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Altered resting-state functional connectivity in
emotion-processing brain regions in adults who
were born very preterm
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Background. Very preterm birth (VPT; <32 weeks of gestation) has been associated with impairments in emotion regu-
lation, social competence and communicative skills. However, the neuroanatomical mechanisms underlying such impair-
ments have not been systematically studied. Here we investigated the functional integrity of the amygdala connectivity
network in relation to the ability to recognize emotions from facial expressions in VPT adults.

Method. Thirty-six VPT-born adults and 38 age-matched controls were scanned at rest in a 3-T MRI scanner. Resting-
state functional connectivity (rs-fc) was assessed with SPM8. A seed-based analysis focusing on three amygdalar sub-
regions (centro-medial/latero-basal/superficial) was performed. Participants’ ability to recognize emotions was assessed
using dynamic stimuli of human faces expressing six emotions at different intensities with the Emotion Recognition
Task (ERT).

Results. VPT individuals compared to controls showed reduced rs-fc between the superficial subregion of the left amyg-
dala, and the right posterior cingulate cortex (p=0.017) and the left precuneus (p =0.002). The VPT group further showed
elevated rs-fc between the left superficial amygdala and the superior temporal sulcus (p = 0.008). Performance on the ERT
showed that the VPT group was less able than controls to recognize anger at low levels of intensity. Anger scores were
significantly associated with rs-fc between the superficial amygdala and the posterior cingulate cortex in controls but not
in VPT individuals.

Conclusions. These findings suggest that alterations in rs-fc between the amygdala, parietal and temporal cortices could
represent the mechanism linking VPT birth and deficits in emotion processing.
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Introduction isolation, peer rejection, poor social competence and
shyness (Rickards et al. 2001; Dahl et al. 2006;
Schmidt et al. 2008; Healy et al. 2013; Williamson &
Jakobson, 2014), as well as impairments in the ability
to recognize facial emotions (Potharst et al. 2013; Witt
et al. 2014). Social deficits have been described in the
first 2 years of life in VPT samples (Spittle et al. 2009;
Boyd et al. 2013); and furthermore, VPT children and
adolescents have been found to have a higher risk of
anxiety and depression (Burnett et al. 2011), attention
deficit hyperactivity disorder (ADHD; Lindstrom
et al. 2011) and autism (Limperopoulos et al. 2008;
Neuroscience, King’s College London, De Crespigny Park, London, Pinto-Martin et al. 2011) ComparEd to  controls.
SE5 8AF, UK. Individuals born VPT continue to be at an increased

(Email: chiara.papini@kcl.ac.uk) risk for psychiatric disorders in adult life, with mood

Very preterm birth (VPT, <32 weeks’ gestation) has
been associated with a higher risk of neurological
and cognitive deficits (Bos & Roze, 2011; Burnett
et al. 2013), behavioural problems and learning difficul-
ties (Johnson & Marlow, 2011; Harmon ef al. 2015).
Individuals who were born VPT are vulnerable to
socio-emotional ~ impairments, including social
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and anxiety disorders being the most prevalent
(Walshe et al. 2008; Nosarti et al. 2012; D’Onofrio
et al. 2013). Their typical personality profile, character-
ized by low risk-taking, neuroticism and introversion,
might also predispose them to social vulnerability
and difficulties in social interactions (Allin et al. 2006;
Saigal, 2014; Eryigit-Madzwamuse et al. 2015).

As VPT birth is associated with early brain injury
and aberrant trajectories of cerebral development
(Ball et al. 2012), specific structural and functional
brain alterations might underlie socio-emotional
impairments. Volumetric alterations have been
shown in VPT samples in brain regions thought to sub-
serve emotion processing, such as the amygdala
(Peterson et al. 2000), orbitofrontal cortex (Giménez
et al. 2006), fusiform gyrus (Nosarti et al. 2008;
Gousias et al. 2012), hippocampus (Rogers et al. 2012;
Omizzolo et al. 2013; Aanes et al. 2015) and insula
(Nosarti et al. 2014). Moreover, both structural magnet-
ic resonance imaging (MRI) and diffusion MRI studies,
have found significant associations between brain
alterations in regions typically implicated in socio-
emotion processing and specific social and emotional
outcomes in VPT samples (Rogers et al. 2012, 2014;
Healy et al. 2013; Fischi-Gémez et al. 2015). However,
to our knowledge, no neuroimaging study to date
has investigated resting-state functional connectivity
(rs-fc) in emotion-processing networks and perform-
ance on emotional processing tasks in individuals
born VPT.

