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ABSTRACT. The numerical integration of the heat-conduction equation is one of the
main components in a thermodynamic sea-ice model. The spatial resolution in the ice
normally varies from a minimum of three layers up to a few tens of layers. The temporal
resolution varies from a few minutes up to hours. In this paper the impact of numerical
resolution on the prediction of a one-dimensional thermodynamic ice model is studied.
Analytical solutions for idealized cases were derived and compared with the numerical
results. For the full ice model, groups of simulations were made, applying average climatic
weather-forcing data corresponding to the ice-freezing, ice-thermal equilibrium and ice
warm-up seasons. Special attention was paid to the effect of model spatial resolution.
Early in the freezing season, the influence of resolution on model predictions is not signif-
icant. When the shortwave radiation becomes large, its absorption within the ice or snow
cover was found to modulate the effect of numerical resolution on predictions of ice tem-
perature and surface heat fluxes (e.g. the model run with a coarse spatial resolution
yielded large daily variations in surface temperature). Resolution also affects the in-ice
temperature profile. For process studies, a two-layer scheme for the solar radiation pene-
trating into the ice is suitable for a fine-spatial-resolution ice model.

1. INTRODUCTION (1971). For climate studies, coarse-resolution models are often
used, in order to enable faster long-time simulations. A typ-
ical example is the model of Semtner (1976).

Physically, the thermal variation of sea ice is a complex
process. The interfacial surface fluxes between the ice and
the atmosphere and the in-ice heat conduction are strongly
affected by the ice thickness (Maykut, 1978). The in-ice
thermal regime responds to the heat-flux balance at its

surface and bottom. Its multi-phase constituency (ice crystal,

Sea ice is a geophysical component playing an important role
in the weather and climate system. Sea-ice formation is due to
the thermal interaction between the atmosphere and the
underlying ocean. The ice acts as a barrier, reducing the
transfer of moisture, heat and momentum between the atmos-
phere and the oceans. Because of its high surface albedo, ice
reflects a large part of the incoming solar radiation. The
jnhf.:rmal restme w1th1.n the ice is dominated by t'he varlat%on solid and liquid brine, inclusion of air and other impurities)
in its thermal properties and by the external forcing. Freezing . . .

varies concurrently with the changes in heat flow and energy
storage inside the ice. One has to define a thin interfacial layer
(surface layer) with a finite mass and heat capacity to study
the surface heat balance, especially for a fine-resolution
model. The ice mass and heat storage clearly depend on the
thickness of the surface layer, and this dependence, in
general, is non-linear because the brine pockets and vapour
bubbles affect the physical and thermal properties of the ice.
The solar radiation flux, which penetrates into the interior of
theice or snow, is strongly attenuated in the surface layer. The

at the ice bottom tends to reject salt, whereas the melting of
sea ice will decrease the ocean surface salinity. The ice—ocean
interaction can affect the stability of the upper oceans and
alter the water circulation throughout the world oceans.

In recent decades, numerical sea-ice thermodynamic
models (e.g. Maykut and Untersteiner, 1971; Semtner, 1976;
Gabison, 1987; Ebert and Curry, 1993; Flato and Brown,
1996; Launiainen and Cheng, 1998; Bitz and Lipscomb, 1999;
Winton, 2000) have become established as a useful tool for

understanding the mechanism of the heat exchange between
the air and the ice, the thermal variations in ice growth and
melting, as well as the ice—ocean interactions. The numerical
integration of the heat-conduction equation is one of the main
components of ice thermodynamic models. Before applying
any numerical scheme, one has to define the model’s spatial
(grid sizes) and temporal (time-step) resolution. In general
mathematical terms, increasing the numerical resolution of
a scheme should yield a better accuracy in the result and vice
versa. In the case of process studies, fine-resolution models
are usually applied, in order to obtain details. A prototype of
such a model was developed by Maykut and Untersteiner
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surface heat balance therefore tends to be established differ-
ently depending on the various assumptions made for the
model spatial resolution. Below the surface, the absorbed
solar radiation is an internal heat source and plays an import-
ant role in the heat conduction of the upper ice layer. The
estimation of this term using a finite-difference scheme is dir-
ectly affected by the spatial resolution used. To systematically
demonstrate how spatial resolution affects model results is
one of our motivations for this study.

