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Uniform bounded elementary generation of
Chevalley groups
Boris Kunyavskĭı , Eugene Plotkin , and Nikolai Vavilov
Abstract. In this paper, we establish a definitive result which almost completely closes the problem
of bounded elementary generation for Chevalley groups of rank ≥ 2 over arbitrary Dedekind rings
R of arithmetic type, with uniform bounds. Namely, we show that for every reduced irreducible
root system Φ of rank ≥ 2, there exists a universal bound L = L(Φ) such that the simply connected
Chevalley groups G(Φ, R) have elementary width ≤ L for all Dedekind rings of arithmetic type R.

Introduction and State of Art

In the present paper, we consider Chevalley groups G = G(Φ, R) and their elemen-
tary subgroups E(Φ, R) over Dedekind rings of arithmetic type. Usually, it is more
convenient to speak of the simply connected group Gsc(Φ, R). In most of the cases we
are interested in, it coincides with the elementary group Esc(Φ, R). When there is no
danger of confusion, we drop any indication of the weight lattice.

Our ring R is an arbitrary Dedekind ring of arithmetic type, which means that
throughout the paper, one has to distinguish the corresponding number and function
cases.

We occupy ourselves with the classical problem of estimating the width of E(Φ, R)
with respect to the elementary generators xα(ξ), α ∈ Φ, ξ ∈ R. We consider the subset
EL(Φ, R) consisting of products of ≤ L such elementary generators. The elementary
width is defined as the smallest L such that each element of E(Φ, R) can be represented
as a product of ≤ L elementary generators xα(ξ); in other words,

E(Φ, R) = EL(Φ, R).

If there is no such L, we say that the width is infinite. If the width is finite, we say
that G is boundedly elementarily generated.
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2 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

Let us start with a short review of early works on the topic. Most of them, and
many papers even today, only treat the special case of SL(n, R). The pioneering 1975
paper by George Cooke and Peter Weinberger [CW] showed that, with the exception
of SL(2, R) over very meagre rings, such as R = Z,Fq[t], or other arithmetic rings
with the finite multiplicative group, the problem of bounded elementary generation
admits a positive uniform solution. In other words, in this case, there exists a bound
L = L(Φ) depending solely on Φ such that the elementary width of G(Φ, R) over all
Dedekind rings R of arithmetic type does not exceed L.

However, their actual proofs were conditional; they depended on a very strong
form of the GRH = Generalized Riemann Hypothesis. The most important early
contributions toward obtaining unconditional proofs of such results over number rings
are due to David Carter and Gordon Keller, 1983–1985.

● The arithmetic proofs for SL(n, R), n ≥ 3, with explicit bounds depending not
only on Φ but also on some arithmetic invariants of R, were obtained in [CK1, CK2],

● For the model theoretic proofs in the number case, which yield the existence of
bounds L = L(Φ, d) depending on Φ and the degree d = [K ∶ Q], non-constructive,
without presenting any actual bounds, see, for instance, the truly remarkable [but
unfortunately still unpublished] preprint by Carter and Keller with Eugene Paige
[CKP], and its re-exposition by Dave Morris [Mo].

● Around 1990, Oleg Tavgen [Ta1, Ta2, Ta3] succeeded in generalizing these results
to all Chevalley groups of normal types, and to most twisted Chevalley groups. With
this end, he invented a very slick reduction trick, which reduced the study of bounded
generation to rank 2 cases, essentially to SL(3, R) and Sp(4, R), and was able to
solve the cases of Sp(4, R) and G(G2 , R) by direct matrix computations imitating
the arithmetic proof by Carter and Keller. As the Carter–Keller bounds, Tavgen’s ones
depended on arithmetic invariants of R.

● The only published result for the function case until rather recently was the very
early 1975 paper by Clifford Queen [Qu], who established the best possible absolute
bound L = 5, but only for some function rings with infinite multiplicative group subject
to further arithmetic conditions. Even the case of R = Fq[t] remained open at that
stage.

Such was the state of art around 1990, and the results listed above remained almost
unrivaled for about two more decades. There were some interesting attempts to come
up with explicit bounds (compare, for instance, [Li, LM, Mu]), but the resulting
bounds always depended on some further arithmetic invariants and/or worked only
under some severe restrictions on R.

However, there were many reasons which eventually led to a new surge of activity
in this direction starting around 2010.1 Let us mention relations with the congruence
subgroup property, Kazhdan property T, Waring-type problems for groups, model
theoretic applications, and so on.

1We ourselves learned about the status of this problem as unsolved from Sury; see [VSS]. In
particular, it is proved in [VSS] that the only rings for which one has G = UU−UU− are rings with
stable range 1, so that L = 5 is the best possible bound for SL2 over arithmetic rings with stable range 1 1

2 .
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Uniform bounded generation of Chevalley groups 3

An important initial breakthrough, the first unconditional proof of the bounded
generation of SL(2,Z[ 1

p
]) with an explicit bound, and at that the best possible one,

L = 5, was achieved by Maxim Vsemirnov [Vs].
Let us list the key contributions of the last five years which together essentially

amount to the complete solution of the problem.
● For the number case, when R∗ is infinite, there is a definitive result for SL(2, R)

by Morgan, Rapinchuk, and Sury [MRS] in 2018, with a small uniform bound L ≤ 9,
which can be improved [and was improved!] in some cases. Thus, Bruce Jordan and
Yevgeny Zaytman [JZ] improved it to L ≤ 8 (and further improved to L ≤ 7 or L ≤ 6
in the presence of finite or real valuations in S).

● In the same 2018, Bogdan Nica [Ni] has finally established bounded elementary
generation of SL(n,Fq[t]), n ≥ 3. He proposed a slight variation of Carter–Keller’s
approach, replacing the full multiplicativity of Mennicke symbol by a weaker form,
“swindling lemma.” This is where we jumped in. In [KPV], we developed reductions
of all non-symplectic Chevalley groups to SL(3,Fq[t]) and devised a similar proof for
Sp(4,Fq[t]).

● The decisive contributions in the function case are due to Alexander Trost [Tr1,
Tr2], who succeeded in proving versions of all necessary arithmetic lemmas in the
function case. Actually, his versions are better than the corresponding results in the
number case.2 In particular, he gave an explicit uniform bound for the bounded
elementary generation of SL(n, R), n ≥ 3, which does not depend on the degree
d = [K ∶ Fq(t)].

● Finally, the recent paper by Kunyavskii, Morris, and Rapinchuk [KMR] improves
the uniform bound for SL(2, R) for rings R with infinite multiplicative group R∗ to
L ≤ 7 in the number case and establishes a similar result with the bound L ≤ 8 in the
function case.

Thus, the results of [CKP, Mo, MRS, Tr2, KMR] completely solve the problem of
the uniform bounded elementary generation for the special linear groups SL(n, R),
n ≥ 3 – and when R∗ is infinite, even for SL(2, R).

The methods of our previous paper [KPV] completely reduce the proof of a similar
result for almost all other Chevalley groups, including even the symplectic groups
Sp(2l , R), l ≥ 3 to the case of Φ = A2. The only case that does not follow right away
by combining results of the above papers is that of Sp(4, R).

Here, we solve the remaining case of Sp(4, R) and thus come up with a complete
solution of uniform bounded generation for Chevalley groups in the general case.

Theorem A Let Φ be a reduced irreducible root system of rank l ≥ 2. Then there exists a
constant L = L(Φ), depending on Φ alone, such that for any Dedekind ring of arithmetic
type R, any element in Gsc(Φ, R) is a product of at most L elementary root unipotents,

Gsc(Φ, R) = EL(Φ, R).

2One of the reasons is that adjoining roots of unity in the number case, one gets a cyclotomic
extension which may have nontrivial ramification, whereas in the function case, one gets a constant
extension, which is not ramified.
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4 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

Remark 0.1 The bounds obtained in Theorem A are uniform with respect to R, both
in the number and function cases. What is important – and unexpected! – is that in
the function case, they are explicit.

Remark 0.2 In the number case, explicit bounds are only available when R∗ is
infinite.

Remark 0.3 Theorem A was already announced in [KLPV], with a sketch of proof.
However, since [KLPV] is focused on bounded generation for the Steinberg groups,
it would be unreasonable to provide their tedious computational aspects of the proof
for Chevalley groups. Therefore, the most tricky case of Sp(4, R) was skipped there;
in several cases not needed for the treatment of Steinberg groups, the arguments were
only briefly sketched, and no care of explicit numerical bounds was taken. Here, we
supply all the details for the case of Sp(4, R). Moreover, we redo the case SL(3, R) for
the function rings, which was already solved in [Tr2]. However, we do it in the style
of [Ni] rather than [CK1], which allows us to improve the estimate for L from L ≤ 65
to L ≤ 44. This improvement then gives slightly better bounds in all explicit estimates
for all other Chevalley groups in the function case.

