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Abstract

Let (M, G) be a pair of groups, in which M is a normal subgroup of G such that G/M and M/Z(M, G)
are of orders p” and p", respectively. In 1998, Ellis proved that the commutator subgroup [M, G| has
order at most p"+2m-1/2,

In the present paper by assuming {[M, G]| = p""*?"~1)/2 we determine the pair (M, G). An upper
bound is obtained for the Schur multiplier of the pair (M, G), which generalizes the work of Green
(1956).
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1. Introduction

Let (M, G) be a pair of groups such that M is a normal subgroup of G and N any
other group. We recall from [5] that a relative central extension of the pair (M, G) isa
group homomorphism o : N — G, together with an action of G on N (denoted by n¥,
foralln € N and g € G), such that the following conditions are satisfied:

(1) o(Ny=M,

(i) onf) =g 'o(n)g,forallg € Gandn € N;

(iii)y n”™ =n;'nn,, foralln,n, € N;

(iv) G acts trivially on kero.
Taking N = M, clearly the inclusion map i : M — G, acting by conjugation, is a
simple example of a relative central extension of the pair (M, G).
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Now for the given relative central extension o, we define G-commutator and G-
central subgroups of N, respectively, as follows

[N,G]={[n,gl=n"'n®|neN,geG),
Z(N,G)={n € N |n® =n, forall g € G}.

In special case 0 = i, [M, G} and Z(M, G) are the commutator subgroup and the
centralizer of G in M, respectively. In this case, we define Z,(M, G) to be the
preimage in M of Z(M/Z(M, G), G/Z(M, G)), or

Z:(M,G) _, ( M G
ZM,G) ~ T\ZWM,G)’ Z(M, G))’

and inductively obtain the upper central series of the pair (M, G).

The pair (M, G) is said to be capable if it admits a relative central extension o
such that kero = Z (N, G) (see also [2]). One can easily see that this gives the usual
notion of a capable group G [2], when the pair (G, G) is capable in the above sense.

We call a pair of finite p-groups (M, G) an extra-special, when Z{(M, G) and
[M, G] are the same subgroups of order p.

Ellis [3] defined the Schur multiplier of the pair (M, G) to be the abelian group
# (M, G) appearing in the following natural exact sequence

Hi(G) »> Hy(G/M) > HM,G) > #(G) D> #(G/M)
— M/[M,G] = (G)™ — (G/M)** - 0,

in which (-, -) and H,(-) are the Schur multiplier and the third homology of a
group with integer coefficients, respectively. He also proved that if the factor groups
G/M and M/Z(M, G) are both finite of orders p™ and p", respectively, then the
commutator subgroup [M, G] is of order at most p""+2"=D/2_ 1In this situation, the
result of Wiegold in [8] is obtained, when m = (0. Now by the above discussion we
state our first result, which generalizes the work of Berkovich [1].

THEOREM A. Let (M, G) be a pair of finite p-groups with G/M and M/Z(M, G)
of orders p™ and p", respectively. If |[M, G| = p"®*>~V/2 then either M/ Z(M, G)
is an elementary abelian p-group or the pair (M/Z(M, G), G/Z(M, G)) is an extra-
special pair of finite p-groups.

Green, in [4], shows that if G is a group of order p”, then its Schur multiplier is
of order at most p"~1/2, The following theorem gives a similar result for the Schur
multiplier of a pair of finite p-groups. Also, under some conditions we characterize
the groups G, when the order of .# (M, G) is either p"+2m—D/2 op prn+2m=b/2=1
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THEOREM B. Let (M, G) be a pair of finite p-groups and N be the complement of
M in G. Assume M and N are of orders p" and p™, respectively, then the following
statements hold:

() |AM,G)| < printim-briz

(ii) if G is abelian, N is elementary abelian, and |.# (M, G)| = p""*t? D72 then
G is elementary abelian;

(iii) if the pair (M, G) is non-capable, and |.# (M, G)| = p""t2m=1D712=1 then
G=1Zp.

2. Proof of theorems

Let (M, G) be a pair of finite p-groups with |G/M| = p™ and |{M/Z (M, G)| = p".
It is easily seen that for any element z € Z,(M, G)\Z(M, G), the commutator
map ¢ : G — [G, z] given by p(x) = [x, z] is an epimorphism. We note that
Ime < {M,GINZ(M,G)and Z(M, G) < kerp = C;(z). Clearly [M, G] < Cg(2),
as [G, z] = G/C;(2). Consider two non-negative integers w1 (z) and v(z) such that

7 i G/[G, 7]
u(z) D — ’
p I[G,z]l, p Z(M/IG, 2], G/IG, z))

Since kergp = Cs(2) 2 {z, Z(M, G)) D Z(M, G) and
2[G,z) € ZM/[G, 2], G/IG, z]),
it follows that
(N w@)<m+n—1 and v@)<m+n-1.
The following lemma shortens the proof of Theorem A.