The effect of spatial resolution on ice growth, or in gen-
eral on the parabolic diffusion equation, is not a new problem,
but such studies often appear in technical reports not easily
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available to the general public. Semtner (1976) tested the
effect of spatial resolution on the annual cycle of ice thickness.
He concluded that the asymptotic limit of the modelled
annual cycle of the equilibrium ice thickness is already
approached with two model layers. Increasing the number of
model layers from three to nine, results in a deviation of only
2% from the result of a three-layer model. These numerical
tests were performed with simplified forcing conditions with-
out taking into account the absorbed solar radiation in the ice
layer. The effects of the number of model layers on the surface
temperature, surface heat balance and ice-temperature
profiles were not mentioned. Saviyjdrvi (1992) evaluated
several numerical schemes for the soil-diffusion equation in
atmospheric models. Special attention was paid to the num-
ber of'soil levels needed. The analytical solution of a parabolic
soil-diffusion equation was compared with results obtained
using various spatial resolutions. The simulated temperatures
at different depths produced by a Crank—Nicholson (CN)
numerical scheme with 3—10 layers were quite close to the
analytical solutions.

The effects of the time-step (temporal resolution) on
model results are often discussed mathematically or associ-
ated with the model spatial resolution. For example, Patankar
(1980) pointed out that with a small time-step the six-point
symmetrical CN scheme has a better accuracy than the
fully implicit scheme. Smith (1985) indicated that oscilla-
tions in the result for a CN scheme may occur if long time-
steps with small gridcells are used. Physically, Hanesiak and
others (1999) have pointed out that an ice-growth model
yields considerably different results using external forcing
with a variable length scale that is linked with the model
time-step. They compared simulations of the surface heat
balance and the annual cycle of sea-ice thermodynamics by
running Flato and Brown’s (1996) ice model with hourly and
daily average forcing data. They found significantly differ-
ent results for break-up dates, open-water duration and

Table 1. Model parameters based on field measurements in the
Baltic Sea and values found in the literature

Density of air (p,) 126 kgm *

Specific heat of air (c;) 1004 J kg 'K !

Extinction coefficient of sea 15-17m"' Modified from Grenfell
ice (ki) and Maykut (1977)

Extinction coefficient of 15-2%5m ' Perovich (1996)
snow (Kg)

Freezing point (T} ) 0.3°C Tt ~ —0.0541 54

Heat capacity of ice (cq) 2093 kg 'K

Latent heat of freezing (Lf) 033 x10°J kg '

Oceanic heat flux (Fy,) LOWm ? BASIS data report

(Launiainen, 1999)

Density of ice (pp) 910 kg m 3

Salinity of sea ice (s;) L.5 ppt BASIS data report

Salinity of water below sea 5 ppt BASIS data report
ice (Sy)

Density of snow (ps) 310kgm * BASIS data report

Surface albedo of sea ice 0.7

Surface albedo of snow 0.8

Thermal conductivity of ice 203Wm 'K'!
(Kio)

Thermal conductivity of 024Wm 'K Calculated according
snow (k) to Yen (1981)

Solar constant (.5) 1367 Wm *

Boltzmann constant (o) 568 x10°Wm K

Constant (/3) 0.117Wm "ppt !
Constant () 17.2 x10° J Km * ppt !
Time-step of model (7) 600 s—6 hours
Number of layers in the ice 3-32
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snow ablations. These differences are probably due to the
physical effect of the forcing data, i.e. the model response to
the synoptic external forcing is different from that to daily
or monthly external forcing.

In section 2, the ice model applied in this paper is intro-
duced; a two-layer parameterization scheme of solar radi-
ation penetrating through the sea ice is described, and the
numerical resolutions of various ice models with their grid
systems are summarized. In section 3, the model results are
first compared with the possible analytical solutions. The
purpose of such tests is (1) to verify the numerical solution
and (2) to systematically demonstrate the accuracy of the
results when the resolution is increased. The full numerical
simulations are then presented and analyzed. Model runs
are performed with constant weather-forcing data so that
results depend only on changes in resolution. The conclu-
sions are presented in section 4.

2. THEORETICAL BACKGROUND
2.1. The sea-ice model

The ice model presented by Launiainen and Cheng (1998) is
used in this study. The basic model equations read:

aT‘i,s(% t) o 2 ) aT‘i.s(Zy t) 8(]i,s(2, t)
(pc)i’sT T 0z <kl’s 0z ) 0z (1)
(1 —aig)Qs — Lo+ Qa — Qu(Tete) + Qn(Tite)

+ Qlc(T@fc) + Fc(Tsfc) - Fm - F(ﬂf@) =0 (2)

Tyt = Tt (3a)

dH; ki 0T;
—piLlf—=— Fy. 3b
Pt dt ( 0z )bot+ ( )

The ice temperature is governed by the heat-conduction
Equation (1), while Equations (2) and (3) represent the
boundary conditions for the temperature, and the heat and
mass balance at the surface and bottom.