Remark 0.4 Note that uniform estimates, being interesting in their own right, are
indispensable for some applications – for example, for estimating Kazhdan constants
of arithmetic groups; see [Ha].

Roughly, the ingredients of the proof are as follows.
● We consider the case where R∗ is infinite separately and prove the following

statement.

Theorem B For any Dedekind ring of arithmetic type R with the infinite multiplicative
group R∗, any element in Gsc(Φ, R) is a product of at most L = 7N elementary
unipotents in the number case or L = 8N elementary unipotents in the function case,
where N = ∣Φ+∣ is the number of positive roots of Φ.

The proof of Theorem B is cheap modulo deep results for rank 1 case and requires
Tavgen’s reduction trick. This is done in Section 3. Thus, in the proof of Theorem A,
we may assume that R∗ is finite. This is important in the number case.

● In the function case, our proofs in this paper have almost zero arithmetic
components. Namely, all arithmetic results we need are taken essentially as is from
the paper by Trost [Tr2, Lemma 3.1 and Lemma 3.3]. After that, the rest of the proof is
a pure theory of algebraic groups and some stability theorems from algebraic K-theory.

More precisely, we show – this part is indeed essentially contained already in [KPV]
– that for all non-symplectic Chevalley groups, bounded generation is reduced to that
for SL(3, R). What has been overlooked in [KPV], though, is that bounded generation
of Sp(2l , R), l ≥ 3, also reduces to SL(3, R), with the help of the symplectic lemmas on
switching long and short roots [KPV]. Only after rediscovering this trick ourselves in
March 2023, we noticed that a similar approach has been used by Kairat Zakiryanov
[Za], and this reference should have been included in [KPV].

For the only remaining case Sp(4, R), we can also obtain an explicit uniform
bound by combining the arithmetic lemmas of Trost [Tr2] with our Sp4-lemmas from
[KPV], in exactly the same style as in [KPV, Section 6], and that is by far the most
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Uniform bounded generation of Chevalley groups 5

difficult part of the proof. Namely, Trost’s Lemma 3.1 is essentially a generalization
of our Lemma 6.4; we only have to supplement it slightly in characteristic 2. Trost’s
Lemma 3.3 shows that – unlike for the number fields! – the case of a general function
ring R is not much different from the case when R is a PID (and, in particular, there is
no dependence on degree or other invariants).

Note that in a more recent preprint, Trost established the uniformly bounded
generation in the symplectic case (with weaker estimates); see [Tr3, Corollary 3.11].

● The number case is very different. Our general strategy is similar to the proof of
[Tr2, Theorem 4.1]. Namely, we use very deep arithmetic results of [MRS] (or any
of their improvements in [JZ, KMR]) pertaining to SL(2, R) to prove Theorem B
asserting that there is an explicit uniform bound when R∗ is infinite. Some such
bounds can be easily derived by a version of the Tavgen’s trick [Ta2, Theorem 1], as
described and generalized in [VSS, SSV] and [KPV].

We are left with the rings of integers of the imaginary quadratic fields K, and
thus with a single degree d = 2. Since this class is contained in a class defined by
the first-order conditions and sharing uniform estimates of the congruence kernel,
using nonstandard models (alias ultrafilters, alias compactness theorem in the first-
order logic, alias. . .), one can then prove the following: if all SL(3, R) are boundedly
elementarily generated, they are uniformly boundedly elementarily generated. This
argument was devised by Carter–Keller–Paige [CKP] and then rephrased slightly
differently by Morris [Mo] (see also the discussion in [Tr1, Tr2]).

Since all other cases, except Sp(4, R), are reduced to SL(3, R) by the standard tricks
collected in [KPV], we are again left with Sp(4, R) alone. Of course, in the number
case, the bound given for Sp(4, R) by Tavgen [Ta2] is not uniform; it depends on the
degree and the discriminant of the number field K. However, since Sp(4, R) and its
elementary generators are described by first order relations, we can again use exactly
the same argument of [CKP, Mo] to conclude that there exists an absolute constant
as an upper bound for the width of all Sp(4, R), where R is the ring of integers of
an imaginary quadratic number field. Of course, now we know only that some such
constant exists; it is by no means explicit.
Remark 0.5 As the reader may have noticed, there is a significant overlap between
our research and the recent works of Alexander Trost. Below, for the reader’s con-
venience, following the referee’s suggestion, we present a brief summary of the main
common points. Some more detailed explanations can be found in the relevant parts
of the paper.

● In the number field case, our general strategy is based on focusing on the case
of imaginary quadratic fields. This approach, in the setup of elementary bounded
generation problems, was first applied by Trost; see [Tr2, Theorem 4.1].3

● Arithmetical lemmas, indispensable for the proofs, can be viewed as variations
on the Carter–Keller theme; see [CK1]. All such variations use some generalized form
of Dirichlet’s theorem on primes in an arithmetic progression (see [BMS]) along with
certain specific arguments (see, for example, [MRS]). In the present paper, our main
arithmetic tools in the function field case are Trost’s Lemmas 3.1 and 3.3 from [Tr2].

3This idea goes back to Serre who applied it in the close context of the congruence subgroups
problem; see the first page of his seminal paper [Se].
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6 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

Lemma 3.1 provides an explicit procedure for extracting (q − 1)th roots of Mennicke
symbols, generalizing the main content of our Lemma 6.4 from [KPV]. The latter
lemma also contains a treatment of square roots of Mennicke symbols requiring a
separate argument in characteristic 2. This is used in the present paper and in the
proof of Claim 3 in [Tr3].

● Uniform bounds for the symplectic groups in the function field case were
obtained by Trost in [Tr3, Corollary 3.11], generalizing our earlier results in [KPV]. In
the present paper, we achieve better constants with the help of the swindling method.

● Our proof of the uniform boundedness of Sp4 in the number case, given in
Section 8 of the present paper, and Trost’s proof in [Tr1] are essentially of the same
model-theoretic nature, as the prototypical proof for SLn of Carter–Keller–Paige (and
Morris). More precisely, Trost’s arguments, based on a quite technical Theorem 3.16
from [Tr1], use the compactness theorem of the first-order logic, whereas ours employ
nonstandard models.

The paper is organized as follows. In Section 1, we recall notation and collect some
preliminary results. In Section 2, we recall some important arithmetic lemmas. In
Section 3, we prove Theorem B and also the cases of Theorem A corresponding to
the simply laced root systems Φ and Φ = F4 (we collect these cases in Theorem C).
Section 4 deals with surjective stability of K1-functor and consequences. In Section 5,
we prove a swindling lemma for the groups SL(3, R) and Sp(4, R). In Section 6 and 7,
we establish new bounds for the width of SL(3, R) and Sp(4, R) in the function case.
Section 8 is devoted to Sp(4, R) in the number case. Finally, Section 9 contains some
concluding remarks and open problems.

1 Notation and preliminaries

In this section, we briefly recall the notation, mainly taken from [KLPV], that will be
used throughout the paper and some background facts. For more details on Chevalley
groups over rings, see [Va1] or [VP], where one can find many further references.

1.1 Chevalley groups

Given a reduced root system Φ (usually assumed irreducible), we denote by Φ+, Φ−,
and Π = {α1 , . . . , α l} the sets of positive, negative, and fundamental roots with respect
to a chosen order. Throughout, we denote N = ∣Φ+∣.

For a lattice P intermediate between the root lattice Q(Φ) and the weight lattice
P(Φ) and any commutative unital ring R with the multiplicative group R∗, we denote
by G = GP(Φ, R) the Chevalley group of type (Φ,P) over R. In the caseP = P(Φ), the
group G is called simply connected and is denoted by Gsc(Φ, R). In another extreme
case P = Q(Φ), the group G is called adjoint and is denoted by Gad(Φ, R).

Many results do not depend on the lattice P, and we often omit any reference
to P in the notation and denote by G(Φ, R) any Chevalley group of type Φ over R.
Usually, by default, we assume that G(Φ, R) is simply connected, but in some cases, it
is convenient to work with the adjoint group, which is then reflected in the notation.

Fixing a split maximal torus T = T(Φ, R) in G = G(Φ, R) and identifying Φ with
Φ(G , T), we denote by Xα , α ∈ Φ, the unipotent root subgroups in G, elementary
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with respect to T. We fix maps xα ∶R ↦ Xα , so that Xα = {xα(ξ) ∣ ξ ∈ R}, and require
that these parametrizations are interrelated by the Chevalley commutator formula
with integer coefficients; see [Ca], [Steinb]. The above unipotent elements xα(ξ),
where α ∈ Φ, ξ ∈ R, elementary with respect to T(Φ, R), are also called [elementary]
unipotent root elements or, for short, simply root unipotents.

