

axis is W̄ and whose centre is w̄. Notice that H(w̄) ∼= 24 : L4(2) and we

put S = O2(H(w̄)). Then the above introduced subgroup T ∼= L3(2) is a

Levi complement to R in M ∼= L4(2) as in the proof of Lemma 9.3 and also

a Levi complement in the L4(2)-complement to S in H(w̄).

The following result is immediate from the definition.

Lemma 9.5. The following assertions hold :

(i) the subgroup G(x, y) is the semidirect product with respect to the nat-

ural action of V ∼= 210 and P := CH(r) ∼= 21+6
+ : L3(2);

(ii) O2(P ) = RS, T is a complement to O2(P ) in P ;

(iii) Z(O2(G(x, y))) = CV (O2(P )) and it is the dual natural T -module;

(iv) considering as T -modules, R is the direct sum of 1-dimensional trivial

and the natural module, while S is direct sum of 1-dimensional and

the dual natural module.

We will also adopt a different point of view on G(x, y). This is based on

the observations that the semidirect product of H ∼= L5(2) and V is the ver-

tex stabilizer in a locally projective action of type (5, 2), corresponding to

the case (ii) in Proposition 4.1. So there is a group Ḡ acting locally projec-

tively on the tree Γ̄ of valency 31 such that Ḡ(x̄) ∼= V : H for a vertex x̄ ∈ Γ̄.

It worth mentioning that by Lemma 6.6 the amalgam A = {Ḡ(x̄), Ḡ{x̄, ȳ}}
associated with this action is isomorphic to either A(O+

10(2), D
+(10, 2)) or

A
(1)
5 (the latter amalgam possesses the fourth Janko group J4 as a con-

strained completion). In these terms G(x) is a subgroup of index 31 in

Ḡ(x̄) and since Ū is the natural module of Ḡ(x̄)/V associated with the

action of Ḡ on Γ̄, G(x) is the stabilizer in Ḡ(x̄) of the geometric subgraph

Σ̄[4] of valency 15 in Γ̄, which corresponds to the hyperplane W̄ of Ū . Thus

G(x) = Ḡ[4](x̄) and G(x, y) = Ḡ[4](x̄, ȳ),

where ȳ is a suitable vertex in Σ̄[4] adjacent to x̄ (in particular G(x, y) is a

subgroup of index 15 in Ḡ(x̄, ȳ)). According to Proposition 6.1

Ḡ(x̄, ȳ) = ZABK,

where V = BZ, A = S = O2(H(w̄)), K ∼= L4(2) is a complement to Ā

in H(w̄). Furthermore {AZ,BZ,CZ = C} is the complete set of normal
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elementary abelian subgroups of order 210 in Ḡ(x̄, ȳ) where (as K-modules)

AZ = A⊕Z and BZ = B⊕Z, while C is the only indecomposable extension

of the exterior square of the natural module by the natural module (compare

Lemma 8.1). We also have the following

Lemma 9.6. In the above terms G(x, y) is the centralizer in Ḡ(x̄, ȳ) of

a non-identity element a ∈ A.

We proceed to calculating the automorphisms of G(x, y). First we

decide what can be the image of V under such an automorphism.

Lemma 9.7. Let F be a normal elementary abelian subgroup of order

210 in G(x, y). Then F is either AZ, or BZ, or CZ.

Proof. Let χ be the natural homomorphism of G(x, y) onto G(x, y)/V .
Suppose that F is as in the hypothesis and F 6= V . Then χ(F ) is a non-
trivial elementary abelian normal subgroup in

χ(G(x, y)) = χ(P ) ∼= P ∼= 21+6
+ : L3(2).

By Lemma 9.5 one of the following holds: (a) X = χ(R∩S) (of order 2); (b)
X = χ(R); (c) X = χ(S). Now (a) is impossible since H is not generated
by transvections on V ; (b) is impossible since CV (R) is 4-dimensional, so
(c) holds. Since CV (S) is 6-dimensional, F ∩V = CV (S) = Z. Since G(x, y)
induces on A and B indecomposable action isomorphic to 23 : L3(2), there
is still only one G(x, y)-invariant isomorphism of A onto B and the result
follows.

Put E := G(x, y)/Z, so that E ∼= (ZAB/Z)J , where J = (K ∩
G(x, y))Z/Z ∼= 23 : L3(2) and TZ/Z is a complement to O2(J) in J . Then

(as T -modules) we have

AZ/Z = A(1) ⊕A(3), BZ/Z = B(1) ⊕B(3), CZ/Z = C(1) ⊕ C(3),

where X(i) is i-dimensional for X = A, B or C and i = 1 and 3. Put

D(3) = O2(J). Since Ḡ(x̄, ȳ)/Z ∼= (24 ⊕ 24) : L4(2), it is easy to see the

following

Lemma 9.8. Let N be the commutator subgroup of O2(E). Then

(i) N is elementary abelian of order 22 generated by A(1) and B(1);
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(ii) E/N is elementary abelian, isomorphic (as a T -module) to the direct

sum A(3) ⊕B(3) ⊕D(3), where A(3) and B(3) are the natural modules

and D(3) is the dual natural module;

(iii) E contains three normal extraspecial subgroups of type 21+6
+ ; they are

〈Y (3), D(3)〉 for Y = A, B and C and their centres are A(1), B(1) and

C(1), respectively.

Let us study the classes of L3(2)-complements to O2(E) in E. Abus-

ing the notation we identify T with its image in E, so T is one of the

complements we are after.

Lemma 9.9. The following assertions hold :

(i) E contains exactly five classes of L3(2)-complements;

(ii) suppose that T ′ is a complement such that for X ∈ {A,B,C,D} the

module 〈A(1), B(1), X(3)〉 is completely reducible as T ′-modules, then

T ′ is a conjugate of T ;

(iii) if σ is an automorphism of G(x, y), then for an inner automorphism

α we have T σZ = TαZ.

Proof. Since O2(E) contains three 3-dimensional chief factors and two
1-dimensional ones, E contains at most eight classes of complements by
Lemma 3.2. Furthermore, since the 1-dimensional factors are in N and
O2(E)/N is abelian, E/N contains exactly eight classes of complements.
The preimage in E of an L3(2)-subgroup from E/N might or might not
split over N . Since T normalizes X (3) for X = A, B, C or D, the image
of T under an outer automorphism of X (3)T ∼= 23 : L3(2) is a complement
to O2(E), so E contains at least five classes of complements. On the other
hand it is easy to see using Lemma 3.9 that 〈Y (3), D(3)〉 ∼= 21+6

+ : L3(2)
contains only three classes of L3(2)-complements and one class of SL2(7)-
subgroups (here Y = A, B or C), hence (i) follows. By the above argument
the representatives of the classes of complements are T and its images T ξ

under outer automorphisms ξ ofX (3)T ∼= 23 : L3(2), where ξ will be denoted
by α, β, γ and δ for X = A, B, C and D, respectively. Now it is easy
to deduce from Lemma 3.12 that T ξ acts indecomposably on 〈D(3), A(1)〉,
〈D(3), B(1)〉, 〈D(3), C(1)〉 and 〈A(3), A(1)〉 for ξ = α, β, γ and δ, respectively.
Hence (ii) follows. By Lemma 9.7 σ normalizes Z = AZ ∩BZ ∩CZ and so
it acts on E, now by (ii) σ preserves the class of T in E, so (iii) follows.