LEMMA 2.1. (a) Under the above assumptions and notation,

|[Ms G]| < plv(:)(v(z)—l)—m(m—l)l/2+u(:) < pn(n+2m—l)/2,

forall z € Z,(M, G)\Z(M, G).
(b) Suppose for some non-negative integer s, \[M, G]| = p""+2m=D/2=5 then the
following hold:

() |IM/ZM,G),G/ZM,G)]| < p*'. If |[M/Z(M,G),G/Z(M,G)]| =
p*tIk, for some O < k < s + 1, then exp(Z,(M, G)/Z(M, G)) < p**! and u(z) <
m+n—1—s+k.

(i) Ifexp(Z,(M,G)/Z(M,G)) > p* thenm +n <s/(k — 1) +k/2.
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PROOF. (a) Clearly |G/Z(M, G)| = p"*™. By [9, Lemma 1], the inequality holds
form =0andn > 1. The case m = 1 and n = O is impossible, and hence one may
assume that n + m > 1 and m # 0. Clearly for each z € Z,(M, G)\Z(M, G), it
implies that 1 < |[G, z]| < |{[M, G]|, so using induction on m + n, we obtain

[ @all -l @a

< (v(:)(V(:)—l)vm(m—l}/Z‘

[G.2]" [G,z1]| | [G.z] |~
Thus
‘[M G]| — ‘[M’ G]\ |[G, Z]| < p{v(z)(v(z)fl)—m(m—l)/2+u(z)
b [G’ Z] —_—
< p{(m+n—l)(m+n—2)-—m(m—l)l/2+(m+n—1)
— pn(n+2m—l)/2.

{(b) By the assumptions and part (a), we have

pn(n+2m—l)/2—s plv(z)(v(z)— y—m(m—1)}/24u(2)

=
< {m+n—1)Y(m+n=2)—m(m—1)}/24u(z)
—_ A

p

and so u(z) > m+n —1—s. Now, since [M, G]Z(M, G) is a subgroup of C(z),
it implies that

[G:[M,G]1Z(M,G)] =[G : Cs(2)] = pH@ > pmti—
The last inequality implies that

‘[ M G ]‘<|G/Z(M,G)I_
Z(M,G)' Z(M, G) B

pm+n—14x

Now, assuming that |[M/Z(M, G), G/Z(M, G)| = p**'~*, for some non-negative
integer k, then

p"® < [G : [M,G]Z(M, G)]

— [ G . l: M G ]] — pm+n—l—x+k
ZM,G) | ZM,G)’ Z(M,G) '

and hence u(z) <m+n—1—s+k.
If exp(Z,(M, G)/Z(M, G)) > p**!, then there exists some z € Z,(M, G) such
that z#*"' ¢ Z(M, G). Thus

Z[G,Z]€Z< G ) Z(M, G)

G, 211G, 2} (G 21’

https://doi.org/10.1017/51446788700014580 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700014580

{51 Commutator subgroup and Schur multiplier 5

[z( MG ):Z(M,G)]zpkﬂ'
G, 2] [G,z] (G, Z]

_ [G/IG.z]: Z(M, G)/IG,z]] P
[Z(M/IG,2), G/IG.2]) : Z(M, G)/IG,z]] — p**?

which implies that

Hence

m+n—k—2

v(z) =p
b

p

and so v(z) < m + n — k — 2. Hence using the hypothesis and part (a) we must have

nn+2m—1D)/2~s<[m+n—k—-2Ym+n—k—3)—m(m—1)}/2
+m+n—s—1+k
or
20k + 1)(m +n) < k* + Tk + 4.

Therefore we have m +n < k + 2 and so

ZZ(M, G)) < ‘ M i < l G ‘ < pmtn k+2
=< = =p=p "
Z(M, G) Z(M, G) Z(M,G)

pk+2 < CXp(

This gives M = G, which is a contradiction and proves (i).

Now, to prove (ii) we use the assumption that there exists z € Z,(M, G)\Z(M, G)
such that |zZ(M, G)| > p*. Then |Cs(2)| > l{z, Z(M, G))| > p*|Z(M, G)|, and
hence |{G, z]| < p™*"~* which implies u(z) < m + n — k. With a similar argument
to (i), we obtain v(z) < m + n — k. By part (a) we have

nn+2m—DR2-s<[m+n—k(m+n—k—-1)—m(@m—1)1/2
+m+n—k,

andsom +n <s/(k—1)+k/2. |

Now we are ready to prove Theorem A.

PROOF OF THEOREM A. By applying Lemma 2.1 (b) in the case s = 0, we have

M G
] 5 p'
‘[Z(M,G) Z(M,G)]I
Now consider two cases:

First assume M/Z(M,G) = Z(M/Z(M, G), G/Z(M, G)). Then M/Z(M, G) is
abelian and by Lemma 2.1 (a), exp(M/Z (M, G)) < p*. If the latter exponent is P,
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then by Lemma 2.1 (b), m + n < 1 in which case M/Z(M, G) is of order at most p.
When the exponent is p, then the factor group is elementary abelian p-group.
In the second case, assume

Z( M G ) M
ZM,G)’ Z(M, G) c Z(M, G)’
Then by Lemma 2.1 (b),

exp(Z:(M, G)/Z(M, G)) = p.