Further,

E(Φ, R) = ⟨xα(ξ), α ∈ Φ, ξ ∈ R⟩

denotes the absolute elementary subgroup of G(Φ, R), spanned by all elementary root
unipotents, or, what is the same, by all [elementary] root subgroups Xα , α ∈ Φ. For
ε ∈ {+,−}, denote

U ε(Φ, R) = ⟨xα(ξ) ∣ α ∈ Φε , ξ ∈ R⟩ ≤ Esc(Φ, R).

1.2 Relative groups

Let q ⊴ R be an ideal of R, and let ρq∶R �→ R/q be the reduction modulo q. By functo-
riality, it defines the reduction homomorphism of Chevalley groups ρq∶G(Φ, R) �→
G(Φ, R/q). The kernel of ρq is denoted by G(Φ, R, q) and is called the principal
congruence subgroup of G(Φ, R) of level q. We denote by Xα(q) the intersection of
Xα with the principal congruence subgroup G(Φ, R, q). Clearly, Xα(q) consists of all
elementary root elements xα(ξ), α ∈ Φ, ξ ∈ q, of level q:

Xα(q) = {xα(ξ) ∣ ξ ∈ q}.

By definition, E(Φ, q) is generated by Xα(q), for all roots α ∈ Φ. The same sub-
groups generate E(Φ, R, q) as a normal subgroup of the absolute elementary group
E(Φ, R).

The classical Suslin–Kopeiko–Taddei theorem asserts that for rk(Φ) ≥ 2, one has
E(Φ, R, q) ⊴ G(Φ, R). The quotient

K1(Φ, R, q) = Gsc(Φ, R, q)/Esc(Φ, R, q)

is called the [relative] K1-functor. The absolute case corresponds to q = R,

K1(Φ, R) = Gsc(Φ, R)/Esc(Φ, R).

Observe

K1(Al , R, q) = SK1(l + 1, R, q),

so that our K1-functor corresponds rather to the SK1 of the classical theory.

1.3 Arithmetic case

For a global field K and a finite nonempty set S of places of K (containing all
archimedean places when K is a number field), let

R = {x ∈ K ∣ v(x) ≥ 0 ∀v /∈ S}.
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8 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

It is a Dedekind domain whose maximal ideals can be canonically identified with
the places outside S. Following [BMS], we say that R is the Dedekind ring of arithmetic
type defined by the set S (or, for short, an arithmetic ring).

For the arithmetic rings Bass, Milnor, and Serre [BMS] have explicitly calculated
K1(Φ, R, q), Φ = Al ,Cl , l ≥ 2, in terms of Mennicke symbols. Namely, they have
proven that K1(Al , R, q) ≅ C(q) and K1(Cl , R, q) ≅ Cp(q) (the universal Mennicke
groups), which in turn are then identified via reciprocity laws with certain groups of
roots of 1 in R.

The [almost] positive solution of the congruence subgroup problem for these
groups amounts to the fact that the congruence kernel

C(G) ∶= lim
←�

C(q)

taken over all nonzero ideals q ⊴ R is finite. Actually, it is trivial, apart from the case
when R is the ring of integers OK in a purely imaginary number field K, when C(G) ≅
μ(K) is the group of all roots of 1 in K.

Later, their results were generalized to all Chevalley groups by Hideya Matsumoto
[Ma]. The following special case of his results [Ma, Théorème 12.7] explains why we
usually prefer to work with simply connected groups.

Lemma 1.1 Let R be a Dedekind ring of arithmetic type and Φ a reduced irreducible
root system of rank at least 2. Then

Esc(Φ, R) = Gsc(Φ, R).

2 Supporting statements

2.1 Reduction to the ring of integers

The following result is a combination of [BMS, Lemma 2.1] and [BMS, Lemma 5.3].
The same proof, with several successful deteriorations, is reproduced on page 685 of
[CK1].

Lemma 2.1 Let R be a Dedekind ring, s ∈ R, s ≠ 0. Then

SL(2, R[ 1
s
]) = SL(2, R)E3(2, R[ 1

s
]).

In other words, every 2 × 2 matrix with entries in R[ 1
s ] can be reduced to a matrix

with entries in R by ≤ 3 elementary moves with parameters in R[ 1
s ]. Since the number

of elementary moves during the rank reduction does not depend on the ring R, and
the only such dependence occurs at the base of induction, we immediately get the
following corollary.

Lemma 2.2 Let R be a Dedekind ring such that any element of Gsc(Φ, R) is a product
of L elementary root unipotents. Then for any s ∈ R, s ≠ 0, any element of Gsc(Φ, R[ 1

s ])
is a product of at most L + 3 elementary root unipotents.
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Uniform bounded generation of Chevalley groups 9

2.2 Arithmetic lemmas

The following lemma is the arithmetic heart of the whole proof. In the number case,
it is [CK1, Lemma 1], and in the function case, it was first proven in full generality in
[Tr2, Lemma 3.1] (before that, only a special case R = Fq[t] was established as [KPV,
Lemma 6.4]).

Lemma 2.3 Let OK be the ring of integers of a global field K, and let x ∈ SL(2,OK).
Let m be the number of roots of 1 in K in the number case, respectively m = q − 1, where
Fq is the field of constants of K in the function case. Then for any matrix A ∈ SL(2,OK),
there exist nonzero elements a, b ∈ OK with the following properties:

● bOK is a prime ideal, and, moreover, in the number case, bOK is unramified in K/Q
and does not contain m.

● A can be transformed to a matrix with the first row (am , b) by means of not more
than 4 elementary moves in the number case, or 3 elementary moves in the function case.

Remark 2.4 In the function case, in addition to Lemma 2.3, we shall need its version
with m = 2 to be able to extract square roots of Mennicke symbols. If q is odd, such
a version follows automatically because we then have aq−1 = (a(q−1)/2))2 . If q is even,
to adjust the proof of Lemma 2.3 to the case m = 2, an additional argument is needed.
Similar to Trost’s proof of [Tr3, Claim 3], we apply our argument from the end of the
proof of [KPV, Lemma 6.4]. Namely, if K is a global function field of characteristic 2
and f ∈ OK is such that the principal ideal fOK is prime, any g ∈ OK is a square modulo
fOK because its image ḡ in the residue field OK/( f ) of characteristic 2 is a square,
as any other element of a finite field of characteristic 2. This makes the argument
significantly shorter: one only has to take care of the primality of the ideals a2O and
b2O (in the notation of [Tr2, Lemma 3.1]), which is achieved by applying the Dirichlet
theorem.

For a global function field K with the field of constants Fq and b ∈ OK , b ≠ 0, we
denote by ε(b) the exponent of the [finite] multiplicative group (OK/bOK)∗ and set
δ(b) = ε(b)/(q − 1). The following result is due to Trost [Tr2, Lemma 3.3].

Lemma 2.5 Let K be a global function field with the field of constants Fq , a, b ∈
OK/{0}, such that bOK is prime and a and b are comaximal, aOK + bOK = OK . Then
for every unit u ∈ O∗K , there exists c ∈ OK such that

● bc ≡ u (mod a),
● δ(b) and δ(c) are coprime.

3 Tavgen rank reduction theorem and applications

3.1 Tavgen rank reduction theorem

In this section, we prove Theorem B and establish some other useful consequences of
Tavgen’s reduction theorem.

The following trick allowing one to reduce the rank of a root system under
consideration was invented by Tavgen [Ta2] (and then generalized in [VSS] and
[SSV]). The following final form is proven in [KPV, Theorem 4.2].
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10 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

Lemma 3.1 Let Φ be a reduced irreducible root system of rank l ≥ 2, and R be a
commutative ring. Let Δ1 , . . . , Δt be some subsystems of Φ, whose union contains
all fundamental roots of Φ. Suppose that for all Δ i , the elementary Chevalley group
Esc(Δ i , R) admits a unitriangular factorization

Esc(Δ i , R) = U+(Δ i , R)U−(Δ i , R)U+(Δ i , R) . . . U±(Δ i , R)

of length N (not depending on i). Then the elementary group Esc(Φ, R) itself admits
unitriangular factorization

Esc(Φ, R) = U+(Φ, R)U−(Φ, R)U+(Φ, R) . . . U±(Φ, R)

of the same length N.

It is used below in two cases, when all Δ i ’s are A1, and when all of them are A2.

3.2 The case when R∗ is infinite

The case where a Dedekind ring R of arithmetic type has infinitely many units is now
completely solved, with very small absolute constant. Here is a brief account of main
steps along this route. Vsemirnov [Vs] established a first unconditional result of this
sort, not depending on the GRH; Morgan, Rapinchuk, and Sury [MRS] proved that
SL(2, R) is boundedly elementarily generated in number case for an arbitrary R with
infinite R∗. The absolute bound obtained in their paper is L = 9.

In the paper presently under way, the first author, Morris, and Rapinchuk [KMR]
improved the bound to L = 7 in the number case (which we believe is the best possible
and cannot be further improved, in general). A similar result holds in the function
case, with the bound L = 8 (which, we believe, can be further improved to L = 7).