Lemma 9.10. The following assertions hold :
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(i) as a T -module CZ involves the indecomposable extension of the dual

natural module by the natural module;

(ii) if σ is an automorphism of G(x, y), then V σ ∈ {V = BZ,AZ}.

Proof. By Lemma 6.1 (e) C = CZ as a module for the complement
K ∼= L4(2) to A = O2(H(w̄)) inH(w̄) is an indecomposable extension of the
exterior square of the natural module by the natural module. This extension
is unique by Lemma 8.1 and it is a quotient of the GF (2)-permutation
module of K on the set of non-zero vectors in the natural module. Since T
is a Levi complement in K (i) can be checked by direct calculation (dualize
Lemma 8.4 (iv)). By Lemma 9.7 V σ ∈ {AZ,BZ,CZ}. Clearly the action of
T on V is isomorphic to the action of T σ on V σ. Since Z = AZ ∩BZ∩CZ,
by Lemma 9.9 (iii) the actions of T and T σ in V σ are isomorphic. Finally,
the action of T on V is completely reducible by Lemma 9.4 while by (i) on
CZ it is not. Hence (ii) follows.

By Lemma 6.4 Out Ḡ(x̄, ȳ) is elementary abelian of order 22 generated

by the automorphism τ0 and τ1 defined in the paragraph after the proof

of Lemma 6.4. Each of these two automorphisms normalizes G(x, y) and

we denote by σ0 and σ1 the automorphisms of G(x, y) induced by τ0 and

τ1, respectively. A further automorphism of G(x, y) can be constructed as

follows. By Lemma 9.5 (iii) Vz := Z(O2(G(x, y)) is a natural module for T .

Let σ2 be an automorphism of G(x, y) which centralizes O2(G(x, y)) and

induces an outer automorphism of VzT ∼= 23 : L3(2) (it must be clear that

σ2 is indeed an automorphism).

Lemma 9.11. OutG(x, y) is elementary abelian of order 23 generated

by the images of σ0, σ1 and σ2.

Proof. We have G(x, y) = ZABDT , where T is the Levi complements,
D = O2(K) the dual natural module for T , V = BZ and Z is the direct
sum of the natural and the dual natural T -modules. Let σ be an automor-
phism of G(x, y). By Lemma 9.10 (ii) and since τ0 maps BZ onto AZ, by
multiplying σ by σ0 we can assume that σ normalizes each of BZ, AZ and
Z. By Lemma 9.9 (iii) we can adjust σ by inner automorphisms so that
it commutes with the actions of T on V and on AZ. By Lemma 9.4 as
a T -module V is a direct sum of irreducible submodules: Vi, i = 0, 1, 2, 3.
Furthermore among these modules there is only one pair (V0 and V1) of iso-
morphic ones and V0 is contained in Z. Let V1/2 be the third T -submodule
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in V isomorphic to the natural module (the diagonal of V0 and V0). Then
there is a unique linear transformation λ which commutes with the action
of T and stabilizes Z, in particular λ maps V1 onto V1/2. But in fact CH(T )
is of order (at least) 2 since it contains the element r as in Lemma 9.5 and
hence r induces the above transformation λ. So, by multiplying (if neces-
sary) σ by λ (which is inner), we achieve the trivial action of σ on both
V = BZ and AZ.

Now let us consider the subgroup I = ZDT ∼= 26 : 23 : L3(2). By
the construction this is an index 15 subgroup of the semidirect product of
K ∼= L4(2) and Z which the the exterior square of the natural module for
K. So it is easy to observe that I is exactly the group from Lemma 6.3. By
that lemma the stabilizer of Z in the outer automorphism group of I is of
order 4. On the other hand it is easy to see that σ0 centralizes I while σ1

and σ2 induce different outer automorphism of I. Thus in order to complete
the proof it is sufficient to show that with σ adjusted as above Iσ = I. This
is true, since Zσ = Z, T σZ = TZ and, finally, D is the dual natural module
of T and every chief such factor of G(x, y) from ZAB is contained in Z.
So the proof is complete in view of an easy observation that the images of
σ0, σ1 and σ2 indeed generate an elementary abelian subgroup of order 8
in OutG(x, y).

Now we are well prepared to prove the main result of the section.

Proposition 9.12. Let A = {G(x), G{x, y}} be the amalgam associ-

ated with a locally projective action which corresponds to case (v) in Proposi-

tion 4.1. Let I = InnG(x, y) and σ be the automorphism of G(x, y) induced

by t ∈ G{x, y} \G(x, y). Then one of the following holds:

(i) σ ∈ Iσ1 and A ∼= A
(4)
4

∼= A(J4,Γ(G(J4));

(ii) σ ∈ Iσ1σ2 and A ∼= A
(5)
4 .

Proof. By Lemma 9.11 there are eight possibilities for the image of σ
in OutG(x, y). Thus we may (and will) assume that σ = σα

0 σ
β
1σ

γ
2 , where

α, β, γ ∈ {0, 1}. Since A must be simple, σ should not normalize subgroups
in G(x, y) normal in G(x).

Remark. Since σ2 acts trivially on O2(G(x, y)), a subgroup in O2(G(x,
y)) is normalized by an automorphism δ if and only if it is normalized by
δσ2.
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Clearly σ2 and the identity automorphism must excluded. By the con-
struction σ0σ1 normalizes V , hence it also must be excluded together with
σ0σ1σ2.

We claim that σ0 normalizes CV (R)R = G2(x). This can be checked
directly but also follows from the following argument. Let Ḡ ∼= O+

10(2) acts
on the corresponding dual polar graph Γ̄ = D+(10, 2). Then an element
t̄ ∈ Ḡ{x̄, ȳ} \ Ḡ(x̄, ȳ) induces on Ḡ(x̄, ȳ) the automorphism τ0 and hence
on G(x, y) it induces σ0. On the other hand, G(x) is the stabilizer of a
geometric subgraph Σ̄[4] and the latter subgraph is also stabilized by t̄.

Hence t̄ normalizes the vertex-wise stabilizer Ḡ
[4]
− of Σ̄[4] in Ḡ which is an

elementary abelian subgroup of order 28, normal in G(x). By the order

consideration, or otherwise it is clear that Ḡ
[4]
− = CV (R)R. By the above

remark the latter subgroup is also normalized by σ0σ2.

Since both A
(1)
5 and A

(4)
4 have J4 as their faithful completions, it is by

the construction that the automorphism σ1 is realized in the latter amal-
gam. By the above remark σ1σ2 does not normalize subgroups in G(x, y)
normal in G(x) and by Lemma 4.3 σ1 and σ1σ2 lead to non-isomorphic
amalgam. Finally it is clear that the squares of σ1 and σ1σ2 induce the
trivial automorphism. Since the centre of G(x, y) is trivial, t2 must be the
identity, which completes the proof.