In this study, we probed the integrity of functional
networks that are fundamental to emotional informa-
tion processing and are anchored in the amygdala
(Leppénen & Nelson, 2009; Bickart et al. 2014).
Functional connectivity between three amygdalar sub-
regions (centro-medial/latero-basal/superficial) and all
other brain areas was investigated using rs-fc MRI. In
addition, we conducted an exploratory analysis to in-
vestigate participants’ ability to recognize six basic
emotions assessed with the Emotion Recognition Task
(ERT; Montagne et al. 2007), a computer-based test
that uses morphed images of human faces at different
degrees of emotional intensity. In view of previous
observations that amygdalar connectivity is reduced
in individuals with mood disorders, and that this dys-
connectivity relates to clinical symptoms and emotion-
processing performance (e.g. Peng et al. 2014), we
hypothesized that VPT individuals would exhibit: (1)
reduced rs-fc between the amygdala and key nodes
of an emotion-processing network (Leppéanen &
Nelson, 2009); (2) lower accuracy and longer reaction
times than controls at recognizing emotions at lower
intensity levels; and (3) functional integrity of the
amygdala connectivity network would be related to
performance on the ERT. Post-hoc exploratory analyses
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investigating associations between rs-fc, emotion rec-
ognition, full-scale IQ and perinatal variables were
additionally conducted.

Method
Participants

We studied 36 participants recruited from a cohort of
218 individuals who were born at <33 weeks of gesta-
tion at University College London Hospital between
1979 and 1984 and who were enrolled into a follow-up
study (Nosarti et al. 2008, 2014). Exclusion criteria were
any history of neurological conditions including men-
ingitis, head injury and cerebral infections.

Thirty-eight age-matched controls were recruited
from advertisements in the local press and universities.
Inclusion criteria were full-term birth (38-42 weeks of
gestation) and birth weight>2500 g. Exclusion criteria
were any history of birth complications (e.g. endo-
tracheal mechanical ventilation), neurological condi-
tions including meningitis, head injury and cerebral
infections.

All participants gave informed written consent, were
reimbursed for travel expenses and received a nominal
remuneration for participation in the study. The study
was given ethical approval by the Psychiatry, Nursing
and Midwifery Research Ethics Subcommittee, King's
College London.

Materials

IQ was assessed by the Wechsler Abbreviated Scale of
Intelligence (WASI; Wechsler, 1999), which contains
four subtests (Vocabulary, Similarities, Block Design
and Matrix Reasoning) and provides estimates of ver-
bal, performance and full-scale IQ. Processing speed
and sustained attention were assessed using respect-
ively correct response reaction times and omission
errors from the Conner’s Continuous Performance
Test II (CCPT-II; Conners, 2000). Mental health at test-
ing was evaluated with the General Health
Questionnaire (GHQ-12; Goldberg & Williams, 1988)
and Peters” Delusional Inventory (PDI-21; Peters et al.
1999), that assess respectively anxiety/depression
symptoms and psychosis proneness.

The ERT was used to evaluate the ability to identify
six universal emotions (anger, disgust, fear, happiness,
sadness, surprise) by using dynamic stimuli of human
faces at different intensities. The stimuli set was devel-
oped from colour pictures of four Caucasian actors
(two males and two females) in frontal view, who
were asked to look neutral and to show a full-blown
emotional expression. For each identity, a computer
program created intermediate morphed images starting
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with an inexpressive frame and ending with an
emotional expression of different intensities, ranging
from 20% to 100% (Montagne et al. 2007). The ERT
version used in this study included only four levels
of intensity: 0-40%, 0-60%, 0-80% and 0-100%.

The presentation procedure started with an instruc-
tion screen and a short practice trial with stimuli at
0-100% intensity. The experimental task consisted of
a total of 96 stimuli divided into four continuous
blocks of increasing intensity. In each trial, one video-
clip of a facial expression was played on the screen, the
last frame of which represented a static image at the
final emotional intensity. Then six labels, describing
the six emotions, appeared on the screen and partici-
pants were requested to choose the one which was
deemed to correspond to the preceding facial expres-
sion. No time restriction was imposed, but reaction
times were recorded. Overall ERT administration dur-
ation was approximately 10 min.

Socio-demographic, perinatal, neuropsychological
and ERT data analysis

Statistical analyses were performed using SPSS v. 22.0
(IBM SPSS Statistics, USA). Group comparisons in
terms of age at assessment and neuropsychological
test scores were performed using independent-sample
t tests or their non-parametric equivalent. Sex distribu-
tion was tested with Pearson’s xz, whereas differences
in socioeconomic status (SES) and ethnicity were
explored with Fisher’s exact test. Differences in neo-
natal characteristics and full-scale IQ between the
VPT group and the larger sample of VPT participants
studied at 19-20 years (Nosarti et al. 2014) were ana-
lysed with univariate analysis of variance (ANOVA).
ERT performance was analysed in terms of both ac-
curacy, as the number of correctly labelled expressions
per emotion per intensity (maximum =4), and mean re-
action time for each emotion-intensity level. Both mea-
sures were analysed using univariate analysis of
covariance (ANCOVA) adjusting for processing speed
as defined earlier (CCPT-II correct-response reaction
times). First, modulation of accuracy and reaction
times were investigated in separate three-way mixed
ANCOVAs with emotion type (six levels: anger, dis-
gust, fear, happiness, sadness, surprise) and emotion
intensity (four levels: very low 0-40%, low 0-60%,
high 0-80%, very high 0-100%) as within-subjects fac-
tors and group (two levels: preterm v. control) as
between-subject factor. Subsequently, a two-way
mixed ANCOVA was performed for each emotion sep-
arately, with emotion intensity as within-subject factor
and group as between-subject factor. Greenhouse-
Geisser correction was used for violations of sphericity.
False discovery rate (FDR) correction was applied
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throughout the analyses to account for multiple
comparisons.