Lemma 3.2 [KMR] For any Dedekind ring of arithmetic type R with the infinite
multiplicative group R∗, any element in SL(2, R) is a product of at most 7 elementary
transvections in the number case or at most 8 elementary transvections in the function
case.

Together with Lemma 3.1, this immediately implies Theorem B: it covers the case
Δ = A1, and all higher rank cases are reduced to rank one by putting Δi = A1 in
Lemma 3.1.

Thus, the condition ∣R∗∣ = ∞ makes a huge relief. Essentially, no extra work is
needed to treat the general case with not the best possible but still rather plausible
bounds (anyway, asymptotically, L cannot be smaller than something like 3N to 4N).

So, if we are not interested in actual bounds, but just in uniform boundedness, the
rest of the exposition is formally dedicated to the Dedekind rings of arithmetic type
with finite multiplicative groups. Thus, in the number case, we restrict our attention to
the rings of integers in imaginary quadratic number fields (sinceZ is already covered).
In the function case, as discovered by Trost [Tr2], for ranks ≥ 2, we do not have to
distinguish between rings with finite and infinite multiplicative group, so that the rest
of this section does not depend on [KMR] (but does depend on [MRS]).

https://doi.org/10.4153/S0008414X24000713 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000713


Uniform bounded generation of Chevalley groups 11

3.3 The simply laced case and Φ = F4

In this section, we prove the statement of Theorem A for the simply laced root systems
and also for Φ = F4.

By a theorem of Carter–Keller–Paige (see [CKP], (2.4)) (rewritten and explained by
Morris [Mo]), bounded generation for groups of type Al , l ≥ 2, holds for all Dedekind
rings R in number fields K, with a bound depending on l and also on the degree d of
K. But since for all degrees d ≥ 3 the existence of uniform bound already follows from
Theorem B, we only need to take maximum of that, and the universal bound for d = 2.

Combining this result with the subsequent work of Trost [Tr2] on the function field
case, one obtains the following result; see [Tr2, Theorem 4.1].

Lemma 3.3 [Tr2] For each l ≥ 2, there exists a constant L = L(l) ∈ N such that for any
Dedekind ring of arithmetic type R, any element in Gsc(Al , R) is a product of at most L
elementary root unipotents.

In fact, in the sequel, we only need the special case of the above result pertaining
to SL(3, R), which corresponds to A2. Indeed, by stability arguments, one has L(l) ≤
L(l − 1) + 3l + 1 for all l ≥ 2, so that all L(l), l ≥ 3 can be expressed in terms of the
constant L(2). In the function case, Trost [Tr2] gave the estimate L(2) ≤ 65. No such
explicit estimate is available in the number case because the uniform boundedness
was established by model-theoretic arguments.

Now we are in a position to get a particular case of Theorem A.

Theorem C Let Φ be simply laced of rank ≥ 2 or Φ = F4, and R be any Dedekind
ring of arithmetic type. Then Gsc(Φ, R) is a product of at most L = L(2)N elementary
unipotents.

Proof Since the fundamental root systems of the simply laced systems and F4 are
covered by copies ofA2, one can take Δ i = A2 in Lemma 3.1 and then apply Lemma 3.3
to the A2 case. ∎

Thus, in addition to Theorem B, we obtain another stronger form of Theorem A,
now without the assumption that R∗ is infinite, but only in the special case of simply
laced systems of rank ≥ 2 and F4. The bound here is very rough, since L(2) is the
number of elementary factors; the number of unitriangular ones can be much smaller.
Also, the use of stability arguments allows one to get much better bounds, of the type
L = L(2) + M, with 3N ≤ M ≤ 4N , where some multiple of N occurs as a summand,
not as a factor.

4 Stability of K1-functor and flipping long and short roots

Another way to reduce bounded generation of G(Φ, R) to bounded generation
of G(Δ, R), where Δ ⊂ Φ, is called surjective stability of K1-functor. Recall that
K1(Φ, R) = G(Φ, R)/E(Φ, R). Let the root embedding Δ ⊂ Φ be given. Surjective
stability of K1-functor tells us that G(Φ, R) = E(Φ, R)G(Δ, R); see, for example, [St],
[Pl]. Moreover, it provides a reduction from G(Φ, R) to G(Δ, R) by a bounded
number of steps, with a bound depending on R and the root embedding. Here is the
main observation we use (see [KPV]).
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12 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

Lemma 4.1 Let R be a Dedekind ring of arithmetic type. Then (uniform) bounded
generation of the groups G(Φ, R), Φ ≠ C2, follows from (uniform) bounded generation
of the group G(A2 , R).

We illustrate Lemma 4.1 by two examples of the Chevalley groups of types Φ = Bl ,
l ≥ 3, and Φ = G2 with explicit bounds for reduction. Of course, by stability arguments,
one can assume that G(Bl , R) is already reduced to G(B3 , R).
Proposition 4.2 Let R be a Dedekind ring and assume that any element of G(A2 , R)
is a product of at most L elementary root unipotents. Then any element of G(G2 , R) is
a product of at most L + 20 elementary root unipotents.
Proof From [KPV, Proposition 5.3], we obtain the universal bound L(2) + 20 for the
elementary generation of Esc(G2 , R) over all Dedekind rings of arithmetic type. ∎
Proposition 4.3 Let R be a Dedekind ring and assume that any element of Gsc(A2 , R)
is a product of L elementary root unipotents. Then any element of Ead(B3 , R) is a product
of at most L + 31 elementary root unipotents.
Proof First, observe that [KPV, Lemmas 7.3 and 6.1] are valid for any Dedekind ring
R (although they are formally stated under the assumption R = Fq[t]).

By [KPV, Lemma 7.3], each element x ∈ Ead(B3 , R) is a product of an image of
y ∈ Gad(B2 , R) and at most 21 elementary root unipotents. However, since the image
of y in Gad(B3 , R) is elementary and, in particular, lies in the kernel of the spinor
norm, we conclude that y itself lies in the kernel of the spinor norm [Ba, Proposition
3.4.1], and therefore, y is the image of some z ∈ Gsc(B2 , R) [Ba, (3.3.4)].

Next, by [KPV, Lemma 6.1], z is equal to a product of the image of some w ∈
Gsc(A1 , R) and at most 10 elementary root unipotents (where A1 ⊂ B2 is the inclusion
on long roots). Therefore, x is the product of the image of w in Gad(B3 , R) and at most
31 elementary root unipotents.

However, since the inclusion A1 ⊂ B3 factors through A2, we conclude that x is a
product of an image of some element from Gsc(A2 , R) and at most 31 elementary root
unipotents. The claim follows. ∎
Corollary 4.4 For any Dedekind ring of arithmetic type R, any element of Gsc(B3 , R)
is a product of at most L(2) + 41 elementary root unipotents.
Proof Any element of Gsc(B3 , R) is elementary by Lemma 1.1, and therefore, its
image in Gad(B3 , R) is a product of at most L(2) + 31 elementary root unipotents
by Proposition 4.3. However, Gsc(B3 , R) is a central extension of Gad(B3 , R) with
the kernel cyclic of order 2. The generator of the kernel comes from Gsc(D3 , R) [Ba,
(3.4)], where it can be expressed as a product of at most 10 elementary root unipotents
by [HO, Theorem 7.2.12]. ∎

4.1 The case of Sp(2l , R), l ≥ 3

Thus, we are left with the analysis of the the symplectic groups Sp(2l , R), l ≥ 2. Quite
amazingly, the results of [KPV] and [Tr2] allow to reduce Sp(6, R) to SL(3, R) as
well. As mentioned in [KLPV], the idea of such a reduction was contained already in
Zakiryanov’s thesis; see [Za]. Of course, as above, the case Φ = Cl , l ≥ 3 is immediately
reduced to Φ = C3 by stability.
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Proposition 4.5 Let R be a Dedekind ring and assume that any element of Gsc(A2 , R)
is a product of L elementary root unipotents. Then any element of Esc(C3 , R) is a product
of at most L + 40 elementary root unipotents.

Proof As in the case of Φ = B3, we first invoke [KPV, Lemma 7.1] to reduce a matrix
from Sp(6, R) to a matrix from Sp(4, R) by 16 elementary transformations. Then
we invoke [KPV, Lemma 6.1] to reduce a matrix from Sp(4, R) to a matrix from
Sp(2, R) = SL(2, R) in long root position by 10 elementary transformations. After that,
we invoke Lemma 2.3 to get a square in the nondiagonal position by 4 elementary
transformations in the number case or to do the same in the function case by 3
elementary transformations. Now, we can invoke [KPV, Lemma 6.15] to move such a
matrix in the long root fundamental position to a matrix in the short root fundamental
position by 10 elementary transformations. At this stage, we can apply Lemma 3.3 to
the short root Ã2 ≤ C3, which gives us ≤ 16 + 10 + 4 + 10 + L elementary moves in all
cases. ∎

So, we have two remaining tasks. First of all, we have to prove Theorem A in the
C2 = Sp(4, R) case, which is not covered by our previous considerations. Second, we
want to make the number L(2), which is a crucial constituent in all estimates, as small
as we can.