In Equation (1), T'is the temperature, p is density, cis spe-
cific heat, k is thermal conductivity, g(z, t) is the amount of
solar radiation penetrating below the surface, ¢ is time, and
z1s the vertical coordinate below the surface (positive down-
wards). Subscripts 1 and s denote ice and snow, respectively.
The thermal conductivity and heat capacity of sea ice are
given as: ky = kio + 0si/(Ti — 273.15) and (pc); = poco + 7ysi/
(T; - 273.15)%, following Maykut and Untersteiner (1971), where
ki, po and ¢y are the thermal conductivity, the density and
the specific heat of pure ice, respectively, s; is the ice salinity,
and (3 and -y are constants.

In Equation (2), « is the surface albedo. The downward
shortwave radiation (Qs) is calculated by an empirical formula
(Shine, 1984) with the cloudiness factor (C) of Bennett (1982):
Qs =Sy cos*Z/[(cos Z+1.0)10 *e+1.2cos Z+0.0455](1 —0.520),
where Sy is the solar constant, Z is the local solar zenith angle, e
is the vapour pressure and C'is 0—1.

The solar radiation penetrating below the surface (Ij) 1s
that part of the energy that contributes to internal heating
of the ice/snow. It is the portion of solar radiation that does
not contribute directly or immediately to changes in mass or
temperature at the surface.

The incoming atmospheric longwave radiation (Qq) is
calculated by the formula of Efimova (1961) with the cloud
effect according to Jacobs (1978): Qq = (0.746 + 0.0066¢)
0T} (1+0.26C), where o is the Stefan-Boltzmann constant
and T}, is the air temperature. The outgoing longwave radi-
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ation from the surface is estimated by the Stefan—Boltz-
mann law Q), = €07}, with a constant surface emissivity
(e =0.97), where T is the surface temperature.

The turbulent sensible-heat (@) and latent-heat (Q))
fluxes are calculated by the bulk formulae: @y, = —pac,Cn
(Tsfc - Tza)‘/;a and Qe = 7paLvCE(qsfc - an)‘/Z'aa where
Pa is the air density, ¢, is the specific heat of air, Ly is the
enthalpy of vaporization, Cy and Cg are the turbulent
transfer coefficients, V' is wind speed, € is the specific
humidity, and the subscripts sfc and z, refer to the surface
and a height of z, in the air, respectively. The coeflicients
Cy and Cf are estimated using the Monin—Obukhov simi-
larity theory with stability effects based on Hogstrom (1988)
in unstable cases and Holtslag and de Bruin (1988) in stable
cases. An aerodynamic roughness value of 0.00l m is used
and the thermal roughness length is calculated according
to Andreas (1987).

The surface conductive heat flux is F;, and the heat flux
due to surface melting is F,. When Ty, tends to be larger
than the freezing temperature (7%), T remains as T¢, and
the heat used for melting is Fy, = pi Ly dH;s/dt, where L¢
is the latent heat of fusion assumed to be constant, and Hi is
the thickness of ice or snow. The heat-balance Equation (2)
can also be seen as a polynomial of the surface temperature
['(Tit.). The temperature Ty is calculated iteratively from
Equation (2) and used as the upper boundary condition for
the numerical scheme of Equation (1).

In Equation (3a) and (3b) the ice bottom temperature
(Thot) 1s constrained to be the freezing temperature, and
Fy, is the oceanic heat flux, assumed constant.

An implicit six-point symmetrical CN scheme, which was
derived on the basis of the integral interpolation method
(Cheng, 1996), is used to solve the heat-conduction equation.
The scheme derived by this method has been mathematically
proven to be conservative (Li and Feng, 1980). In addition,
such a numerical technique ensures that the scheme can be
casily extended to an uneven spatial grid size (Cheng, 2000).

The model parameters are listed inTable 1. The sea-ice
properties are based on average values from the literature
and field measurements in the Baltic Sea. For the seasonal
ice evolution, this model has been verified using historical
climatic weather-forcing data, while for a short-term ice
simulation, field measurements have been used (Cheng
and others, 2001). In these studies, the snow and ice were
divided into 5 and 10 layers, respectively, and the time-step
was 600 s. The model yielded results in good agreement with
the observations.