MRI data acquisition

Neuroimaging data were acquired at the Maudsley
Hospital (London) using a General Electric Signa HDx
3.0 T MR scanner (GE Healthcare, USA). Resting-state
images were collected from a gradient-echo echo-planar
sequence (TR/TE: 2000/30 ms, flip angle: 75°, matrix
64 x64, FoV=218 cm) resulting in 256 whole-brain
volumes contained 37 non-contiguous slices with
2.4-mm thickness, 1I-mm interslice gap and 3.4-mm
voxel resolution. Before the resting-state session, partici-
pants were instructed to remain still with gaze fixed on
a central cross.

For spatial normalization and localization, high-
resolution T1-weighted anatomical images were also
acquired using a SPGR pulse sequence with the follow-
ing parameters: TR=7.1 ms, TE=2.8 ms, TI=450, FOV
=280 cm, flip angle =20° matrix =256 x 256, 196 slices,
no interslice gap, slice thickness=1.1 mm, isotropic

resolution=1.1x1.1x 1.1 mm®.

MRI data pre-processing

Images were processed and analysed in SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/)  running
on Matlab 7.12 (MathWorks, USA). Data were slice-
time corrected, spatially realigned, normalized to a
sample-specific DARTEL template created on the
basis of unified segmentation of individual anatomy
(Ashburner, 2007), and smoothed with a 6 mm full-
width at half-maximum (FWHM) isotropic Gaussian
kernel.

Head motion and artefact detection

As recent studies have demonstrated resting-state
fMRI metrics to be particularly sensitive to confound-
ing effects of head motion (Power et al. 2012; Van
Dijk et al. 2012), the Artifact Detection Tools (ART,
www.nitrc.org/projects/artifact_detect/) were used to
identify problematic time points. In particular, an
image was defined as an outlier (artefact) if a partici-
pant’s head movement differed by in excess of 0.5
mm (translation) or 0.02 rad (rotation) from the previ-
ous frame, or if the global mean intensity in the
image was >3 s.0. from the mean image intensity for
the entire scan.

To preserve the temporal structure of the data, out-
lier volumes were not corrected or deleted from the
time series, but rather modelled in the first level
General Linear Model (GLM). A Mann-Whitney U

test revealed no significant difference between
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VPT-born (median=2.50) and controls (median =2.00)
in the number of outlier volumes (z=—0.607, p =0.544).

Regions of interest (ROIs) definition

Rs-fc MRI data were analysed using a seed-based ap-
proach and taking the amygdalar subcompartments
(supported by convergent structural and functional
observations; Bzdok et al. 2013) as ROIs. Three amyg-
dalar seed regions were determined through stereo-
taxic ~ probabilistic maps of cytoarchitectonic
boundaries (Amunts ef al. 2005), implemented in the
SPM Anatomy toolbox (Eickhoff et al. 2005). The cen-
tromedial group included the central and medial nu-
clei; the laterobasal subregion consisted of the lateral,
basolateral, basomedial, and paralaminar nuclei; the
superficial group included the anterior amygdaloid
area, the amygdalopyriform transition area, the
amygdaloid-hippocampal area and the ventral and
posterior cortical nuclei.

Only voxels with at least a 50% probability of
belonging to one of these subregions were included,
and those exceeding 50% probability for multiple sub-
regions were assigned only to the region for which
they had the highest probability of inclusion. Images
of each subregion were created in the standard space
(MNI) separately for left and right hemisphere to cre-
ate a total of six ROls.

Rs-fc MRI seed-region analysis

The Functional Connectivity toolbox (CONN vl4.b)
(Whitfield-Gabrieli & Nieto-Castanon, 2012; http://
web.mit.edu/swg/software.htm) was used to perform
all seed-based analyses. To remove physiological
noise and movement confounds, the CONN toolbox
uses the anatomical component correction (aCompCor)
strategy (Behzadi et al. 2007) that increases the sensitivity
and specificity of positive correlations and can detect
non-artifactual anti-correlations. Global signal regres-
sion was excluded to avoid the introduction of artificial
negative correlation (Murphy et al. 2009). Subject-
specific effects of motion (defined by six realignment
parameters and their first-order temporal derivatives),
outliers volumes (represented by a binary regressor),
and white matter and CSF signals (characterized by
the first five principal components of each) were
removed from the functional data using linear regres-
sion and the resulting residual blood oxygen-level de-
pendent (BOLD) time series were band-pass filtered
between 0.009 and 0.08 Hz.