5 Swindling lemma

We concentrate now on minimizing estimates for bounded generation. As we know,
this problem depends severely on the number of moves which are necessary in order
to move any matrix from SL(3, R), where R is a Dedekind ring of arithmetic type, to
the identity matrix.

In this section, we establish what Nica [Ni] calls “swindling lemma,” which is
essentially a very weak form of multiplicativity of Mennicke symbols, sufficient for
our purposes and cheaper than the form used in [CK1] in terms of the number of
elementary moves. For the symplectic case, such a lemma in full generality is already
contained in [KPV]. Here, we come up with a reverse engineering version of Nica’s
lemma [Ni, Lemma 4] in the linear case. The proof itself is organized in the same style
as the proofs in [KPV, Section 6.3].

5.1 Swindling lemma for SL(3, R)

The following result is essentially [Ni, Lemma 4]. Of course, formally Nica assumes
that R is a PID, to conclude that all s have the desired factorizations. But calculations
with Mennicke symbols [BMS] show that his result holds [at least] for all Dedekind
rings. Below, we extract the rationale behind his proof to apply it in the only situation
we need. Namely, we stipulate that the desired factorization of s does exist.

Lemma 5.1 Let R be any commutative ring. Assume that

A =
⎛
⎜
⎝

a b 0
sc d 0
0 0 1

⎞
⎟
⎠
∈ SL(3, R),
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14 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

where s admits factorization s = s1s2 such that

a ≡ d ≡ 1 (mod s1), a ≡ d ≡ −1 (mod s2).

Then A can be transformed to

A =
⎛
⎜
⎝

±a −sb 0
c ∓d 0
0 0 −1

⎞
⎟
⎠
∈ SL(3, R)

by ≤ 11 elementary moves.

Proof Let t1 , t2 ∈ R be such that

a = 1 + s1 t1 = −1 + s2 t2 .

Below, we use programmers’ notation style to describe elementary moves, keeping the
letter A to denote all matrices appearing along the way.

● Step 1

A = At31(s1) =
⎛
⎜
⎝

a b 0
sc d 0
s1 0 1

⎞
⎟
⎠

.

● Step 2+3

A = t13(−t1)t23(−s2c)A =
⎛
⎜
⎝

1 b −t1
0 d −s2c
s1 0 1

⎞
⎟
⎠

.

● Step 4

A = t31(−s1)A =
⎛
⎜
⎝

1 b −t1
0 d −s2c
0 −s1b a

⎞
⎟
⎠

.

At this stage, we have rolled s1 over the diagonal by simultaneously moving the
2 × 2 matrix from the NW-corner to the SE-corner. Now we have to roll over s2 by
simultaneously returning our 2 × 2 matrix back to the NW-corner.

● Step 5+6

A = At12(−b)t13(t1 + s2) =
⎛
⎜
⎝

1 0 s2
0 d −s2c
0 −s1b a

⎞
⎟
⎠

.

Now we are in exactly the same position as we were after the first move and can
start rolling back.

● Step 7+8

A = t21(c)t31(−t2)A =
⎛
⎜
⎝

1 0 s2
c d 0
−t2 −s1b −1

⎞
⎟
⎠

.
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● Step 9

A = t13(s2)A =
⎛
⎜
⎝

−a −sb 0
c d 0
−t2 −s1b −1

⎞
⎟
⎠

.

● Step 10+11

A = At31(−t2)t32(−s1b) =
⎛
⎜
⎝

−a −sb 0
c d 0
0 0 −1

⎞
⎟
⎠

.

For the other choice of signs, one should start rolling over the other way, say, with
moving A to At32(s2). ∎

Remark 5.2 Below, we state a stronger form of the swindling lemma for short roots
in Sp(4, R), Lemma 5.3 = [KPV, Proposition 6.10], where an arbitrary s is rolled over
from c to b. One could ask, how is it possible that the symplectic result is more general
than the linear one? The answer is very easy. What we do here is the linear prototype
of the swindling lemma for long roots in Sp(4, R), Lemma 5.4 = [KPV, Lemma 6.7],
where a square s2 is rolled over from c to b. Of course, we could do the same here, but
then to apply it, we would have to use the deep arithmetic Lemma 2.3 on the extraction
of square roots of Mennicke symbols, which would increase the number of elementary
moves.

5.2 Swindling lemma for Sp(4, R)

In what concerns Sp(4, R), we keep the notation and conventions of [KPV, Section
6]. In particular, Sp(4, R) preserves the symplectic form with Gram matrix

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞
⎟⎟⎟
⎠

.

Further, α and β are fundamental roots of C2, and the corresponding root unipotents
are

xα(ξ) =
⎛
⎜⎜⎜
⎝

1 ξ 0 0
0 1 0 0
0 0 1 −ξ
0 0 0 1

⎞
⎟⎟⎟
⎠

, xβ(ξ) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 ξ 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

,

while x−α(ξ) and x−β(ξ) are their transposes. Together, they generate the elementary
symplectic group Ep(4, R)which for Dedekind rings of arithmetic type coincides with
Sp(4, R).

There are two natural embeddings of SL(2, R) into Sp(4, R), the short root embed-
ding ϕα

ϕα (
1 ξ
0 1) = xα(ξ), ϕα (

1 0
ξ 1) = x−α(ξ),
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16 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

and the long root embedding ϕβ

ϕβ (
1 ξ
0 1) = xβ(ξ), ϕβ (

1 0
ξ 1) = x−β(ξ),

and unlike groups of other types in the symplectic case, they behave very differently.
The following swindling lemma for the short root embedding that we use in the

sequel seems to be stronger than the linear swindling lemma. But this is because,
morally, the Mennicke symbol constructed via ϕα is the square root of the Mennicke
symbol constructed via ϕβ . At the same time, stability reduction (see, for instance,
[KPV, Lemma 6.1]) reduces a symplectic matrix to an element of SL(2, R) in the long
root embedding. Thus, to be able to use this [seemingly] stronger form of swindling,
we should be able to extract square roots of Mennicke symbols anyway.

Lemma 5.3 [KPV] Let a, b, c, d , s ∈ R, ad − bcs = 1, and, moreover, a ≡ d (mod s).
Then

ϕα (
a b
cs d) =

⎛
⎜⎜⎜
⎝

a b 0 0
cs d 0 0
0 0 a −b
0 0 −cs d

⎞
⎟⎟⎟
⎠

can be moved to

ϕα (
d c
bs a) =

⎛
⎜⎜⎜
⎝

d c 0 0
bs a 0 0
0 0 d −c
0 0 −bs a

⎞
⎟⎟⎟
⎠

by ≤ 26 elementary transformations.

We do not use it here, but to put things in the right prospective, let us reproduce the
swindling lemma for long roots [KPV, Lemma 6.7], on which the proof of Lemma 5.3
hinges, and which is a true analogue of Lemma 5.1 valid for all commutative rings. The
number of moves in Lemma 5.4 seems to be smaller than in Lemma 5.1. The reason is
that we do not return the element of SL(2, R) to the initial position, corresponding to
the long root β, but leave it in another embedding, corresponding to another long root
2α + β. This “half-swindling” in the long root embedding was followed by returning
to the embedding φα corresponding to the short root α (see [KPV, Lemma 6.9]). This
was sufficient for the proof of the key Proposition 6.10 in [KPV]

Lemma 5.4 [KPV, Lemma 6.7] Let a, b, c, d , s ∈ R, ad − bcs2 = 1, and, moreover, a ≡
d ≡ 1 (mod s). Then

ϕβ (
a b

cs2 d) =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 a b 0
0 cs2 d 0
0 0 0 1

⎞
⎟⎟⎟
⎠
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can be moved to

ϕ2α+β (
d −c

−bs2 a ) =
⎛
⎜⎜⎜
⎝

d 0 0 −c
0 1 0 0
0 0 1 0

−bs2 0 0 a

⎞
⎟⎟⎟
⎠

by ≤ 8 elementary transformations.

6 SL(3, R): function case

Here, we prove that in the function case L(2) ≤ 44. This allows us to calculate explicit
uniform bounds for the width of all Chevalley groups of rank ≥ 2, with the sole
exception of Sp(4, R). This last case cannot be reduced to SL(3, R) but can be treated
similarly – and, in fact, nominally4 easier, since there we have swindling lemma for
short roots in full generality, Lemma 5.3 = [KPV, Proposition 6.10].

With the bound L ≤ 65, the following result was already established by Trost [Tr2,
Theorem 1.3]. We use his arithmetic lemmas, but to derive the bounded generation, we
adopt the strategy of Nica [Ni], with some improvements suggested in our previous
paper [KPV].