A completion of A
(5)
4 in A256 which is constrained at level 2 was con-

structed in [IP04].

§10. BM-type amalgam

Here we study the last remaining case (vi) in Proposition 4.1: n = 5,

G1(x)/G2(x) ∼= U [3]; G2(x)/G3(x) ∼= U [2], G3(x)/G4(x) ∼= U , G4(x) ∼= U [4].

We show that in this case the amalgam A is isomorphic to the one associated

with the action of the Baby Monster sporadic simple group BM on the

derived graph of its Petersen type geometry of rank 5.

The flavour of our treatment of this case differ from that of the other

cases. One of the reasons for this is the complexity of the structure of the

vertex stabilizer. An information on certain ‘sections’ of G(x) was recorded

in [Tr03a] but it is still not clear how many isomorphism types fit into the

picture.

Instead of identifying the vertex stabilizer, we use ideas from the char-

acterization of the amalgams determined by the locally projective actions

of type (2, q) which are (s+ 1)-transitive for s ≥ 3 (cf. [W79] and [DS85]).
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On the final step of that characterization it was shown that the underlying

tree possesses a folding onto a generalized s-gon and the folding commutes

with the action of the group (the (s + 1)-arc-transitive generalized s-gons

were classified long before that).

To implement this strategy in full, one would show that in the con-

sidered situation the tree possesses a folding onto the derived graph of

a P -geometry, commuting with the action of the group and then apply

the classification of the flag-transitive P -geometries achieved in [Iv99] and

[IS02]. Right now we don’t know how to accomplish this. Instead, using in-

duction we show that every proper geometric subgraph in the tree possesses

such a a folding which commutes with the action of its stabilizer in G. This

supplies us with an amalgam which ‘looks like’ the amalgam of maximal

parabolics associated with a flag-transitive action on a P -geometry. Finally,

extending the methods developed in [IS02] we show that the amalgam is

unique up to isomorphism and therefore indeed comes from a P -geometry

of rank 5.

We should emphasize that in this case an independent identification of

the structure of the vertex stabilizer (which is a very interesting problem)

is still missing. In this respect our approach is rather conceptual (according

to [B84] ‘one proof is said to be more conceptual than another if it gives

less information about the objects being studied’).

10.1. Geometric subgraphs

Let Γ be a graph and G be a group acting on Γ locally projectively and

corresponding to case (vi) in Proposition 4.1 (in particular Γ is of valency

31). We adopt notation from Section 2. We assume that Γ contains a

complete family of geometric subgraphs (which is always true when Γ is a

tree). Let

{x} ⊂ {x, y} ⊂ Σ[2] ⊂ Σ[3] ⊂ Σ[4]

be a maximal flag in the geometry G associated with the action of G on

Γ, where Σ[i] is a geometric subgraph of valency 2i − 1 for 2 ≤ i ≤ 4. If

∆[i] = Σ[i](x), then

{y} ⊂ ∆[2] ⊂ ∆[3] ⊂ ∆[4]

is a maximal flag in the projective space structure Πx on Γ(x), preserved

by G(x). Let

{G[0] = G(x), G[1] = G{x, y}, G[2], G[3], G[4]}
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be the amalgam of maximal parabolics associated with the action of G on G,

where G[i] is the (global) stabilizer of Σ[i] in G (recall that the vertex-wise

stabilizer of Σ[i] is denoted by G
[i]
− ). Let

A[i] = {G[i](x)/G
[i]
− , G

[i]{x, y}/G
[i]
− }

be the amalgam associated with the action of G[i] on Σ[i].

Lemma 10.1. The following assertions hold :

(i) A[4] ∼= A
(3)
4

∼= A(Co2,Γ(G(Co2));

(ii) A[3] ∼= A
(5)
3

∼= A(AutM22,Γ(G(M22))).

(iii) A[2] ∼= {S3 × 2, D8}.

Proof. By Lemma 4.2 in [Tr01] A[4] corresponds to case (iv) in Propo-
sition 4.1 and hence (i) follows from Proposition 8.23. Since G(M22) is the
point residue in G(Co2), (i) implies (ii). Now (iii) is quite clear.

Lemma 10.2. The following assertions hold :

(i) G
[4]
− = G

[4]
0 is of order 223;

(ii) G
[4]
− G1(x)/G1(x) ∼= 24;

(iii) (G
[4]
− ∩ Gi(x))Gi+1(x)/Gi+1(x) ∼= 2ni where ni = 4, 6, 4 and 5 for

i = 1, 2, 3 and 4, respectively ;

(iv) G
[4]
− is non-abelian.

Proof. The group G[4](x) contains G1(x) with G[4](x)/G1(x) ∼= 24 :
L4(2), and by Lemma 10.1 (i) G[4](x) induces on Σ[4] the group 21+4+6 :
L4(2) (compare Table 1), thus we obtain (i) from our main assumption
and the order consideration. Since G[4](x)/G1(x) is the stabilizer of ∆[4] in

L ∼= L5(2) and 24 : L4(2) is not a homomorphic image of G[4](x)/G
[4]
−

∼=

21+4+6 : L4(2) (compare Lemma 8.5 (iii)), (ii) follows. Since U [i](∆[4]) is the
only submodule in U [i] stable under G[4](x), it is easy to deduce (iii) from
Lemma 10.1 (i). Notice that in particular we have G4(x) ≤ G[4](x). Since
CG(x)(G4(x)) = G1(x), in view of (ii), this immediately implies (iv).

Since G
[i]
−/G

[i]
0

∼= Ln−i(2), Lemmas 10.1 (ii), (iii) and 10.2 (i) imply the

following

https://doi.org/10.1017/S0027763000008989 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008989


LOCALLY PROJECTIVE AMALGAMS 81

Lemma 10.3. The following assertions hold :

(i) G
[3]
− /G

[3]
0

∼= S3
∼= L2(2) and |G

[3]
0 | = 232;

(ii) G
[2]
− /G

[2]
0

∼= L3(2) and |G
[2]
0 | = 235;

(iii) G
[4]
− ≤ G

[3]
− and [G

[4]
− : G

[4]
− ∩G

[3]
0 ] = 2.

The pair (G̃, Γ̃) where G̃ ∼= BM and Γ̃ is the derived graph of the P -

geometry of BM satisfies the assumption of this section. The information

on the structure of the parabolics in BM is summarized in the following

lemma (cf. [IS02]).

Lemma 10.4. If G̃ = BM , then

(i) G̃
[4]
− = G̃

[4]
0

∼= 21+22
+ , G̃[4]/G̃

[4]
−

∼= Co2 and C eG[4](G̃
[4]
− ) = Z(G̃

[4]
− ) ∼= 2;

(ii) G̃[3]/G̃
[3]
−

∼= AutM22 and C eG[3](G̃
[3]
− ) = Z(G̃

[3]
− ) = 1;

(iii) G̃[2]/G̃
[2]
−

∼= S5 and C eG[2](G̃
[2]
− ) = Z(G̃

[2]
− ) = 1.