2.2. Penetrating solar radiation in ice and snow

The solar radiation penetrating into sea ice depends strongly
on the wavelength of the irradiance, on its angle of incidence,
on the structure of the sea ice and on sky conditions. For ice-
modelling purposes, however, simple parameterizations based
on the Bouguer—Lambert law are often used (e.g. Untersteiner,
1964; Maykut and Untersteiner, 1971; Grenfell and Maykut,
1977). In these studies ¢i(z, 1) = ig(1 — ;) Qs e 1574 2 > 2,
1s described as an exponential decay through the ice depth,
where iy = F(C,C}) is defined as the fraction of the wave-
length-integrated incident irradiance transmitted through the
top 2z = 0.1 m of the ice, and parameterized according to the
sky conditions (C') and sea-ice colour (Ci) (e.g. 79 = 0.18 (1 -
C) +035C for white ice, and ¢y = 0.43(1 — C') + 0.63C for blue
ice (Grenfell and Maykut, 1977; Perovich, 1996)), and &; is the
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Fig. 1. Variation of absorbed solar radiation in ice (a) and
snow (b) non-dimensionalized by the total net solar radi-
ation at the surface. In (a), the thick line below 0.1m repre-
sents the q(z,t) of Grenfell and Maykut (1977), and is
connected to those of Sahlberg (1988) (thin line) and Lau-
niainen and Cheng (1998) (dotted line) within the top 0.1m
ice. The dashed line denotes q(z,t) estimated by Grenfell
(1979). The lowermost solid line and circles represent q(z, t)
Jor blue ice estimated by the scheme of Launiainen and Cheng
(1998) and that given by Luiston and others (1999), respective-
ly. In (b) the snow extinction coefficients used for the various
curves are 40m™" (dotted line), 25m " ( dot-dashed line),
15m " (dashed line) and 5m " ( solid line). The circles are
model results from Luiston and others (1999).

bulk extinction coefficient below z; varying from 1.1 to 1.5 m '
(Untersteiner, 1961). Near the surface, ; can be one or two
orders of magnitude larger than 15m ' (Grenfell and
Maykut, 1977). Accordingly, a two-layer parameterization
scheme for ¢;(z,t) is assumed in our ice model. In the top
01m of the ice, we applied ¢i(z,t) = (1—0a;)Qse "% 0
< z < z. The extinction coefficient 1 is calculated as k1 =
—10 x In(2p), 1.e. K1 1s valid for the very uppermost layer by
fitting the values of 79 of Grenfell and Maykut (1977) observed
for the 0.1 m level in the ice. For example, x; = 17m ' for
clear-sky (C' = 0) and white-ice conditions. Below 0.1m in
the ice, we used q(z,t) =ip(l1—0q)Qse ™=4) 2> z
according to Maykut and Untersteiner (1971), where ko =
15m . A two-layer scheme for ¢(z,t) has been used earlier
by Sahlberg (1988) with a linear profile fitting the 49 of
Grenfell and Maykut (1977) at 0.1 m in the ice.
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sfck+l

k-1 k k+1

g, 2. Defimitions of Lagrangian (a) and Eulerian (b) grid systems with spatial () and temporal (k) steps. The black dots
are the gridpoints defined by the current step. The short line segment in (a) marks the gridpoints defined by the previous step; the
number of gridpoints remains constant. The grid size at each time-step is slightly different (e.g. Ahy_1, Ahy). In (b), circles
indicate the gridpoints of the previous step, and the black squares are the new gridpoints of the current step. The interior grid size
(Ah) remains constant at each time-step. The boundary grid sizes are time-dependent, i.e. ARgger—1 , ARpoti—1-

More sophisticated expressions for ¢(z,t) derived from
radiative transfer models have also been suggested and incor-
porated into ice models. For example, Grenfell (1979) applied
a radiative transfer model to derive a parameterization for
¢(z,t). Brandt and Warren (1993) introduced a downward
bulk extinction coefficient k;(z), which describes the local
attenuation rate of absorbed solar radiation, and applied a
radiative-transfer model to estimate absorbed solar radiation.
The latter has been used by Liston and others (1999) to calcu-
late the radiation penetration in the Antarctic ice.

In snow, the variation of solar radiation absorbed with
depth in snow follows simply the Bouguer—Lambert law, i.c.
gs(z,t) = (1 —a)Qs €% where the extinction coefficient of
snow (k) varies from 5m ' for dense snow up to almost
50 m ' for newly fallen snow, depending on the snow density
and grain-size (Perovich, 1996).

Figure 1 shows the variation of solar radiation in ice and
snow, non-dimensionalized by the net solar radiation at the
surface, as obtained from various schemes for ¢(z,t).
Examples of this ratio for blue ice estimated by our two-
layer scheme and that of Liston and others (1999) are also
included in the figure. One can realize that estimation of
0q(z,t)/0z using a finite-difference approach would yield
different results using different spatial resolutions.