Lemma 6.1 For any Dedekind ring of arithmetic type R in a global function field K,
any element in SL(3, R) is a product of L ≤ 44 elementary root unipotents.

Proof Let, as always, K be a global function field with the field of constants Fq and
R = OK ,S be any ring of arithmetic type with the quotient field K.

● We start with any matrix A ∈ SL(3, R) and reduce it to a matrix

A = ( a b
c d ) ∈ SL(2, R) ≤ SL(3, R)

by ≤ 7 elementary moves.
●Now by Lemma 2.1, any matrix in A ∈ SL(2,OK ,S) can be reduced to a matrix A ∈

SL(2,OK) at the cost of≤ 3 elementary moves. Thus, we can from the very start assume
that A ∈ SL(2,OK) – in other words, that R = OK is precisely the ring of integers of K.

● Using a version of Dirichlet theorem (= Kornblum–Landau–Artin theorem in
the function case) on primes in arithmetic progressions, we can assume that bR is a
prime ideal at the cost of 1 elementary move.

Now Lemma 2.5 implies that there exists c ∈ R such that bc ≡ −1 (mod a) and
δ(b) and δ(c) are coprime. The first of these conditions guarantees the existence of
d ∈ R such that ad − bc = 1. Since modulo the root subgroup X21 = {t21(ξ), ξ ∈ R} a
matrix A ∈ SL(2, R) only depends on its first row, by another 1 elementary move, we
can assume that the entries of our A themselves have this last property. At this step,
we have used 2 elementary moves.

4Of course, the difference comes from the fact that there we use extraction of square roots of
Mennicke symbols. We could do the same here, getting a slightly shorter proof, with slightly worse
bounds.
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● Let u, v ∈ N be such that uδ(b) − vδ(c) = 1. It follows that

(a b
c d) = (

a b
c d)

uδ(b)

⋅ (a b
c d)

−vδ(c)

,

and we reduce the factors independently.
With this end, we proceed exactly as Carter and Keller do in [CK1], and as every-

body after them. Namely, we invoke the Cayley–Hamilton theorem, which asserts that
A2 = tr(A)A− I so that

Am = X(tr(A))I + Y(tr(A))A,

where I stands for the identity matrix and X, Y are polynomials in Z[t].
It is well known that X divides Y 2 − 1 or, what is the same, Y divides X2 − 1; see the

proof of [CK1, Lemma 1]. Since Z[t] is a unique factorization domain, there exists a
factorization

Y = Y1Y2 , X ≡ 1 (mod Y1), X ≡ −1 (mod Y2).

Remark 6.2 In fact, X and Y are explicitly known; morally, they are the values of
two consecutive Chebyshev polynomials Um−1 and Um at tr(A)/2 = (a + d)/2, which
allows one to argue inductively, without swindling. This is essentially the approach
taken by Sergei Adian and Jens Mennicke [AM], only that they are not aware these are
Chebyshev polynomials and have to establish their properties from scratch. We do not
follow this path here since it would require considerably more elementary moves. ∎

● Thus, for an arbitrary m, one has

(a b
c d)

m

= x (1 0
0 1) + y (a b

c d) = (
x + ya yb

yc x + yd) ,

where x = X(a + d), y = X(a + d). An explicit calculation shows that

x + ya ≡ am (mod b) and x + ya ≡ am (mod c).

Substituting a + d into the decomposition Y = Y1Y2, we get

y = y1 y2 , where y1 = Y1(a + d), y2 = Y2(a + d).

By the very definition of y1 and y2, one has

x ≡ 1 (mod y1), x ≡ −1 (mod y2),

now as congruences in R. Thus,

x + ya ≡ x + yd ≡ 1 (mod y1), x + ya ≡ x + yd ≡ −1 (mod y2),

and we are in a position to apply swindling, as stated in Lemma 5.1.
● Now, applying Lemma 5.1 we reduce

Am = (x + ya yb
yc x + yd)
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to either

B = (x + ya y2b
c x + yd)

or

C = (x + ya b
y2c x + yd)

depending on whether we argue modulo c or modulo b, both in≤ 11 elementary moves.
● In the first case, Am , m = −vδ(c), by one appropriate row transformation, we get

t12(∗)B = ((aδ(c))−v ∗
c x + yd

) ,

where aδ(c), and hence, (aδ(c))−v , is congruent to an element of Fq modulo c. Thus,
changing the parameter of the elementary move, we may from the very start assume
that

t12(∗)B = (e ∗
c x + yd) ,

with f ∈ F∗q . Two more moves make this matrix diagonal

t21(−c f −1)t12(∗)Bt12(∗) = h12( f ).

Altogether, we have spent≤ 14 = 11 + 3 elementary moves to reduce Am to a semisimple
root element in this case.

● The analysis of the second case, Am , m = uδ(b), is similar. As above, by one
appropriate column transformation, we get

Ct21(∗) = ((aδ(b))u b
∗ x + yd) ,

where aδ(b), and thus also (aδ(b))u , is congruent to an element of Fq modulo c. Thus,
changing the parameter of the elementary move, we may from the very start assume
that

t12(∗)B = (g b
∗ x + yd) ,

with g ∈ F∗q . Two more moves make this matrix diagonal

t12(∗)Bt21(∗)t12(−g−1b) = h12(g).

As above, we have spent ≤ 14 = 11 + 3 elementary moves to reduce Am to a semisimple
root element in this case as well.

● As is classically known (see, for instance, [KPV, Corollary 2.2]), the semisimple
root element h12( f g) = h12( f )h21(g) can be expressed as a product of ≤ 4 elementary
transformations.

Altogether, this gives us ≤ 7 + 3 + 2 + 11 + 11 + 3 + 3 + 4 = 44 elementary moves. A
reference to Trost would give 65.
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Remark 6.3 The estimate in Lemma 6.1 can eventually be slightly improved. Namely,
instead of appealing to Lemma 2.1 at the second step of the proof, we could proceed
as in [Tr2, Remark 2.5]. More precisely, in our setup, there exists an element x ∈ K,
transcendental over Fq , such that the integral closure of Fq[x] in K is isomorphic
to OK ,S ; see [Ge, Example (ii)] or [Ro, Proposition 7]. More explicitly, according to
Proposition 6 and the subsequent lemma in [Ro], if S = {P1 , . . . , Ps} and D = a1P1 +
. . . as Ps is a positive divisor of sufficiently large degree, then D appears as the polar
divisor D∞ of some x, so that div(x) = D0 − D∞.

This argument allows one to justify the proof of [Tr2, Lemma 3.1] over an arbitrary
R = OK ,S ; see [KMR]. However, we do not know whether this is enough to streamline
all steps of our proof, particularly the third one where we use Lemma 2.5. If yes, this
would save us three elementary moves and give the estimate L ≤ 41.

7 Sp(4, R): function case

Here, we prove that for the group Sp(4, R) in the function case, the uniform bound
is ≤ 90. Modulo Lemma 2.5 = [Tr2, Lemma 3.3], it is essentially the same proof as the
one given in [KPV, Section 6.4], which from the very start uses extraction of square
roots of Mennicke symbols – thus, Lemma 2.3 = [Tr2, Lemma 3.1]. Since the swindling
in short root position established in [KPV, Proposition 6.10] is already quite general,
the only difference with the proof in [KPV] is the necessity to invoke Lemma 2.1 to
reduce to a matrix with entries in OK , which costs 3 extra moves.
Lemma 7.1 For any Dedekind ring of arithmetic type R in a global function field K, any
element in Sp(4, R) is a product of L ≤ 90 elementary root unipotents.
Proof Essentially, we argue exactly as in the proof of Lemma 6.1, but now relying on
the symplectic versions of the main lemmas from [KPV, Section 6], the SL2-part of
the argument will be exactly the same, so we only indicate differences.

As above, we start with a global function field K with the field of constants Fq , and
any ring of arithmetic type R = OK ,S therein.

● We start with any matrix A ∈ Sp(4, R) and reduce it to a matrix

A = ϕβ (
a b
c d) =

⎛
⎜⎜⎜
⎝

1 0 0 0
0 a b 0
0 c d 0
0 0 0 1

⎞
⎟⎟⎟
⎠
∈ SLβ(2, R) ≤ Sp(4, R)

in the long root embedding of SL(2, R) by ≤ 10 elementary moves, [KPV, Lemma 6.1].
● Now by Lemma 2.1, any matrix in A ∈ SLβ(2,OK ,S) can be reduced to a matrix

A ∈ SLβ(2,OK) at the cost of ≤ 3 elementary moves so that we can from the very start
assume that R = OK is the full ring of integers of K.