Our nearest goal is to bring the generic example G closer to the model

G̃ ∼= BM by proving the following

Proposition 10.5. The centre of G
[i]
− is trivial for i = 2, 3 and it is

of order 2 for i = 4. The image of G[i] in OutG
[i]
− is isomorphic to

O−
4 (2) ∼= S5, AutM22 and Co2

for i = 2, 3 and 4, respectively.

Keeping in mind that G can well be the universal completion of the

amalgam formed by the vertex and edge stabilizers in G̃, one can say

that Proposition 10.5 is the best possible generalization of Lemma 10.4.

The proof of Proposition 10.5 (to be completed in Subsection 10.4) will be

achieved via identification of the images I [i] of the groups G[i] under their

natural homomorphisms ϕ[i] into OutG
[i]
− for i = 2, 3 and 4.

10.2. The action of G[3] on G
[3]
−

Our crucial tool is the knowledge of the amalgam associated with the

action of G[4] on Σ[4] specified by Lemma 10.1 (i). An important property

of this action is the following (compare Table 1).

https://doi.org/10.1017/S0027763000008989 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008989


82 A. A. IVANOV AND S. V. SHPECTOROV

Lemma 10.6. Suppose that F acts on Λ locally projectively of type

(4, 2) and the amalgam formed by the vertex and edge stabilizers is iso-

morphic to A
(3)
4 = A(Co2,Γ(G(Co2)). Let Θ be a geometric subgraph of

valency 7 in Λ. Then the vertex-wise stabilizer F (Θ) of Θ is elementary

abelian of order 210 and the global stabilizer F [Θ] of Θ induces on F (Θ)
an irreducible action of AutM22 (more specifically F (Θ) is the irreducible

Golay code module for this action). Furthermore, F (Θ) acts faithfully on

the set of vertices adjacent to Θ.

By the definition G
[3]
+ is the element-wise stabilizer in G[3] of the three

geometric subgraphs of valency 15 containing Σ[3]. Since Σ[4] is one of these

three subgraphs G
[3]
+ ≤ G[4]. Furthermore, because of the fact that G

[4]
−

and G
[4]
+ factorize G[4], the action of G

[3]
+ on Σ[4] coincides with that of the

stabilizer of Σ[3] in G[4]. Hence Lemma 10.6 implies the following

Lemma 10.7. Let K = G
[3]
0 ∩ G

[4]
− be the kernel of the action of G

[3]
0

on the vertex-set of Σ[4]. Then the quotient G
[3]
0 /K is elementary abelian of

order 210 and G
[3]
+ induces on this quotient the irreducible action of AutM22

as on its Golay code module.

There are three geometric subgraphs of valency 15 containing Σ[3] and

by Lemma 10.7 on each G
[3]
0 induces an elementary abelian group of order

210. Let us determine the combined action.

Lemma 10.8. Let N be the kernel of the action of G
[3]
0 on the union

of the geometric subgraphs containing Σ[3] and Q = G
[3]
0 /N . Then Q is

elementary abelian of order 220; G[3] induces on Q the group AutM22 × S3

and with respect to this action Q is the tensor product of the 10-dimensional

Golay code module and the natural module of S3
∼= L2(2).

Proof. By Lemmas 10.6 and 10.7 Q is elementary abelian and it acts
faithfully on the set of vertices adjacent to Σ[3]. Consider the action A of
G[3] ∩G(x) on Γ(x). This action is the stabilizer in L5(2) of a 3-subspace
in the natural module, so that

A ∼= 26 : (L3(2) × S3)

and O2(A) is the tensor product of the natural modules for L3(2) and

S3
∼= L2(2) (in particular it is irreducible). Furthermore the action of G

[3]
0
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on Σ[4] coincides with that of O2(A) and it is elementary abelian of order
23. Thus Q acts faithfully on the union of any two geometric subgraphs
of valency 15 containing Σ[3] and the order of Q is at most 220. Since the

action of Q on Σ[4] is an irreducible G
[3]
− -module, it only remains to exclude

the following two possibilities:

(a) Q acts faithfully on Σ[4];

(b) the centralizer in G
[3]
+ of G

[3]
0 /K acts non-trivially on Q.

Suppose (a) holds and observe that a Sylow 3-subgroup of G
[3]
− acts

faithfully on Q. Since AutM22 acts on its Golay code module absolutely
irreducibly, the possibility is excluded. Suppose that (b) holds. Then the

action of G
[3]
+ on Q contains M22×M22 and it is easy to reach a contradiction

using the fact that the action of G
[3]
+ ∩G(x) on Γ(x) coincides with O2,3(A) ∼=

26 : L3(2).

In order to identify the action of G[3] on the subgroup N as in Lemma

10.8 consider a Sylow 3-subgroup T of G
[3]
− . By Frattini argument

G[3] = NG[3](T )G
[3]
− ,

which shows that the image of T in L = G(x)/G1(x) has 3-dimensional

centralizer in a natural module.

Lemma 10.9. The following assertions hold :

(i) CG(x)(T )/T ∼= [214].L3(2);

(ii) |C
G

[3]
0

(T )| = 210;

(iii) C
G

[3]
0

(T ) ≤ N and [N : C
G

[3]
0

(T )] = 22.

Proof. Since the centralizer of T in the natural (or dual natural)
module of L is 3-dimensional, the centralizers of T in U [2] and U [3] are
4-dimensional, so we have (i) by the structure of chief factors of G(x). By
the Frattini argument

CG[3](x)(T )G
[3]
− = G[3](x)

and since O2(G
[3](x))/G

[3]
0

∼= 24, we have (ii). By Lemma 10.8 T acts fixed-
point freely on Q, so (iii) follows.
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Let us locate some characteristic subgroups of G
[3]
0 .

Lemma 10.10. Let C [3], Z [3] and Φ[3] be the commutator subgroup, the

centre and the Frattini subgroup of G
[3]
0 , respectively. Then

(i) G4(x) ≤ N ;

(ii) C [3] ≤ N ;

(iii) Z [3] ≤ N and [N : Z [3]] ≥ 23;

(iv) Φ[3] ≤ N .

Proof. We follow notation introduced in Lemma 10.8. Since G[3]∩G(x)
does not stabilize hyperplanes in the dual natural module G4(x) of L,

G4(x) is contained in G
[3]
0 by Lemma 10.3 (iii). Consider the action of

A = 26 : (S3×L3(2)) on G4(x). Since A is the stabilizer in L of a 3-subspace
in the natural module, TG1(x)/G1(x) is a Sylow 3-subgroup of O2,3(A).
Furthermore, G4(x) = W1 ⊕W2, where W1 = CG4(x)(T ) is 3-dimensional,
W2 = [G4(x), T ] is 2-dimensional and also W2 = [O2(A), G4(x)]. By
Lemma 10.9 (ii) W1 ≤ N . Since Q is abelian and

G
[3]
0 G1(x)/G1(x) = O2(A),

W2 ≤ N as well and (i) follows. Since Q is elementary abelian and G[3] acts
on Q irreducibly (ii) to (iv) follow from (i).