2.3. Numerical resolution of sea-ice models

The numerical resolution of ice models varies depending on
the numerical scheme used and the time-scales of the ques-
tions modelled. For example, Maykut and Untersteiner
(1971) solved the full heat-conduction equation using a primi-
tive form of the Alternating Direction Explicit (ADE)
method, i.e. an explicit approximation of the CN scheme.
The scheme comprised some 40 gridpoints (10 cm apart) for
the vertical resolution together with a time-step of 12 hours.
This model was applied to study the equilibrium ice thick-
ness in the Arctic. Semtner (1976) considered only three
layers in his model with a time-step of 8 hours or so. Due to
the coarse resolution, the absorbed solar radiation contribu-
ted mainly to the ice-surface heat balance. The source term
was thus left out of Equation (1). A simple forward-difference
scheme, which significantly reduces the computer resources
required, was used. Gabison (1987) constructed a three-layer
ice model. The numerical method applied was an implicit CN
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scheme which satisfies the absolute stable condition and also
has only a small (second-order) truncation error. The model
time-step was 12 hours. A climatological sea-ice thermo-
dynamic model introduced by Ebert and Curry (1993) had
10 layers with a time-step of 8 hours. The model followed
Semtner’s (1976) assumption when calculating in-ice and snow
temperatures. The model presented by Flato and Brown
(1996) had a similar overall structure to that of Semtner
(1976) and was even closer to that of Ebert and Curry (1993).
An implicit CN scheme with a spatial resolution of 10 layers
and a time-step of 1day was used.

It is possible to use a model grid with a fixed number of
gridpoints, i.e. a Lagrangian grid (Fig. 2a), as in Semtner
(1976), Ebert and Curry (1993), Schramm and others (1997)
and Launiainen and Cheng (1998). Because of the freezing
and melting of the ice, the gridpoints in the Lagrangian grid
are not at fixed depths. In order to adopt moving gridpoints,
Semtner (1976) used a linear interpolation of the in-ice tem-
perature from the previous coordinate to the current one at
each time-step, subject to the conservation of the total heat
content of the ice in his model. However, the temperature
dependence of the specific heat of sea ice was ignored. To
accommodate the change in grid size in their model,
(1997) employed a procedure
assuming the conservation of enthalpy to calculate the

Schramm and others

interior ice temperature. The volumetric heat capacity was
therefore given as a function of ice salinity and temperature.
This has also been considered by Winton (2000) in his refor-
mulated version of Semtner’s three-layer model. Cheng and
Launiainen (1998) applied an iterative procedure to calcu-
late the in-ice temperature at the model gridpoints for each
time-step with a piecewise interpolation of the values from
those points given by the previous step. Numerical tests indi-
cated convergence of the result within three steps. Another
alternative for the model grid is to maintain a constant inner
grid size, i.e. an Eulerian grid (Fig. 2b), as in Maykut and
Untersteiner (1971). Each inner gridpoint has a fixed coordi-
nate, and only the boundary grid size will vary according to
the variation in ice thickness. The total number of gridpoints
increases or decreases depending on ice growth or melting.
In this paper an Eulerian grid is employed. The geo-
metric surface variation, due, for example, to snowfall,
snowdrift and ice ridging, is not considered for the model
run, i.e. the change in the upper boundary grid size is mini-
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Fg. 3. Ice-growth rate calculated by Stefan’s law ( dotted line)
and the ice model ( solid line ). T here are 19 curves correspond-
ing to the vartous spatial resolutions within the thickness of the
solid line in each sub-plot. The model time-step is 600 s in
(a) and 6 hours in (b ).

mized. Thus, for a model run with a specified spatial reso-
lution, the increase in the number of gridpoints and change
in the boundary grid size mainly occur at the ice bottom.
The model spatial resolution refers to the grid size, not to
the number of layers. It is defined as Ah; = Hip/N;, where
Hig 1s the initial ice thickness and NV; is the number of grid-
points. In the simulations we let IV; take every integer from
3 to 10, and then even integers from 12 to 32, i.e. a total of 19
spatial resolutions is used. The time-step (7) we used here is
from 600 s up to 6 hours.

3. SIMULATIONS AND RESULTS
3.1. Model runs compared with analytical solutions

Here the numerical results for simplified ice-model cases are
compared with their analytical solutions. The effect of numeri-
cal resolution on ice growth, as well as ice and snow tempera-
ture profiles, is studied for these simple idealized cases.

During the ice-growth season, Stefan’s law (Stefan, 1891)
yields the first-order result of ice %rowth, ie. HY = H3+ d®S,
where a* = 2k/pL, and S = ﬁ) [Thot — Tte(7)] d7. Corres-
ponding to an assumption of Stefan’s law (e.g. Leppéranta,
1993), a simplified numerical ice model would be Equation
(1) without the source term; a fixed surface temperature Ty,
replaces the surface boundary Equation (2), and Fy, = 0 in
Equation (3), together with constant ice thermal properties
(p,c,k and L). Assuming Tg = —10°C, Th,or = 0°C, Hip =
0.05 m, and using constant p, ¢, k, L (Table 1), we then run
both Stefan’s law and the ice model for a 15 day period. The
numerical calculations are made using all 19 spatial resolu-
tions, with the initial ice temperature obtained from a linear
interpolation between Tt and Thot.