In the first-level analyses, the average BOLD time-
course was extracted from each seed region separately
and Pearson’s correlation coefficients were computed
between that time course and the time course of

every other voxel in the brain. Seed-to-voxel
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connectivity maps were constructed for each subject.
Correlation coefficients were then converted to normal-
ly distributed z scores using the Fisher transformation
to allow the second-level GLM analyses. Within-group
statistical parametric maps (SPMs) and connectivity
differences between groups were further explored and
examined with independent-sample ¢ tests. Reported
clusters survived a height threshold of uncorrected p <
0.001 and an extent threshold of FDR-corrected p <0.05
at cluster level.

Associations between rs-fc MRI and ERT,
socio-demographic, neuropsychological and perinatal
data

To evaluate relationships between rs-fc MRI data and
emotion-processing performance, post-hoc correlation
analyses were conducted. In these analyses, correlations
between connectivity of significant clusters obtained
during second-level analyses and ERT emotion recogni-
tion accuracy were assessed with Spearman’s rank test.
Multiple analyses of variance were used to test for the
effects of sex and SES, as well as interactions with group,
in terms of ERT metrics and rs-fc patterns found to be
different between preterm and control participants.
Other associations between rs-fc, full-scale IQ and
perinatal factors were assessed using Pearson’s correl-
ation coefficient for parametric continuous variables.

Results
Sample characteristics

Characteristics of study sample are reported in Table 1.
Controls tended to belong to higher SES compared to
VPT individuals and about one quarter (26%) of con-
trols was recruited from the university campus (three
post-doctoral researchers, three research workers/tech-
nicians, four postgraduate students). In terms of neuro-
psychological and mental health outcomes, compared
to controls, VPT participants had significantly lower
verbal, performance and full-scale IQ, despite their
values falling within the test norm. No statistically
significant between group differences were found in
processing speed, sustained attention, or current men-
tal health (GHQ-12 and PDI-21).

In order to assess selection bias in the VPT sample,
we compared demographic and perinatal characteris-
tics between the current VPT sample and a sample of
68 individuals who were assessed at age 19-20
(Nosarti et al. 2014). There were no statistically signifi-
cant differences between the two VPT cohorts in terms
of gestational age (Fy,102=0.24, p>0.05) and birth
weight (Fy,102=0.85, p>0.05), although the current co-
hort had higher full-scale IQ than the VPT cohort
assessed at age 19-20 (Fy,102=7.29, p<0.01).
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Table 1. Sample characteristics. Frequencies, percentages and mean values (standard deviations) are given, unless otherwise specified

VPT (N=36) Controls (N =38) Statistics
Demographic and neonatal characteristics
Sex (male/female) 20/16 17/21 x% =0.87, p=0.352
Age at assessment (years) 30.25 (2.31) 29.16 (3.64) t7p=1.53, p=0.130
Birth weight (g) 1295.44 (358.93) N.A. N.A.
Gestational age (weeks) 29.08 (2.34) N.A. N.A.
Socioeconomic status®
I-I 47.2% 71.1% Fisher’s exact test=10.47, p=0.020
11 25% 15.8%
v-v 8.3% 0%
Student 2.8% 10.5%
Unemployed/out of work 16.7% 2.6 %
Ethnicity
Caucasian 80.6% 84.2% Fisher’s exact test=2.89, p=0.647
African 0% 2.6%
Afro-Caribbean 0% 2.6%
Indian subcontinent 11.1% 5.3%
Other 8.3% 5.3%
Neonatal US classification®
Normal 17 N.A. N.A.
Uncomplicated PVH 9 N.A. N.A.
PVH +DIL 10 N.A. N.A.

Neuropsychological assessment
Full-scale 1Q
Verbal IQ
Performance IQ
Processing speed
Sustained attention®

103.94 (14.08)
100.72 (15.01)
106.33 (14.17)
421.67 (58.53)
1.50 (1.64-6.36)
Mental health assessment

GHQ-12¢

PDI-21¢

2.00 (2.04-4.51)

22.50 (22.92-45.80)

113.68 (10.62)
110.66 (12.51)
114.00 (9.34)
415.26 (57.82)
2.00 (2.12-4.25)

t72=3.37, p=0.001
t;,=3.01, p=0.003
t;2=2.76, p=0.008
t;2=0.47, p=0.637
U=607.00, p=0.399

1.50 (1.21-3.42)
10.00 (13.58-32.37)

U =558.00, p=0.160
U =535.50, p=0.107

VPT, Very preterm birth.

@ Socioeconomic status classified according to the Standard Occupational Classification 1980 (SOC1980). The following
categories were used: I-II=managerial and professional; IIl =intermediate (e.g. small employers and own account workers);
IV—-V =working (e.g. lower supervisory and technical occupations, routine and semi-routine occupations).