LetX be the image ofG[3] in the outer automorphism group ofN . Since

every 2′-automorphism of the 2-group G
[3]
0 acts faithfully on the Frattini

factor, by Lemmas 10.8 and 10.10 (iii) X contains a normal subgroup Y

such that

X/Y ∼= AutM22 × S3.

Lemma 10.11. The group N contains exactly two chief factors of G[3].

One of the factors is a 10-dimensional irreducible module of AutM22 and

the other one is a 2-dimensional natural module of L2(2) ∼= S3.

Proof. Recall that |N | = 212. By [Ja73] an irreducible faithful GF (2)-
representation of AutM22 of dimension less than or equal to 12 is 10-
dimensional representation on the Golay code module or on the Todd mod-
ule. Furthermore these modules are absolutely irreducible. This implies the
statement.
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We follow notations introduced in Lemma 10.10.

Lemma 10.12. The following assertions hold :

(i) Z [3] is of order 22 and G
[3]
− /G

[3]
0

∼= S3 acts faithfully on Z [3], particu-

larly Z(G
[3]
− ) is trivial ;

(ii) N is elementary abelian;

(iii) C [3] = Φ[3] = N .

Proof. The assertion (i) follows from Lemmas 10.10 (iii) and 10.11.
By (i) and Lemma 10.11 G[3] induces on N/Z [3] an irreducible action of
AutM22 on the Golay code Module or on the Todd module (which are
absolutely irreducible). None of these two modules is self-dual (they are

dual to each other), which gives (ii). By (i) G
[3]
0 induces a non-trivial action

on N and since G[3] acts irreducibly on Q = G
[3]
0 /N and N is abelian, the

action is isomorphic to Q. By (ii) and the order reason this action coincides
with that of O2(J) where

J ∼= 220 : (S3 × L10(2))

is the stabilizer of Z [3] in the general linear group L12(2) of N . This imme-
diately gives (iii).

As a consequence of the proof of Lemma 10.12 we obtain the following.

Lemma 10.13. The action induced by G
[3]
0 on N is isomorphic to Q

and it is generated by the transvections whose axis contain Z [3] and whose

centre are contained in Z [3]. In particular the module in Lemma 10.11 is

the Todd module for AutM22.

Next we discuss automorphisms of G
[3]
− trivial on G

[3]
0 .

Lemma 10.14. Let Y = C
Aut G

[3]
−

(G
[3]
0 ) and X be the group of inner

automorphisms of G
[3]
− induced by Z [3]. Then Y = X.

Proof. Since a non-identity element of Z [3] is in the centre of G
[3]
0 , but

not in the centre of G
[3]
− , X ∼= 22 is a subgroup of Y . Let y ∈ Y and T be a

Sylow 3-subgroup in G[3] and suppose that T y 6= T . Since y commutes with
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G
[3]
0 and Z [3] is the centre of G

[3]
0 , TZ [3] = T yZ [3]. Since T acts fixed-point

freely on Z [3], there is x ∈ X, such that T x = T y and trading y by yx,
we can assume that y centralizes T . Then y normalizes M := NN (T ). By
Lemma 10.9 M is of order 211 and by the Frattini argument in view of
Lemma 10.13 M ∩N is elementary abelian of order 210, on which NG[3](T )
induces an action of AutM22 as on the Todd module. Since the action is
irreducible, it is easy to see that the whole M is elementary abelian. Thus

for every τ ∈ M \ N we have 〈T, τ〉 ∼= S3 is a complement to G
[3]
0 in G

[3]
−

containing T and Y/X acts faithfully on the set of such complements. Since

M ∩ Z(G
[2]
0 ) = 1, the action of the complements is in fact trivial. Hence

the result.

As above let I [3] be the image of G[3] in OutG
[3]
− (since the centre of

G
[3]
− is trivial by Lemma 10.12 (i), I [3] = G[3]/G

[3]
− ). The results proved in

this subsection can be summarized as follows.

Proposition 10.15. The group I [3] contains a normal subgroup Y [3],

such that

(i) every element of Y [3] is the image of an automorphism of G
[3]
− which

centralizes both N and Q but acts non-trivially on G
[3]
0 ;

(ii) is a 2-group;

(iii) I [3]/Y [3] ∼= AutM22.

Proof. By Lemma 10.14 every element of I [3] is the image of an auto-

morphism acting non-trivially on G
[3]
0 . By Lemma 10.11 the kernel of the

action on Q contains the kernel of the action on N and the image in I [3] of
the latter action is AutM22. Since (ii) is by Lemma 10.10 (iv), the result
follows.

In the next subsection we will show that Y [3] is in fact trivial.

10.3. The action of G[4] on G
[4]
−

First we identify G
[4]
− as a subgroup of G

[3]
− and summarise what we

know so far about the action of G[3] ∩ G[4] on G
[4]
− (we assume that the

hypothesis of Lemma 10.14 holds).

Lemma 10.16. The following assertions hold :

(i) |G
[4]
− G

[3]
0 /G

[3]
0 | = 2 and Z [4] := CZ[3](G

[4]
− ) is of order 2;
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(ii) N ≤ G
[4]
− ;

(iii) (G
[4]
− ∩ G

[3]
0 )/N is a 10-dimensional submodule in Q invariant under

G
[3]
+ /C

G
[3]
+

(Q) ∼= AutM22;

(iv) G
[4]
− ∩ G

[3]
0 induces on N an action of order 210 generated by the

transvections with the centre Z [4] and with axises containing Z [3];

(v) Z [4] is the centre of G
[4]
− ;

(vi) Z [4] ≤ G4(x).

Proof. (i) follows from Lemmas 10.3 (iii) and 10.12 (i). Since N is

the vertex-wise stabilizer in G
[3]
0 of the geometric subgraphs of valency 15

containing Σ[3], (ii) follows. By Lemma 10.7 Q induces an action of order

210 on Σ[4], so (iii) is by Lemma 10.8. Since G
[3]
− /G

[3]
0

∼= S3 acts faithfully

on the set of subgroups of order 2 in Σ[3] and on the set of G
[3]
+ -invariant

submodules in Q, (iv) follows from Lemma 10.13. Now (v) is immediate
from (i) to (iv) and (vi) is by (v) and Lemma 10.2.

Lemma 10.17. A proper subgroup of G
[4]
− normalized by the action of

G[3] ∩G[4] contains Z [4] and it is one of the following four subgroups:

Z [4], Z [3], N and G
[4]
− ∩G

[3]
0 ,

whose orders are 2, 22, 212 and 222, respectively.

Proof. This follows from Lemma 10.15 and Proposition 10.14.

Lemma 10.18. The following assertions hold :

(i) G
[4]
− /Z

[4] is an elementary abelian 2-group on which G[4] acts irre-

ducibly ;

(ii) G
[4]
−

∼= 21+22
+ .