Figure 3 shows the calculated ice-growth rate. The agree-
ment between the analytic solution and the numerical results
is very good. The total ice thickness reaches 042 m after a
15 day period. With 7 = 600 s, the mean error in ice thickness
between all 19 averaged model runs and Stefan’s law is only
0.0034 m. This value increases only slightly to 0.0042 when
7 = 6 hours. This procedure has often been used to verify the
consistency of a numerical model (e.g. Saloranta, 1998). The
numerical results showed some oscillations on increasing the
time-step (Fig. 3b). This can be improved by using a fully
implicit numerical scheme. Since the initial ice formation is
very thin, the thermal inertia is small, and the linear ice-tem-
perature profile yielded by Stefan’s law is very close (not
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Fig. 4. The vertical ice-temperature profile obtained by an
analytic solution (solid line) and the numerical model using
spatial resolutions of Ny = 3 (dashed line), 10 ( dot-dashed
line) and 30 ( dotted line ). The boundary conditions are of the
Dirichlet (a) and Neumann (b) type. Each ice-temperature
profile corresponds to a time near midday.

shown here) to those given by the numerical simulations,
indicating the good accuracy of the numerical results. This
suggests that the simple classic linear temperature profile
model can be used during the initial ice-growth phase.

During the ice thermal equilibrium stage, the ice thick-
ness (H;) may be regarded as a constant. If we ignore the
source item ¢(z, t) in Equation (1), the ice model simplifies to
pcdT [0t = kO*T/ Oz, where the thermal properties remain
constant. For a given surface temperature (Dirichlet bound-
ary) of a single sinusoidal wave with frequency w and ampli-
tude Ty, i.e. Te(0,t) = Thot + Ta sin(2wwt), T — Tt for
z — 00, the analytic solution is T'(z,t) = Thoi+ Ty e~ /¥
sin(2mwt —z/d), where d=[(k/(perw)]'/? (Leppéranta, and
others, 1995). For a given surface net flux (@) gradient
(Neumann boundary) such as k0T /0z = Q,(t), and when
Qn, is further assumed to be of the form @, = Qa sin(2wwt),
T — Thot for z — 00, the analytic solution becomes T'(z, t)
= Tyot + Ty el sin(2nwt — bz — m/4), in which the ampli-
tude Tx = Qa(2mwpck) ™% and b= [27wpe/(2k)]?
(Savijarvi, 1992). Let us assume that H; = 12m, T =
~5°C, Ty =2°C,w =1/86400s ' (diurnal cycle), and constant
ice properties; for the Neumann boundary, we take Qp =
33Wm ” in order to produce a diurnal temperature wave of
2°C amplitude. All 19 spatial resolution runs were made with
7 = 600s. In order to minimize the effect of the initial condi-
tion, the ice temperatures at various depths corresponding to
different spatial resolutions are read directly from the analytic
solution T'(z, 0). The model runs are made for a 5 day period.
Figure 4 shows comparisons for the vertical ice temperatures
between the analytical solutions and the numerical results. It
shows that, for both the Dirichlet and Neumann boundaries,
the accuracy of the model result is systematically increased if
the spatial resolution is improved.

During the warm-up season, the term ¢(z, t) is import-
ant and its effect may dominate the temperature profile in
the upper ice layer. Assuming that a stationary ice-tempera-
ture profile is reached in a short time (0T'(z,t)/Jt = 0), the
ice model is simplified to d/dz[kdT(z)/dz — q(z)] = 0,
where ¢(z) = ¢(0)e "% and ¢(0) = (1 — a)Qs, if the lower
boundary is given as T' = T, for z = H; (ice thickness).
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The analytic solutions for Dirichlet and Neumann bound-
aries are, respectively:

11—z z
T(z) —(Tl> Tige +ETbot
aO) [1  cha) 2 (1 e
+ kk |:1 ¢ Hi (1 ¢ )
and

Qu+4q0) g1 sy (wm
T(2) = Ty 4+ 2290 Q) [ (on2) _ o(-nt)] |
(&) =T+ 3 —2) " hn [e ¢ }

Such solutions illustrate the asymptotic state where the solar
radiation tends to drive the temperature profile (Leppéranta,
1995).