Let Z,(M, G)/Z(M, G) have two distinct subgroups of orders p. Then there exist
elements vy, 2o € Z2:(M, G)\Z(M, G) such that
{(yZ(M,G)| = {zZ(M,G))|=p
and
(Y0Z(M, G)) N (20Z(M, G)) = (Z(M, G)).

By Lemma 2.1 (b), for each x; € Z,(M, G)\Z(M, G), we have u(xq) =m +n — 1.
Hence G/ Cg(yo) and G /Cg(zo) are abelian groups of orders p™*"~!, and so

[M, G] < Cs(y) N Cglzo) = Z(M, G),
which implies that

1[ M G .
Z(M,G)’ Z(M, G)] B

This is a contradiction and hence Z,(M, G)/Z(M, G) is an abelain group of order p.
On the other hand, {M/Z(M, G), G/Z(M, G)]is asubgroup of Z,(M, G)/Z(M, G)
of order p, and so we must have

ZZ(M,G)_[ M G ]
ZM,G) | ZM,G)’ Z(M,G) |’

Thus (M/Z(M, G), G/Z(M, G)) is an extra-special pair of p-groups. 0

Using Theorem A, we obtain the following corollary which is of interest in its own
right.

COROLLARY 2.2. Let (M, G) be a pair of finite p-groups with |G/M| = p™,
IM/Z(M, G)| = p", and |[M, G]| = p""+™=D/2=s for some s > 0. If there is a
20€ Z,(M,G)\Z(M, G) such that u(zg) =m+n—1—s, then v(zg) =m+n — 1

and
M/[Gv ZO]

Z(M/IG, 2], G/IG, 2))
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is elementary abelian p-group of order p™*"~', or

( M/1G, 2] G/1G, 2] )
Z(M/[G, 21, G/IG, ]) " Z(M/I[G, z), G/IG, z))

is an extra-special pair of p-groups.
PROOF. Using equation (1) and Lemma 2.1 (a), we have

nin+2m—1)/2 —s5 < [w(z)(w(zp) ~ 1) —m(m — 1)]/2 + u(zo)
<[m+n—1Dm+n—2)—m@m—1)]/2
+m+n—1-s,

which implies that v(zg) =m +n — 1.

Hence
l M/[GvZO] — pn_l
Z(M/IG, z], G/1G, zo]) ’
and also
l[ M G :H _ '[M. G] — pn(n+2m—1)/2—.s‘m-n+5+l — p(nAl)(n+2mA2)/2'
[G, Zo] [G, Zo] [G. Zo]
Then the result follows from Theorem A. |

To prove Theorem B, we recall the concept of covering pair from {3].

The relative central extension o : M* — G is called a covering pair of the pair of
finite groups (M, G) when the following conditions are satisfied:

(i) keroc C Z(M*, GYN[M*, G];

(ii) kero = . # (M, G);

(iii) M = M*/kero.
If o : G* — G is a covering pair of the pair (G, G), then G* is the usual covering
group of G, which was introduced by Schur [7].

In {3], Ellis proved that any finite pair of groups admits a covering pair. The first
two authors, under certain conditions in [6], showed the existence of a covering pair
for an arbitrary pair of groups.

PROOF OF THEOREM B. Let ¢ : M* — G together with an action of G on M* be
a covering pair of (M, G). We define a homomorphism ¥ : N — Aut(M*) given by
Y(n) =y, foralln € N, where ¢, : M* - M*, m — m”" is an automorphism, in
which m" is induced by the action of G on M*. We form the semidirect product of
M* by N and denote it by H = M*N. Then one may easily check that the subgroup
[M*, G] and Z(M*, G) are contained in [M*, H] and Z(M*, H), respectively. If
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8 : H — G is the mapping given by §(mn) = o(m)n, forallm € M*andn € N,
then it is easily seen that § is an epimorphism with ker § = kero.
(i) Since |H/M*| = p™ and |IM*/Z(M*, H)| < p", then by Lemma 2.1 (a),

| # (M, G)| < |[M*, H]| < p"+m-V/2,
(i) By [1, Theorem 2.1], |.# (N)| = p™m=D/2_ Since the exact sequence
l>M—>G—> N1

splits, it follows easily that #(G) = # (M, G) & #(N). Hence |.#(G)] =
prtmetm=1/2 and so again by [1, Theorem 2.1}, G is an elementary abelian p-group.
(iii) By assumption, ker o is a proper subgroup of Z(M*, H), so

|M*/Z(M*, H)| < p"".

Hence by Lemma 2.1 (a), {[[M*, H]| < p® Y@m+n-2/2 On the other hand, we have
MM, G) =kerog < [M*, H). Therefore

nCm+n—-10/72-1<mn-1)C2m+n-2)/2

and so m +n < 2. But since the case m +n = 1 is impossible, it implies m +n = 2.
In the latter case, we must have n = 2 and m = 0. Now, if G = Z, @ Z,, then
|.# (M, G)| = |.#(G)| = p, which is a contradiction. Hence G = Z,., which
completes the proof. O
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