Proof. Let P be a proper subgroup in G
[4]
− normalized by G[4]. Then

P is one of the four subgroups in Lemma 10.16, in particular P contains
Z [4]. On the other hand, P must be normalized by G(x) ∩ G[4] and by

Lemma 10.2 (iii) the latter has exactly six chief factors inside G
[4]
− , four

of them are 4-dimensional, one 6-dimensional and one 1-dimensional. By
Lemma 10.15 (v) the latter factor is in Z [4] and by above it must be in P .
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Then the non-existence of P follows already from the order consideration.

Thus there is a unique chief factor of G[4] inside G
[4]
− /Z

[4], which gives (i)

and the fact that G
[4]
− is extraspecial. Since N is an elementary abelian

subgroup in G
[4]
− or order 212, (ii) follows.

The subgroup Z [3] is elementary abelian subgroup of order 22 in G
[4]
−

which contains the centre of G
[4]
− and G

[4]
− ∩G

[3]
0 coincides with C

G
[4]
−

(Z [4])

and also with C
G

[4]
−

(Za), where Za is a subgroup of order 2 in Z [3] other

than Z [4]. Then

E := (G[4] ∩G
[3]
0 )/Za

is an extraspecial group of type 21+20
+ , whose outer automorphism group F

is isomorphic to O+
20(2). Let us determine the image B of G[3] ∩G[4] in F .

By Lemmas 10.15 and 10.16 (iv) B contains a normal 2-subgroup Y , such

that

B̄ := B/Y ∼= 210.AutM22

and O2(B̄) is the Golay code module for B̄/O2(B̄). On the other hand,

N/Za is a maximal abelian subgroup (of order 211) in E. Let C be the

stabilizer of N/Za in F . Then, since W := N/Z [3] is a maximal totally

singular subspace in the natural module E/Z [4] of F , C is the semidirect

product of the exterior square W [2] of W and the linear group L10(2) of W

(compare Section 6). Thus O2(B) (which is an extension of the unknown

2-group Y by the Golay code module) is a subspace in W [2] invariant under

AutM22 ≤ L10(2).

Lemma 10.19. Let W be the 10-dimensional Todd module for AutM22.

Then W [2] possesses a unique composition series

0 < W
[2]
1 < W

[2]
2 < W [2],

where W
[2]
1 is the Golay code module, dim(W

[2]
2 /W

[2]
1 ) = 1 and dim(W [2]/

W
[2]
2 ) = 34.

Proof. The composition factors of W [2] can be calculated from [Ja73]
by decomposing the Brauer character. The exact submodule structure of
W [2] was established using GAP [GAP] by Dima Pasechnik, to whom we
are very thankful.
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By Lemma 10.19 and the paragraph before that lemma we have the

following.

Corollary 10.20. The image B of G[3]∩G[4] in OutE is isomorphic

to 210.AutM22 (an extension of the Golay code module by AutM22).

Notice that O2(B) is the image of G
[3]
0 in F = OutE (compare Lemma

10.16 (iii)). Now we are ready to show that the subgroup Y [3] in Proposi-

tion 10.15 is trivial.

Proposition 10.21. The image I [3] of G[3] in OutG
[3]
− is isomorphic

to AutM22.

Proof. Let y ∈ G[3] and suppose that the automorphism of G
[3]
− induced

by y maps onto the subgroup Y [3] in OutG
[3]
− as in Proposition 10.15. Then

y acts trivially on both N and Q and by the proof of Lemma 10.14 we
can adjust y by the inner automorphism induced by an element of Z [3],
so that y centralizes T . By Lemma 10.20 we can further adjust y to act

trivially on (G[4] ∩G
[3]
0 )/Za and since there are two choices for Za, we can

adjust y to centralize the whole G
[4]
− ∩G

[3]
0 . Finally, instead of Σ[4] we could

take another geometric subgraph of valency 15 containing Σ[3] (which is
the image of Σ[4] under some t ∈ T#). Since y commutes with T , it must

centralize (G
[4]
− )t ∩G

[3]
0 as well and hence it centralizes the whole

G
[3]
0 = 〈G

[4]
− ∩G

[3]
0 , (G

[4]
− )t ∩G

[3]
0 〉

and the image of y in OutG
[3]
− is trivial.

Corollary 10.22. The image I [4] of G[4] on OutG
[4]
− is isomorphic

to Co2.

Proof. The homomorphism

ϕ[4] : G[4] −→ OutG
[4]
−

induces a faithful completion of the amalgam

A[4] ∼= A
(3)
4

∼= A(Co2,Γ(G(Co2))

and by Lemma 10.20 and Proposition 10.21 the image of G[3] ∩G[4] under
ϕ[4] is 210.AutM22. Now the result is by Proposition 2.4.
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10.4. Proof of Proposition 10.5

The structures of Z(G
[3]
− ) and Z(G

[4]
− ) were established in Lemmas 10.12

(i) and 10.16 (v), while the images of G[3] and G[4] in OutG
[3]
− and OutG

[4]
−

were specified in Proposition 10.21 and Corollary 10.22, respectively. So in

order to complete the proof of Proposition 10.5 it only remains to consider

the case i = 2.

Lemma 10.23. The following assertions hold :

(i) the centre Z [2] of G
[2]
0 is elementary abelian of order 23 contained in

G4(x);

(ii) G
[2]
− /G

[2]
0

∼= L3(2) acts faithfully on Z [2] and Z(G
[2]
− ) = 1.

Proof. Let S = {iΣ[4] | 1 ≤ i ≤ 15} be the set of geometric subgraphs
of valency 15 containing Σ[2]. Then S carries the structure of the point-set

of the projective plane of order 2. The vertex-wise stabilizer iG
[4]
−

∼= 21+22
+

of iΣ[4] (cf. Lemma 10.18) is contained in G
[2]
− . If iZ [4] = Z(iG

[4]
− ), then by

Lemma 10.16 (vi) iZ [4] is a 1-subspace in G4(x) ∼= U∗, therefore

Z [2] := 〈iZ [4] | 1 ≤ i ≤ 15〉

is a 3-subspace in G4(x) and G
[2]
0 is contained in C

G
[2]
−

(Z [2]). Since G
[4]
− is

extraspecial,
Z(C

G
[4]
−

(Z [2])) = Z [2]

and (i) follows. Now (ii) is immediate from the action of G
[2]
− G1(x)/G1(x)

on G4(x) ∼= U∗.

For i = 2, 3 and 4 put

Ḡ[i] = G[i]/CG[i](G
[i]
− )

and let ϕ̄[i] be the natural homomorphism of G[i] onto Ḡ[i], so that ϕ[i] is the

composition of ϕ̄[i] together with the factoring out the inner automorphisms

of G
[i]
− . Then the results, established in Subsections 10.2 and 10.3 imply

that

Ḡ[3] ∼= 22+10+20.(AutM22 × S3) and Ḡ[4] ∼= 222.Co2.