For the Dirichlet boundary, the numerical results are
quite close to the analytic solution for N; > 10, similarly to
Figure 4a. For the Neumann boundary, the accuracy of the
numerical results depends on the magnitude of ¢, and ¢(0)
for a given N;. For example, if @)y, is negative and its magni-
tude > ¢(0), which means a cold surface (note that @, repre-
sents the sum of surface radiative and turbulent heat fluxes), a
large vertical gradient in the ice-temperature profile can be
generated. In such a case, the numerical results converge to
the analytic solution very well, even for IV; = 3 (not shown
here). If @), remains negative, but its magnitude is compar-
able to that of ¢(0), this indicates a small vertical gradient of
in-ice temperature. Calculations in such a situation for ice
and snow temperatures are given in Figure 5 assuming:

Qn=1["188Wm 2 ¢(0) =[30,10] Wm 2 H = [12,04] m,

Toot = [-25,-2]°C and & = [15,15] m ', the values in paren-
theses corresponding to those for ice and snow, respectively.
For Nj¢ = 3, the numerical results were quite inaccurate. This
is because the upper boundary condition approximated by
Qn = kdT 0z ~ k[T (1) — Ti]/ Ah gives only a crude esti-
mation of the derivative of temperature, where 7'(1) 1s the inner
ice or snow temperature. Large values of N ¢ are necessary for
such a weak temperature-gradient solution in order to obtain
accurate numerical results. If @y is positive, it will enhance
the effect of ¢(0) since the latter is always > 0. As a conse-
quence, the calculated ice temperature may tend to rise above
freezing point. In such a case, the ice temperature has to
remain at 7y and the upper ice layer becomes isothermal
(dT/dz = 0). The warm-up season turns into a melting
season, and the energy absorbed by the ice is used entirely
for producing the phase change.

We should emphasize that for numerical sea-ice model-
ling, @y is actually a complex polynomial of the surface
temperature (cf. Equation (2)). Therefore, instead of dir-
ectly applying a Neumann flux boundary, Ty is usually
solved iteratively from Equation (2) and used as the upper
boundary for the numerical scheme of Equation (1) (e.g
Maykut and Untersteiner, 1971; Gabison, 1987; Ebert and
Curry, 1993; Launiainen and Cheng, 1998).

3.2. Numerical experiments

The full heat-conduction equation can not be solved analyt-
ically. In the following, we present and analyze groups of
numerical simulations in terms of various resolutions.

3.2.1. Forcing data

The forcing data are taken from the Baltic Sea ice climate
database IDA (Haapala and others, 1996). Three winters
representing a normal (1983/84), a severe (1986/87) and a
mild (1991/92) ice season were selected as typical Baltic
winter climate scenarios.

The meteorological data (air temperature T, wind
speed V,, relative humidity Rh, and cloudiness C) observed
at Kemi, a meteorological station in the northern Baltic Sea
(latitude 65.6° N), were used. Each parameter is simply
averaged over the three winters and for each month. If we
look at the observed average ice-growth rate from IDA,
December, March and April may be referred to as the ice-
freezing, ice thermal equilibrium, and ice warm-up seasons,
respectively (Cheng and Launiainen, 1999). The model runs
are accordingly made for these three months with fixed
meteorological data (Table 2). The solar radiation is incor-
porated as a monthly average diurnal cycle. The oceanic
heat flux is assumed to be 1.0 W m 2, based on field measure-
ments (Shirasawa and others, 2001).

For the ice-growth season, the initial ice thickness is

Table 2. Weather-forcing data for the numerical model runs in section 3.2

T, Va Rh C -] Hyo Hio Daily Qo
mean max.
°C ms | % m m Wm? Wm 2
December -10.2 3.6 85 0.63 0 0.05 0.3 49
March 6.8 3.6 83 0.65 0.3 0.6 100 356
April -0.8 4.0 67 0.62 0 0.7 210 538

Notes: The data are monthly averages of three Baltic winters at the Kemi meteorological station. Qg is the downward monthly average diurnal solar radiation

for clear-sky conditions.
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JSormation (b) during the ice-growth season for a 5 day period
vs spatial resolution. Each symbol indicates a given time-step,
1..600s (o), Lhour (X ), 3 hours (+) and 6 hours (* ).

taken to be 0.05 m without snowfall. For the ice equilibrium
stage, the initial snow and ice thicknesses are 0.3 and 0.6 m,
respectively, in accordance with the monthly average from
IDA. The spatial resolution of the snow layer is defined as
Ahg = Hy/Ns, where Hy is the initial snow thickness; we
let Ng vary from 3 to 15, while the snow thickness is assumed
to remain constant. For the warm-up season, only bare ice
with an initial thickness Hjy = 0.7 m is considered.