P Periventricular haemorrhage was classified as haemorrhage into the germinal layer or lateral ventricles and ventricular

dilatation as clear dilatation of one or both lateral ventricles with cerebrospinal fluid, although not sufficient to meet the

conditions for a diagnosis of hydrocephalus (Stewart et al. 1983).

¢Median and 95% confidence intervals.

Emotion Recognition Task

Preterm participants” and controls’ performance on the
ERT in terms of accuracy and reaction time are displayed
in Fig. 1 (a, D).

Regarding accuracy, a three-way mixed ANCOVA
demonstrated a trend towards a significant main effect
for group (F1,71=3.13, p=0.081), with controls tending
to perform better than VPT adults. Interactions be-
tween group and emotion type (Fs3s5=1.11, p=0.352)
and emotion intensity (F3213=1.84, p=0.149) were not
significant. When analysing each emotion separately, a
significant main effect for group (Fy71=9.05, p=0.024)
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and the interaction between group and emotion inten-
sity (F3213=5.86, p=0.006) were found only for anger.
Further ANCOVAs showed that VPT adults were less
able than controls to recognize anger at the lowest
level of intensity; i.e. the most difficult condition
(F171=23.41, p<0.0001; Fig. 1c).

Considering reaction time, a three-way mixed
ANCOVA demonstrated a significant main effect for
group (F;,71=8.48, p=0.005), with controls being faster
than VPT participants. There was also a significant
interaction between group and emotion intensity
(F3,213=7.01, p=0.005), showing that controls were
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Fig. 1. Emotion Recognition Task (ERT) performance. (2) Mean scores and (b) mean reaction times of very preterm birth (VPT)

participants and controls for the six ERT emotions. Error bars represent 1 standard deviation. (c) Mean scores and (d) mean reaction
times of VPT participants (white dots) and controls (black triangles) at the four levels of intensity for anger. *p <0.05, **p <0.001.

faster than VPT participants at each level of intensity,
with reaction times progressively decreasing as the
emotion became more obvious (e.g. at higher levels
of intensity). When analysing each emotion separately,
as it was done for accuracy, there was a significant
interaction between emotion intensity and group only
for anger, after FDR-correction (F3213=>5.55, p=0.042).
Further ANCOVAs showed that VPT adults were
slower than controls at recognizing anger at the lowest
level of intensity (Fy7,=7.15, p=0.036; Fig. 14d).

Rs-fc MRI results
Within group rs-fc MRI results

Within-group connectivity maps and significant areas
of activation across the six amygdalar subregions
(three in each hemisphere) are presented in
Supplementary Fig. S1. In brief, spontaneous activity
in the amygdala subregions was positively associated
with neuronal activity in surrounding structures and
the ventromedial prefrontal cortex, whereas it was
negatively associated with neuronal activity in dorsal
prefrontal cortex, parietal lobe and posterior brain
regions, with strong inter-hemispheric similarities.
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Between-group rs-fc MRI results

Significant between-group differences in patterns of
rs-fc were found only for connectivity of the left
superficial amygdalar subregion. This area showed
hypoconnectivity with the right posterior cingulate
cortex (PCC) and the left precuneus (pC) and hyper-
connectivity with the superior temporal sulcus (STS)
in VPT adults compared to controls (Table 2, Fig. 2).

Investigating associations between rs-fc MRI and
facial emotion processing, sex, SES, IQ and perinatal
risk factors

In controls, anger scores were significantly associated
with rs-fc between the left superficial amygdala and
the PCC (Spearman’s p=0.426, p=0.008), whereas in
the VPT group this association was not significant
(Spearman’s p=0.172, p=0.316; Fig. 3). However, the
correlation was not significantly different between
the groups (z=1.16, p=0.246).

Post-hoc analyses to assess the effect of sex and SES
demonstrated no statistically significant differences be-
tween males and females, nor between SES categories
on rs-fc patterns and ERT emotions where differences
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Table 2. Differences in functional connectivity of the left superficial amygdala between VPT individuals and controls

MNI coordinates

Peak voxel

Contrast Location (hemisphere) Cluster size Cluster p value X y z t statistic
VPT < Controls Cingulate gyrus (R) 148 0.017 20 —26 44 5.13
16 —34 48 5.07
22 —16 44 3.83
16 —16 42 3.48
Precuneus (L) 238 0.002 -10 -70 60 4.29
-14 —76 44 3.85
VPT > Controls Superior temporal gyrus (R) 166 0.008 62 —28 0 5.15

VPT, Very preterm birth; R, right hemisphere; L, left hemisphere.
Reported clusters survived a height threshold of uncorrected p<0.001 and an extent threshold of FDR-corrected p<0.05 at

the cluster level.

between preterm participants and controls were
detected (all p >0.05).

Analysis of the association between rs-fc and full-scale
IQin VPT participants and controls did not show any stat-
istically significant result (see Supplementary Table S1).