Lemma 10.24. For 2 ≤ i < j ≤ 4 let K
[i]
j and K

[j]
i be the kernels of

the restrictions to G[2] ∩G[3] of ϕ̄[i] and ϕ̄[j], respectively. Then
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(i) K
[2]
3 = K

[3]
2 ;

(ii) [K
[4]
i : K

[i]
4 ] = 2 and K

[4]
i = K

[i]
4 Z

[4].

Proof. Since G
[i]
− ≤ G

[j]
− , it is clear that K

[i]
j ≤ K

[j]
i . By the paragraph

before the lemma we have

J := ϕ̄[3](G[2] ∩G[3]) ∼= 22+10+20.(25 : S5 × S3)

(here 25 : S5 is the stabilizer in AutM22 of an element of the right-most type
in the Petersen geometry G(M22)). Furthermore, if S ∼= 22+10+20.(25 × S3)
is the largest solvable normal subgroup in J then

S = ϕ̄[3](G
[2]
− ∩G[3]) ∼= G

[2]
− ∩G[3].

Therefore K
[3]
2 and G

[2]
− ∩G[3] are two normal subgroups in G[2] ∩G[3] with

trivial intersection. Hence

K
[3]
2 ≤ CG[2]∩G[3](G

[2]
− ∩G[3]).

In order to show that the latter coincides withK
[2]
3 is it sufficient to establish

that every automorphism of G[2] which centralizes G
[2]
− ∩ G[3], centralizes

the whole G
[2]
− . Let y ∈ CG[3](G

[2]
− ∩ G[3]). Then y commutes with G

[2]
0 .

Let J be a Sylow 7-subgroup in G
[2]
− . Since J and G

[2]
− ∩G[3] generate G

[2]
− ,

all we have to show is that y centralizes J . Let V = O2(N
G

[2]
−

(J)) ∼= F 3
7 .

Then by Frattini argument we can assume that a Sylow 3-subgroup S in V

is contained in G
[2]
− ∩ G[3]. Since y commutes with G

[2]
0 we have V y = V z

for some z ∈ Z [4] = Z(G
[2]
0 ) (the latter equality is by Lemma 10.23). Since

y commutes with S, z is contained in CZ[4](S), which is of order 2. Since

instead of S we can take a subgroup of order 3 in G
[2]
− ∩ G[3] which does

not centralize z (clearly such a subgroup exists), y must commute with J ,
hence (i) follows. The assertion (ii) can be proved similarly with the only

difference that the centre Z [4] of G
[4]
− is of order 2.

It is easy to deduce from Lemma 10.23 that the images under ϕ[2] of

the subgroups

G[2] ∩G[3], G[2] ∩G[4] and G[2] ∩G[3] ∩G[4]
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are the same subgroup of OutG
[2]
− , isomorphic to S5. Since G[2] is clearly

generated by its intersections with G[3] and G[4], we have

I [2] := ϕ[2](G[2]) ∼= S5,

which completes the proof of Proposition 10.5.

10.5. The rank 5 amalgam

Now with a group G, whose locally projective action of a graph Γ

corresponds to case (vi) in Proposition 4.1 we associate an amalgam, which

‘resembles’ the amalgam of maximal parabolics associated with the action

of the Baby Monster group on its P -geometry G(BM) (cf. Lemma 10.4).

Since G
[i]
− 6= 1 for 2 ≤ i ≤ 4, Γ contains a complete family of geometric

subgraphs by Lemma 2.2, so we can start with the amalgam

F = {G[i] | 0 ≤ i ≤ 4}

of maximal parabolics associated with the action of G on G(G,Γ) and con-

struct a suitable quotient

F̂ = {Ĝ[i] | 0 ≤ i ≤ 4}

of F . It is quite clear that we should set Ĝ[i] = G[i] for i = 0 and 1 and

Ĝ[i] = Ḡ[i] := G[i]/CG[i](G
[i]
− )

for i = 2 and 3. Since the restrictions of ϕ̄[2] and ϕ̄[3] to G[i]∩G[2] and G[i]∩
G[3], are isomorphisms for i = 0 and 1 and their restrictions to G[2] ∩G[3]

coincide by Lemma 10.24 (i), there is a homomorphism ϕ̂ of the amalgam

E = {G[i] | 0 ≤ i ≤ 3} onto Ê = {Ĝ[i] | 0 ≤ i ≤ 3}. Namely, ϕ̂ is the

identity map when restricted to G[0] ∪G[1], while restricted to G[2] and G[3]

it coincides with ϕ̄[2] and ϕ̄[3], respectively. We adopt the hat convention

for the subgroups contained in E .

Notice that we can not just define Ĝ[4] to be Ḡ[4], since the kernel of

ϕ̄[4] contains Z [4], while Ẑ [4] ∼= Z [2] is of order 2. Instead we define Ĝ[4] to

be the universal completion of the subamalgam

Ĉ = {Ĉ [i] | 0 ≤ i ≤ 3},

in Ê , where C [i] = G[i] ∩G[4], or equivalently Ĉ [i] = C bG[i](Ẑ
[4]).

Lemma 10.25. One of the following two possibilities occurs:
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(i) Ĝ[4] ∼= 21+22
+ .Co2 and the homomorphism ϕ̂ extends to a homomor-

phism of F onto F̂ ;

(ii) Ĝ[4] ∼= Ḡ[4] ∼= 222.Co2 and Ĉ does not possess faithful completions.

Proof. If we set C̄ [i] = Ĉ [i]/Ẑ [4], then C̄ := {C̄ [i] | 0 ≤ i ≤ 3} is
the amalgam formed by the images of the subgroups C [i] in the automor-

phism group of G
[4]
−

∼= 21+22
+ . By Corollary 10.22 these images generate

Ḡ[4] ∼= 222.Co2, so that modulo the group of inner automorphisms (which is
elementary abelian of order 222) they generate the group Co2. Furthermore,

{Ĉ [i]/Ĝ
[4]
− | 0 ≤ i ≤ 3}

is the amalgam of maximal parabolics associated with the action of Co2

on its P -geometry G(Co2). Since the latter geometry is simply connected
(cf. [Iv99]), Ḡ[4] is the universal completion of C̄. Clearly there is a homo-
morphism of Ĉ onto C̄ with kernel Ẑ [4]. Therefore either Ḡ[4] is also the
universal completion of Ĉ and (ii) holds or the universal completion of Ĉ is
faithful and (i) holds.

Lemma 10.26. The amalgam C̄ in the proof of Lemma 10.25 is deter-

mined uniquely up to isomorphism.

Proof. First, Ḡ[4] is determined uniquely up to isomorphism as the

preimage in the automorphism group of G
[4]
−

∼= 21+22
+ of the Co2-subgroup

in O+
22(2)

∼= OutG
[4]
− . Second, C̄ is the preimage in Ḡ[4] of the amalgam of

maximal parabolics of the action of Ḡ[4]/O2(Ḡ
[4]) ∼= Co2 on G(Co2), hence

the result.