The next step does not have analogues for SL(3, R).
● Now, being inside SL(2,OK), we can invoke Lemma 2.3 to transform our A to

another

A = ϕβ (
a b2

∗ ∗ ) ∈ SLβ(2, R) ≤ Sp(4, R),

with different a and b, at a cost of ≤ 3 elementary moves.
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● Next, we can move such an A to a matrix of the shape

A = ϕβ (
a b2

−c2 ∗ ) ∈ SLβ(2, R) ≤ Sp(4, R),

by ≤ 1 elementary move [KPV, Lemma 6.14], which, in turn, can be moved to a short
root position

ϕα (
a b
c d) =

⎛
⎜⎜⎜
⎝

a b 0 0
c d 0 0
0 0 a −b
0 0 −c d

⎞
⎟⎟⎟
⎠
∈ SLα(2, R) ≤ Sp(4, R),

at a cost of ≤ 9 elementary moves; see [KPV, Lemma 6.9]. Altogether, this gives us ≤ 10
elementary moves at this step; compare [KPV, Lemma 6.15].

At this stage, we are in the same situation as in the proof of Lemma 6.1 and can
return to its third step repeating the proof from that point on almost verbatim. Of
course, now we have a stronger and more general version of swindling, Lemma 5.3
instead of Lemma 5.1, but on the other hand, since it involves switching to long root
embeddings, and then back again, it requires many more elementary moves than in
the linear case. Let us list the steps to specify the number of elementary moves.

● Again, using a version of the Dirichlet theorem and Lemma 2.5 =[Tr2, Lemma
3.3], we can assume that b is prime and c is such that δ(b) and δ(c) are coprime. This
requires ≤ 2 elementary moves.

● After that, it is exactly the same proof as that of Lemma 6.1, with reference to
Lemma 5.3 instead of Lemma 5.1, which uses 26 elementary moves instead of 11 in the
linear case.

●The last three steps are now literally the same as in the proof of Lemma 6.1, adding
3+3+4 elementary moves to reduce A to the identity matrix.

This finishes the proof of Lemma 7.1. Altogether, we have used

≤ 10 + 3 + 3 + 10 + 2 + 26 + 26 + 3 + 3 + 4 = 90

elementary moves, as claimed. ∎

Remark 7.2 In the spirit of Remark 6.3, one can eventually improve the estimate in
Lemma 7.1 to L ≤ 87 by circumventing the use of Lemma 2.1.

Remark 7.3 The 6 elementary moves needed to diagonalize the matrix at the
end of the proof of Lemmas 6.1 and 7.1 have been forgotten in the proof of
[KPV, Theorem 6.18]. This corrigendum worsens the estimate in that theorem to
wE(Sp(4,Fq[t]) ≤ 85.

8 Sp(4, R): number case

Thus, the only piece that is lacking at this point is a uniform bound for Dedekind rings
R of number type with finite multiplicative group R∗. Since Gsc(Φ,Z), rk(Φ) ≥ 2,
are boundedly generated [Ta2], we can henceforth assume that R = OK is the ring of
integers of an imaginary quadratic field K, [K ∶ Q] = 2.
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The existence of a uniform elementary width bound L = L(2, 2) for SL(3, R), R =
OK , [K ∶ Q] = 2 was established by Carter, Keller, and Paige [CKP] in the language
of model theory/nonstandard analysis5 and then presented slightly differently, in
more traditional logical terms, by Morris [Mo]. Observe, though, that their bound
is uniform but not explicit.

As we know from Sections 2 and 3, the existence of a uniform bound for SL(3, R)
implies the existence of uniform bounds for all Gsc(Φ,Z), rk(Φ) ≥ 2, with the sole
exception of Sp(4, R).

However, using the results of Bass, Milnor, and Serre [BMS], the existence of a
uniform bound for elementary width of Sp(4, R), R = OK , [K ∶ Q] = 2 can be easily
derived by exactly the same methods as in [CKP], [Mo]. Below, we sketch a proof of
the following result.

Lemma 8.1 There exists a uniform bound L = L′(2, 2) such that the width of all groups
Sp(4, R), where R = OK is the ring of integers in a quadratic number field [K ∶ Q] = 2,
does not exceed L.

With this end, we have to briefly recall parts of its general context.

8.1 Bounded generation of ultrapowers

First, recall that being algebraic groups Chevalley groups themselves commute with
direct products:

G(Φ,∏
i∈I

R i) =∏
i∈I

G(Φ, R i).

However, elementary groups do not, in general, commute with direct products, which
is due to the lack of the uniform elementary generation. Namely, Wilberd van der
Kallen noticed that the quotient

E(Φ, R)∞/E(Φ, R∞)
(countably many copies) is precisely the obstruction to the bounded generation of
E(Φ, R). This easily ensues from the following obvious observation. In the case of
SL(n, R) the following result is [CKP, Theorem 2.8]; generalization to all Chevalley
groups is immediate.

Lemma 8.2 Let I be any index set and R i , i ∈ I be a family of commutative rings.
Suppose all E(Φ, R i) have elementary width ≤ L,

E(Φ, R i) = EL(Φ, R i).

Then the elementary width of

∏
i∈I

E(Φ, R i) = E(Φ,∏
i∈I

R i)

does not exceed 2LN. Conversely, the above equality implies that all E(Φ, R i) are
uniformly elementarily boundedly generated.

5In fact, they established the existence of such a uniform bound L = L(n − 1, d) for SL(n, R), R =
OK , [K ∶ Q] = d that depends on the rank n − 1 of the group and the degree d of the number field.
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Proof Take g i ∈ E(Φ, R i), i ∈ I, and for each i ∈ I, choose an elementary expression
of g i of length ≤ L, say

g i = xβ(i)1(ξ(i)1) . . . xβ(i)L(ξ(i)L) =
L
∏
j=1

xβ(i) j(ξ(i) j) ∈ E(Φ, R i).

If an actual expression of g i is shorter than L, just set the remaining β(i) j to the
maximal root of Φ and ξ(i) j to 0.

Now consider any ordering of roots in Φ = {γ1 , . . . , γ2N} and form products

u(i) j = xγ1(ξ(i) j
1) . . . xγ2N (ξ(i) j

2N) =
2N
∏
h=1

xγh(ξ(i) j
h) ∈ E(Φ, R i), 1 ≤ j ≤ L

by the following rule:

ξ(i) j
h =

⎧⎪⎪⎨⎪⎪⎩

ξ(i) j , if β(i) j = γh ,
0, otherwise.

.

Then clearly

g i = u(i)1 . . . u(i)L ∈ E(Φ, R i), i ∈ I.

Thus, every element

g = (g i)i∈I ∈ ∏
i∈I

E(Φ, R i)

can be expressed as g = u1 . . . uL , where each of the L factors

u j = (u(i) j)i∈I ∈ E(Φ,∏
i∈I

R i), 1 ≤ j ≤ L

can be expressed as a product of 2N elementary generators

u j = xγ1((ξ(i) j
1)i∈I) . . . xγ2N((ξ(i) j

2N)i∈I)

with parameters in ∏
i∈I

R i .

Conversely, an element g = (g i)i∈I , where g i ∈ E(Φ, R i), such that the length of its
components g i is unbounded, cannot possibly belong to E(Φ,∏

i∈I
R i). ∎

Since bounded generation is inherited by factors, any ultraproduct R = ∏U R i
of rings R i for which the elementary groups E(Φ, R i) are uniformly boundedly
generated enjoys the property that E(Φ, R) is boundedly generated. In particular, this
applies to ultrapowers ∗R, also known as nonstandard models of R. In other words,
we have the following result.

Lemma 8.3 Bounded elementary generation of the elementary group E(Φ, R) is
equivalent to the equality

∗E(Φ, R) = E(Φ, ∗R)

for all nonstandard models ∗R of R.
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24 B. Kunyavskĭı, E. Plotkin, and N. Vavilov

Proof By the remark preceding the statement of this lemma, we only need to check
the inverse implication. Denote by F the Fréchet filter on N. Assume that E(Φ, R) is
not boundedly generated, or, what is the same, there exists a sequence g i ∈ E(Φ, R),
i ∈ N of matrices from E(Φ, R) with infinitely growing lengths. Then the element g =
(g1 , g2 , g3 , . . . ) has infinite length in E(Φ, R)∞ and, by the very definition of F, also
in E(Φ, R)∞/F. In other words, g ∉ E(Φ, R∞/F).

Since F is the intersection of all nonprincipal ultrafilters, there exists a nonprincipal
ultrafilter U such that the image of g in the ultrapower ∗E(Φ, R) = E(Φ, R)∞/U
does not belong to E(Φ,∗R) = E(Φ, R∞/U). Thus, for this particular U, we have
∗E(Φ, R) ≠ E(Φ,∗R). ∎

Remark 8.4 Assuming the Continuum Hypothesis, all ∗R are isomorphic and one
has to require the equality ∗E(Φ, R) = E(Φ,∗R) for one nonstandard model. Other-
wise, there are 22ℵ0 ultrafilters that lead to non-isomorphic ∗R, and to be on the safe
side, one has to stipulate this equality for all of them.