Within the VPT participants, perinatal risk factors
(e.g. gestational age, birth weight and neonatal ultra-
sound classification) did not significantly correlate
with either ERT performance or rs-fc patterns.

Discussion

Several investigations have suggested an association
between atypical social development and VPT. This
study provides two important contributions that help
to elucidate the mechanisms underlying a possible
link between the two. First, our results suggest that
in adulthood VPT individuals display functional
alterations in brain circuits fundamental to emotion
processing; second, they demonstrate that VPT adults
are worse than controls at recognizing subtle specific
emotions from facial expressions.

Recognizing facial expressions denoting specific
emotions is a crucial skill for successful interpersonal
interactions and is compromised in many psychiatric
disorders with onset in childhood/adolescence (Law
Smith et al. 2010; Jarros et al. 2012; Collin et al. 2013)
and adulthood (Scholten et al. 2005; Montagne et al.
2006, 2008; Poljac et al. 2011). In this study, findings
from the overall ERT demonstrated that, compared to
controls, VPT-born individuals had almost intact abil-
ity, but longer reaction times, at recognizing emotion
expressions. This could be interpreted as a compensa-
tory mechanism in VPT adults, who need more time
to adequately process emotional stimuli. A more
detailed analysis of emotion type found specific and
subtle impairments in VPT adults in recognizing
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anger at very low intensity, with their performance
being both slower and less accurate than controls.
Importantly, in the current study these results are un-
likely to depend on VPT participants” deficits in atten-
tion/processing speed or psychological distress, as
their scores on such measures were comparable to con-
trols’. These findings suggest that deficits in emotion
recognition — previously reported generically at the
age of <5 years (Potharst ef al. 2013; Witt et al. 2014)
and specifically for anger and low-intensity stimuli at
8 years (Wocadlo & Rieger, 2006) — persist into adult-
hood in VPT-born individuals. In the literature, a se-
lective impairment in recognizing angry expressions
has been associated with lower social competence in
children across different ages (Maxim & Nowicki,
2003). Diminished social competence could further re-
sult in social isolation and rejection by peers, as
reported in VPT adolescent samples (Rickards et al.
2001; Dahl et al. 2006). Additionally, a reduced ability
to recognize a potential threat conveyed by angry
faces may make children more vulnerable to being bul-
lied by peers (Woods et al. 2009), placing VPT samples
at risk of experiencing bullying and related emotional
problems (Wolke et al. 2015).

Even though these results suggest a selective
difficulty for anger, the null findings in other emo-
tions are likely to be due to a small sample size and
the fact that the current VPT participants were cogni-
tively unimpaired individuals (i.e. had IQ scores
within the test norm). The possibility that VPT parti-
cipants would also show subtle deficits for other
emotions cannot be excluded by the current results
and warrants testing in a larger sample with more
variable psychosocial functioning. Moreover, a pre-
cise measure of participants’ mood at testing would
potentially mitigate potential bias effects on emotion
processing.
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Fig. 2. Alterations in functional connectivity of the left superficial amygdala in very preterm birth (VPT) individuals
compared to controls. (2) Location of 50% probabilistic masks of the superficial amygdala of the left hemisphere projected on
the MNI template with neurological convention. (b) Brain areas that showed significantly greater functional connectivity of the
left superficial amygdala in VPT individuals (hot colour scale) comprised the right superior temporal sulcus (STS); brain areas
that showed significantly smaller functional connectivity of the left superficial amygdala in VPT individuals (cool colour
scale) comprised the right posterior cingulate cortex (PCC) and the left precuneus (pC). Brain slices are displayed axially
according to neurological convention, with z coordinates in MNI space above each slice. The figure on the right depicts these
slices in blue on a midline, sagittal slice. Reported clusters survived a height threshold of uncorrected p <0.001 and an extent
threshold of FDR-corrected p <0.05 at the cluster level. (c) Bar graph showing direct comparison of functional connectivity
strength between the two groups. The y-axis indicates correlation coefficients between the time series of the seed region
(superficial subregion of the left amygdala) and the time series extracted from the regions displaying significant
between-group differences; the error bars represent 1 standard error.

To investigate the neural underpinnings of the the left amygdala was unique in showing evidence of
observed behavioural deficits, whole-brain rs-fc ana- altered rs-fc in VPT participants compared to controls.
lyses were conducted using seeds in three cytoarchitec- While control subjects exhibited significant positive
tonic subdivisions of the amygdala (and thus connectivity between this region and pC as well as
permitting dissociation of regionally specific connect- PCC, VPT-born individuals displayed significant nega-

ivity patterns). Indeed, the superficial subregion of tive functional connectivity between the same regions.
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Fig. 3. Correlation between superficial amygdala-posterior cingulate connectivity and Emotion Recognition Task score for
anger in very preterm birth (VPT) participants (white dots; Spearman’s p=0.172) and controls (black triangles; Spearman’s

p=0.426). Least-squared lines are shown for illustrative purposes only and do not constitute a formal test.