In a sense Ĉ is an extension of C̄ over a centre of order 2. If G̃ is the

Baby Monster, then

C̃ = {G̃[i] ∩ G̃[4] | 0 ≤ i ≤ 3}

is such an extension and clearly G̃[4] ∼= 21+22
+ .Co2 is the faithful universal

completion of C̃. We will exclude the possibility (ii) in Lemma 10.25 by

showing that Ĉ is isomorphic to C̃. Of course in order to accomplish this it

is sufficient to prove that Ĉ is determined uniquely up to isomorphism.

Lemma 10.27. Let I = Ĝ
[3]
+ /Ẑ

[3] ∼= 210+2·10.AutM22 and B = Out I.
Then
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(i) I is determined uniquely up to isomorphism;

(ii) I contains three normal elementary abelian subgroups of order 220 and

four classes of complements to O2(I);

(iii) B acts faithfully on the four classes of complements and S3 ≤ B;

(iv) Ĝ[3]/Ẑ [3] is determined uniquely up to isomorphism;

(v) Ĝ
[3]
+ is determined uniquely up to isomorphism;

(vi) Ĝ[3] is determined uniquely up to isomorphism.

Proof. Since I is a uniquely defined section in Ĝ
[3]
+ /Ẑ [4], (i) follows

from Lemma 10.26. By Lemmas 10.8, 10.16, 10.18 I contains exactly three
normal elementary abelian subgroups of order 220, each containing two chef
factors of I, isomorphic to the Golay code module and the Todd module of

I/O2(I) ∼= AutM22. If T ∈ Syl3(Ĝ
[3]
− ), then by Lemmas 10.8, 10.13 we have

F := C bG
[3]
+

(T ) ∼= 210.AutM22 and O2(F ) is the Todd module. Since the

latter has trivial second cohomology (cf. Table VI on p. 167 in [IS02]), F
splits over its O2 and hence so does I. Since the first cohomology is trivial

for the Todd module and 1-dimensional for the Golay code module, Ĝ
[3]
+ /N̂

has four classes of complements. Since every extension by AutM22 of the
Todd module splits, they lead to four classes of complements in I, so we
have (ii).

Let M0
∼= AutM22 be a complement to O2(I) in I and J1, J2, J3

be the normal elementary abelian subgroups of order 220 in I. Then by
the proof of (ii) for k = 1, 2, 3 the subgroup JkM0 contains two classes of
complements to Jk and if Mk is a complement not in the class of M0, then
{M0,M1,M2,M3} is a complete set of representatives of the complements
to O2(I) in I.

Let y be an automorphism of I which stabilizes every class of comple-
ments to O2(I). Then by the above y normalizes Jk for k = 1, 2 and 3
and, adjusted by a suitable inner automorphism, it centralizes M0. Since
Jk contains two irreducible M0-factors which are not isomorphic, y must
centralize Jk, which gives the first assertion in (iii). Since I is isomorphic
to a section in the parabolic subgroup G̃[3] in the Baby Monster, it is clear
that B contains S3, which gives the second assertion in (iii).

Since the centralizer of I in Ĝ[3]/Ẑ [3] is trivial, the latter can be identi-
fied with its image in the automorphism group of I and by (iii) this image
is determined up to conjugation in Aut I, hence (iv) follows.
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Turning to (v), observe that Ĝ
[3]
+ is the elementary abelian group Ẑ [3]

extended by the group I (which is known by (i)) and that Ĝ[3] induces the

outer automorphism groups of both I and Ẑ [3]. In addition, Ĝ
[3]
+ /Ẑ

[4] (whose

isomorphism type is known by Lemma 10.26) is a quotient of Ĝ[3] over a

subgroup of order 2 in Ẑ [3] and Ĝ
[3]
+ /Ẑ

[4] does not split over Ẑ [3]/Ẑ [4]. Let N

be the largest non-split central extension by I = Ĝ
[3]
+ /Ẑ

[3] of an elementary
abelian 2-group E. Let E0 be the kernel of the natural homomorphism of

N onto Ĝ
[3]
+ /Ẑ

[4]. By the above E0 is a hyperplane in E. Let C be the

image of Ĝ[3]/Ẑ [3] in B under the natural homomorphism. Then by (iii) C
is uniquely determined up to conjugation and by the universality property

C acts on E. Consider the images of E0 under this action. Since Ĝ
[3]
+ has

index 2 in its normalizer in Ĝ[3], there are at most three different images.
If F is the intersection of these images, then E/F is of order 22 or 23 and
if F ∗ is the preimage in E of the centralizer in E/F of an element of order
3 in C, then

Ĝ
[3]
+

∼= E/F ∗

and (v) follows.

By Lemma 10.14 (ii) Ĝ[3] is the semidirect product of Ĝ
[3]
+ and R ∼= S3.

The images of R in the automorphism groups of I and Ẑ [3] are determined
up to conjugation. Hence two different images of R in the automorphism

group of Ĝ
[3]
+ (modulo inner automorphisms) differ by automorphisms which

act trivially on O2(Ĝ
[3]
+ ). By (ii) and Frattini argument (notice that a Sylow

3-subgroup of Ĝ
[3]
+ acts fixed-point freely on Ẑ [3]), there is a complement

M ∼= AutM22 to Ĝ
[3]
0 in Ĝ

[3]
+ . Since Ẑ [3]M ∼= 22 × AutM22, the group of

automorphisms of Ĝ
[3]
+ acting trivially on O2(Ĝ

[3]
+ ) is elementary abelian of

order 22 and Ĝ[3] induces on the latter the fixed-point free action of S3.
Since all S3-subgroups in S4 are conjugate, we obtain (vi).

Lemma 10.28. The following assertions hold :

(i) the amalgams Ĉ and C̃ are isomorphic;

(ii) the possibility (i) in Lemma 10.25 holds.

Proof. Let Ŝ be a Sylow 2-subgroup in Ĝ[3]. By Lemma 10.27 (vi) the
isomorphism type of Ŝ is uniquely determined. Furthermore, we can choose
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Ŝ so that for every J ⊂ {0, 1, 2, 3} and

Ĉ[J ] :=
⋂

i∈J

Ĉ[i]

the intersection Ĉ[J ] ∩ Ŝ is a Sylow 2-subgroup of Ĉ[J ]. Now (i) follows from
Gaschütz’ theorem. Since Ĉ is determined uniquely up to isomorphism (ii)
follows by the paragraph before Lemma 10.27.

By Lemmas 10.24, 10.25 and 10.27 the amalgam F̂ is of BM -shape in

terms of [IS02] (in fact we know Ĝ[4] and Ĝ[3] up to isomorphism). By the

main result of Section 11.7 in [IS02] F̂ is isomorphic to the amalgam F̃ of

maximal parabolics associated with the action of BM on the P -geometry

G(BM) which brings us to the final result of this section and of the whole

project.

Proposition 10.29. Let A = {G(x), G{x, y}} be the amalgam asso-

ciated with a locally projective action corresponding to case (vi) in Proposi-

tion 4.1. Then A = A(BM,Γ(G(BM)).
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