8.2 Congruence subgroup problem for nonstandard models

However, Carter, Keller, and Paige [CKP] made this observation quite a bit more
precise. Namely (see [CKP, 2.1] or [Mo, Lemma 2.29]), they established the following
fact.

Lemma 8.5 Bounded elementary generation of the elementary group E(Φ, R) is
equivalent to the condition

E(Φ, ∗R) has a finite index in ∗E(Φ, R),

for all nonstandard models ∗R of R.

In fact, they proved that bounded elementary generation of the elementary group
E(Φ, R) is equivalent to the almost positive solution of the congruence subgroup
problem for all nonstandard models ∗R of R.

More precisely, [CKP, 2.3] and [Mo] apply the whole machinery not just to the
bounded generation of SL(n, R) but also to the bounded generation of E(n, R, q) in
terms of the conjugates of elementary generators of level q. They consider groups
SL(n, R, q)/E(n, R, q) which are isomorphic to quotients of universal Mennicke
groups C(q) for all nonzero ideals q ⊴ R and restate bounded elementary generation
of E(n, R, q) as the almost positive solution of the congruence subgroup problem for
SL(n, ∗R).

Recall that we need a universal bound that depends only on the root system Φ and
the degree of K. Since we reduce the problem to the congruence subgroup problem
for SL(n, ∗R), we are very close to that.

8.3 Universal bound

Before going to Sp(4, R)we shall recall one more principal invention of Carter, Keller,
and Paige [CKP]. We need to pass from the ring of integers R = OK in an algebraic
number field to the ring ∗R. The ring ∗R is a nonstandard model of R; that is, ∗R equals
to an ultrapower ∏U R along the ultrafilter U. The good point is that thanks to Łoś’s
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theorem [ChKe, Theorem 4.1.9] ultrapowers keep first-order properties of structures
unchanged. The bad point is that other properties do not survive, and in many senses,
∗R is far away from the ring of integers R.

With this end, Carter, Keller, and Paige [CKP] introduce arithmetic conditions
Gen(t, r) and Exp(t, s) on a ring R that depend on natural parameters r, s, and t,
which are too technical to describe them here in full. Morally, Gen(t, r) allows to
uniformly bound the number of generators of the abelian groups C(q), while Exp(t, s)
allows to uniformly bound their exponent. Besides, [CKP] constantly used the fact that
the stable rank of R is 1.5.

The importance of these conditions consists in the following pivotal observations.
First of all, conditions Gen(t, r), Exp(t, s), and sr(R) = 1.5 are stated in the first-
order language of ring theory; see [CKP, 2.2] or [Mo, Sections 3A and 3B]. Hence,
the characteristic property of ultraproducts imply the following:
Lemma 8.6 A commutative ring R satisfies conditions Gen(t, r) and Exp(t, s) with
specific parameters if and only if ∗R satisfies these conditions with the same parameters.
Besides, sr(∗R) is 1.5.

Most importantly, these conditions allow to bound uniformly the universal Men-
nicke groups C(q) for all ideals q ⊴ R – and thus to get the finite congruence kernel
of G(Φ, ∗R). Indeed, the main (difficult!) step in obtaining a uniform bound in the
number case is the following result; see [CKP, Theorem 1.8] or [Mo, Theorem 3.11].
Lemma 8.7 Let r, s, t be positive integers, and let R be an integral domain subject to
the conditions

● sr(R) = 1.5, ● Gen(t, r), ● Exp(t, s).
Then for all ideals q, the universal Mennicke group C(q) is finite and its order is
uniformly bounded by tr .

Finally, the rings of integers of the number fields of bounded degree [K ∶ Q] ≤ d
satisfy these conditions for some values of parameters (which depend on d and which
we do not wish to specify here). This result depends on [a very strong form of] the
Dirichlet theorem on primes in arithmetic progressions. The following lemma is a
[weaker form of the] conjunction of [CKP, Lemmas 4.4 and 4.5] or [Mo, Corollary
3.5 and Theorem 3.9]; the proof thereof requires subtle arithmetic properties of norm
maps on the groups of units that are based on the aforementioned Dirichlet theorem
(see [CKP, Lemma 4.3] or [Mo, Lemma 3.8]).
Lemma 8.8 The ring of integers R = OK in an algebraic number field K satisfies
Gen(t, 1) for every positive integer t and Exp(t, 2) for some t depending on the degree
d = [K ∶ Q].

Hence, one can take R = ∗R in Lemma 8.7 and arrive at the almost positive solution
of the congruence problem in SL(n, ∗R), as required.

To use the above fact for SL(n, ∗R) = SL(n,∏U R) is the same as to use the
Compactness Theorem as is in [CKP] or [Mo, Theorem 2.7]. In any case (cf. [CKP,
Theorem 2.4] or [Mo, Corollary 3.13]), we get bounded elementary generation of
SL(n, R) with the bound that only depends on the root system Φ and the degree of K.

At this point, [CKP, 2.5] use a standard argument from nonstandard analysis. Since
the elementary width w(G) ∈ ∗N of G = SL(n, R) on this class of rings R is internally
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defined, everywhere finite, and bounded (by any infinite natural number), it must
attain maximal value, which is obviously finite (all of them are!).

The proof of the uniform bounded generation for Chevalley groups will be com-
pleted if we cover the case of symplectic groups. The standard reasoning says that it is
enough to prove the fact for the rank 2 case – that is, for Sp(4, R). The proof basically
follows the line depicted above for G = SL(n, R).

Passing from SL(n, R) to Sp(2l , R) (l ≥ 2), we have to consider the group Cp(q) ∶=
Sp(2l , q)/Ep(2l , q) in place of C(q) (recall that the group Cp(q) is well defined, finite,
and independent of l; see [BMS, Theorem 12.4 and Corollary 12.5]).

The case Sp(4, R) is similar but much more difficult than the one of SL(3, R). The
point is that there are two embeddings A1 → C2 and Ã1 → C2, on long and short roots,
respectively. This results in a more complicated structure of the universal Mennicke
group (cf. [BMS, Lemma 13.3]). The decisive role is played by the following quite
technical theorem proven by Trost. It serves as a symplectic analogue of Lemma 8.7.

Lemma 8.9 [Tr1, Theorem 3.16] Let s, t be positive integers, and let R be a commutative
ring with 1 subject to the conditions

● sr(R) = 1.5, ● Gen(2, 1), ● Gen(t, 1), ● Exp(t, s).
Then for all ideals q, the group Cp(q) is finite and its order is uniformly bounded by 2t.

This parallelism can now be used to conclude that Sp(4, R) is uniformly elementar-
ily boundedly generated, with a universal bound that only depends on the degree of K
(which is equal to 2 in the case under consideration), and is thus an absolute constant
(see [Tr1, Theorem 3.20 and Section 3.3] for details of the proof). This concludes the
proof of Lemma 8.1.

Remark 8.10 The arguments presented above can be rephrased in a more traditional
logical language, in the form of the compactness theorem of the first-order logic, as
was done by Morris [Mo, Proposition 1.5] and Trost [Tr1, Theorem 3.1].

9 Concluding remarks

Here, we mention a couple of eventual generalizations of our results.
● In the number case, the bounds for L(2, 2) and L′(2, 2) are not explicit at all. It

seems that it might be quite a challenge to obtain any explicit bounds. Our impression
is that it cannot be easily done at the level of the groups; one should invoke much more
arithmetics.

● However, we do not claim that the bounds obtained in the present paper in the
function case are sharp in any sense. It is another, maybe even a greater, challenge to
obtain such sharp bounds. It is usually very hard to estimate width from above, but
still harder to estimate it from below.

● Let q ⊴ R be an ideal of R. In the present paper, we addressed the absolute case
q = R alone. However, it makes sense to ask similar questions for the relative case;
in other words, we believe there are uniform width bounds for the true elementary
subgroup E(Φ, q) and the relative elementary subgroups E(Φ, R, q) of level q ⊴ R in
terms of elementary generators, or elementary conjugates of level q.

There are some partial results in this direction for classical groups, but some of
them use larger sets of generators. The results by Tavgen [Ta2], Sergei Sinchuk, and
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Andrei Smolensky [SiSm] and by Pavel Gvozdevsky [Gv] use correct sets of generators
(so-called Tits–Vaserstein generators), but their bounds are not uniform. Recently,
the third author established the conclusive result in this direction [Va2]: Theorem
B in that paper states that given a reduced irreducible root system Φ of rank ≥ 2,
a Dedekind ring R of arithmetic type, and an ideal q of R, there exists a constant
M = M(Φ, R, q) such that any element in Esc(Φ, R, q) is a product of at most M Tits–
Vaserstein generators. Note that as in the works cited above, M depends on the ring
and the ideal. In comparison, in the function case, Trost [Tr3] produced uniform
bounds for all types of irreducible root systems except Bn and Dn .6
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