VPT-born participants also showed increased connect-
ivity between left superficial amygdala and the STS.
Functional aberrations specific to this amygdalar com-
partment are not unexpected in light of recent
meta-analytical findings (Bzdok et al. 2013) which
reported that the superficial amygdala is highly
tuned for processing both static and dynamic social
stimuli in the form of emotional expression of human
faces (Hurlemann ef al. 2008; Goossens et al. 2009),
and structural alterations of this subregion have been
described in anxiety disorder (Qin et al. 2014).
Consistent with previous findings from healthy sub-
jects (Roy et al. 2009), both groups in the current study
displayed negative correlations between activity in
amygdala and dorsolateral prefrontal and posterior
parietal regions typically involved in cognitive control
of emotions. However, VPT-born individuals dis-
played a wider suppression of posterior areas, which
extended to a larger proportion of the PCC and the bi-
lateral pC. Aberrant amygdala-PCC/pC coupling has
been previously reported in psychiatric samples with
reduced connectivity associated with state anxiety
scores (Hahn ef al. 2011) and elevated connectivity
found in individuals diagnosed with major depressive
disorder (Cullen et al. 2014). The PCC and pC are
involved in emotional evaluation (Wright ef al. 2008)
and modulation (Adolphs, 2003), and also constitute
core regions of the ‘default mode network’ (DMN), a
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system that is more active at rest than during
goal-oriented tasks (Raichle et al. 2001; Greicius et al.
2003). Increasing evidence demonstrates a substantial
overlap between the DMN and the ‘social brain’
(Mars et al. 2012) and a relationship of reciprocal inhib-
ition has been proposed between the cognitive and
emotional systems (Drevets & Raichle, 1998). We pre-
viously showed alterations in rs-fc between posterior
DMN and salience network in VPT adults from the
same cohort compared to controls (White et al. 2014).
In this framework, hypoconnectivity between the
amygdala and the PCC/pC in VPT-born individuals
could hint at an altered coupling of these two regions.
It is feasible that amygdalar activation in socio-
emotional relevant conditions might excessively sup-
press the activity of DMN brain regions responsible
for cognitive evaluation of a given situation. This inter-
pretation is in line with the study by Sreenivas et al.
(2012), which reported a deactivation of DMN regions
during the processing of emotional faces and, in par-
ticular, a greater deactivation for negative compared
with positive emotions, as a demonstration of their
higher evolutionary saliency. An increased negative
coupling between the amygdala and the PCC/pC
could represent an overactive inhibitory connection
that could become disruptive and maladaptive, not
only in ‘spectatorial’ and experimental tasks, but also
in emotionally-engaged and interactive settings in


https://doi.org/10.1017/S0033291716001604

3034 C. Papini et al.

real life (Schilbach et al. 2013), as there exists a large
topological overlap of brain regions involving such
processes.

The current study suggests that the pathway be-
tween PCC and amygdala importantly contributes to
emotion recognition. Connectivity between PCC and
the left superficial amygdala was significantly asso-
ciated with the ability to recognize angry faces in con-
trols but not in VPT individuals, and suggests this as a
potential substrate for selective ERT impairments in
the latter. As the dorsal PCC plays a key modulatory
role in the amygdala network for emotion processing
(Pessoa et al. 2005; Stein et al. 2007), it can be reason-
ably hypothesized that the inability to recognize low
intensity levels of anger may result from inadequate
amygdalar modulation in VPT-born individuals. This
has potential implications for social cognition, especial-
ly in situations where it is necessary to attribute mental
states to others (Saxe & Powell, 2006). The PCC is a
highly connected structure (Hagmann et al. 2008) re-
sponsible for self-referential thought (Johnson et al.
2002; Mason et al. 2007, Buckner et al. 2008;
Whitfield-Gabrieli et al. 2011), but is also involved in
cognitive processes (Pearson et al. 2011). It acts as a
connector hub in cortico-subcortical networks (Leech
et al. 2012); and has been found to influence activity
in distributed networks responsible for performing
goal-directed actions, such as the dorsal attention net-
work, fronto-parietal control network and salience net-
work (Leech & Sharp, 2014). In particular, the dorsal
PCC is involved in allocating attentional focus and
balancing between internally- and externally-oriented
cognition (Leech ef al. 2011, 2012). Thus, socio-emotional
deficits in VPT-born individuals may result from diffi-
culties in coordinating activity between systems respon-
sible for processing emotion and those responsible for
attention modulation. Impairments in executive func-
tion are widely recognized in VPT-born individuals
across the life span (Aarnoudse-Moens et al. 2009;
Burnett et al. 2013; Selsnes et al. 2014) and these have
been hypothesized as a potential mechanism to under-
stand socio-emotional difficulties in VPT children
(Hille et al. 2001). In other words, difficulties with adapt-
ability, impulsivity, and attention could affect social
interactions. Although our current analyses showed
significant between group differences in ERT perform-
ance after accounting for sustained attention, it remains
to be investigated whether impaired modulation of dif-
ferent aspects of attention (e.g. attentional control)
which were not measured in the current study affect
emotion recognition in VPT samples (Eack et al. 2016).

This study additionally presents evidence of con-
nective pathways supporting emotional processing
that are specific to individuals born VPT. Most notably,
increased connectivity was found between the left
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superficial amygdala and the STS in this group but
not in controls. Structural alterations in the STS have
been previously reported in VPT samples (Nosarti
et al. 2008; Rogers et al. 2014). This region — and in par-
ticular its posterior portion (Hein & Knight, 2008)- is
well known as a face-sensitive region specialized for
dynamic feature recognition (Haxby et al. 2000;
Andrews & Ewbank, 2004; Engell & Haxby, 2007), in-
cluding eye and mouth movements (Puce et al. 1998;
Hoffman & Haxby, 2000) and emotional expressions
(LaBar et al. 2003). Together with the amygdala and
the orbitofrontal cortex, the STS has been proposed
as a key region in social cognition (Brothers, 1990;
Allison et al. 2000). Decreased connectivity between
the amygdala and the STS has been hypothesized as
the underlying mechanism of emotion and face pro-
cessing disturbance in various psychiatric disorders,
including autism spectrum disorder (Monk et al.
2010) and major depressive disorder (Ramasubbu
et al. 2014). By contrast, the increased amygdala—-STS
connectivity found in our VPT-born sample could re-
present a compensatory strategy in a suboptimally
efficient emotional network, facilitating emotion recog-
nition by means of stronger integration between de-
coding of facial characteristics by the temporal areas
and emotional salience by the amygdala. This inter-
pretation could also explain the overall slower and
less accurate performance of VPT adults on the ERT.
Moreover, as the STS is crucial for theory of mind
(Gallagher & Frith, 2003; Vander Wyk et al. 2009),
hyperconnectivity of this region with the amygdala
could also support higher cognitive processing of emo-
tional information.

Strengths, limitations and future directions

There are several limitations in this study. First, the
amygdala, which was chosen as a seed region for
rs-fc analyses, is susceptible to EPI image distortion
and signal dropout, which may cause relevant pro-
blems of spatial localization (Merboldt et al. 2001). To
deal with this potential bias, only the core of each
amygdalar subregion was considered by using a prob-
abilistic map at 50%, as in Roy ef al. 2009, but a stricter
threshold could have been used (e.g. 90%, as in Ball
et al. 2007). Second, a score range between 0 and 4 at
each ERT level of emotion did not allow us to explore
subtler impairments in emotion recognition in relation
to altered patterns of amygdalar connectivity. An
increased number of trials or the use of more numer-
ous levels of emotional intensity to further aggregate
could have refined our analyses. Finally, the fact that
controls tended to belong to higher SES bands com-
pared to VPT individuals could have influenced our
findings, although the current sample included high
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performing VPT adults (reflected by their higher IQ
scores compared to a larger VPT sample assessed at
age 18-19 years), who nevertheless had significantly
lower IQ than controls. Replication of the study with
a larger sample size might address these issues and
provide a means of uncovering additional subtle fea-
tures on account of increase statistical power.

Strengths of our study include: (1) a choice of amyg-
dalar subdivisions used to define seed regions for rs-fc
analysis, that permitted the investigation of between-
group differences that could not have been detected
considering the whole amygdala; (2) the use of
DARTEL toolbox, that achieved a more accurate regis-
tration and normalization to account for structural dif-
ferences expected between VPT-born individuals and
born-at-term controls; and (3) the use of the ERT,
which contains dynamic facial information, rather
than fully blown and/or static information, which has
proved advantageous in terms of identification of emo-
tional expressions, evaluations of intensity and arousal,
and discrimination of authenticity (Krumhuber et al.
2013), making it a useful tool to detect subtle and se-
lective impairment that previous research failed to
find (e.g. Ogai et al. 2003).

Future studies in VPT samples could investigate
other critical skills that rely on emotion perception
and contribute to the understanding of the complexity
of the social world, such as attributing mental states,
deciphering emotional meanings, using emotions in
thought, and managing emotions (Mayer et al. 2001).
These components could differentially contribute to
behavioural and psychiatric problems and they are
still unexplored in VPT populations. Potential inter-
ventions that aim at improving socio-emotional skills
could then strengthen different components of emo-
tional intelligence (e.g. Bolte et al. 2015).

Conclusion

VPT individuals continue to display subtle emotion
recognition deficits in adulthood, which are associated
with functional alterations in brain circuits fundamen-
tal to emotion processing, characterized by suboptimal
amygdala modulation. These findings provide a poten-
tial foundation for future studies investigating how
emotion-processing impairments may interact with
biological, environmental and genetic risk and contrib-
ute to the increased vulnerability to psychiatric dis-
order in VPT individuals.
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For supplementary material accompanying this paper
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