3.2.2. Ire-growth season

We ignored the diurnal solar radiation in this example. The
initial ice temperature is set as a linear interpolation between
the air temperature and the freezing point. Figure 6 shows
the mean surface temperature and the total ice formation
calculated after a 5 day period. With a small Ah;, the model
results are sensitive to the value of the time-step 7, this sensi-
tivity rapidly decreasing with increasing Ah;. The larger 7 is,
the stronger is the impact of Ah; on the results. The sensitivity
of the model predictions to Ah; and 7 may be explained by
the ice mass-balance (ice-growth) adjustment process in
response to the external forcing and by the non-linearity
effect of ice thermal properties. From the beginning of the
model run, the ice layer starts to adapt to its external forcing
via phase change. This mass balance is expected to result in a
steady evolution process when the external forcing remains
constant. The time taken to establish such a steady evolution
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process depends on the initial ice thickness, the ice thermal
properties and the model resolution.

We calculated ice-growth rate over a 15 day period. Dif-
ferent Ah; yield results that converge towards each other
(Fig. 7a and b). The influence of the time-step 7 is studied
by inspecting the average ice-growth rate with respect to
spatial resolution (Fig. 7c). It appears that the average
growth rate converges with increasing spatial resolution
and that after decoupling from the initial conditions the
grid-size sensitivity decreases.

The differences between the predictions in Figure 6 are
due to the accumulating effects of the ice-mass phase
change. Further sensitivity studies indicated that the effect
of resolution on model predictions is much less when the ice
thickness remains constant. From Figure 6, one may also
confirm that the results involving a coarse resolution (both
Ahj and T) are close to those with a fine resolution. This is
because, during the freezing season, the solar radiation is
small, the heat conduction in the ice is strong and the in-ice
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Fig. 8. Modelled daily variation of surface temperature in March
(on the 5th day modelled ) vs spatial resolution for compact snow
(a) and new snow (b ). The stars indicate the daily maximum

(upper ) and minimum (lower ) surface temperatures, while the
circles give the average daily surface temperature.

temperature appears to be a linear profile. Therefore, the
classic linear-temperature ice model may still be valid with
reasonable accuracy. Figure 7 indicates that the effect of
spatial resolution on the ice-growth rate is significant for a
short-time-scale prediction, and in such a case one should
pay attention to the model initialization. A large time-step
should be avoided under conditions of rapid ice growth. The
oscillations of the model results obtained with a large ratio
of 7/Ah; can be reduced by adapting the numerical scheme
to a fully implicit form.

3.2.3. Thermal equiltbrium stage

In this example the model is run for a 5 day period. The ini-
tial temperature profiles in the snow and ice are obtained by
pre-running the model with the forcing data of March with
fixed snow and ice initial thicknesses until a stable tempera-
ture profile is achieved. The time-step is 600 s. For compar-
ison, we varied the total extinction coefficient from 5m ' for
compact snow to 25m ' for new snow. The term ¢(z, 1) in
ice 1s ignored.

The daily surface temperature vs Ahg after 5days is
shown in Figure 8. The daily maximum surface tempera-
ture obtained near midday is sensitive to the grid size Ahs.
This sensitivity is due to the strong gradient in the absorbed
solar radiation near the surface in conjunction with the vari-
ation in Ahg. With a large value of Ahs, the absorbed solar
radiation tends to contribute more to the surface heat
balance and thus leads to a higher surface temperature.
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The daily minimum surface temperature reached at night
is not affected by the daytime solar heating effect, and shows
a similar dependency to that in Figure 6a. The diurnal
mean surface temperature, however, remains quite stable,
indicating its lower sensitivity to spatial resolution. In gen-
eral, the low-resolution model yields larger diurnal ampli-
tude of surface temperature.

Increasing the total extinction coeflicient of snow yields
similar results (Fig. 8b); however, the maximum surface tem-
perature is less sensitive to spatial resolution. This is because
the solar radiation penetrating into the new snow is mostly
absorbed in the uppermost layer due to the large extinction
coefficient. Under such conditions, the model yields higher
maximum surface temperatures compared with Figure 8a,
and accordingly produces a larger daily variation.

We analyzed the various surface heat fluxes of Equation
(2) modelled as daily means (Fig. 9). The fluxes are quite
independent of the grid size, except for the surface conduc-
tive heat flux and the surface absorbed shortwave radiation
flux. For example, the surface net longwave radiation and
turbulent flux (sensible and latent heat) are approximately
—25 and 9 W m’ %, respectively. The net downward solar rad-
iation at the surface is about 13 W m 2 The magnitudes of
the absorbed solar radiation in the surface layer (shortwave
radiation contributing to the surface heat balance) and the
upward surface conductive heat flux tend to complement
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g, 10. Modelled surface temperature as in Figure 8a, and
average surface heat fluxes as in Figure 9, but for bare ice.

each other so that their sum remains quite stable whatever
the value of Ahy is. The total net surface flux is not sensitive
to changes in spatial resolution.

For bare ice, the surface temperature and average surface
heat fluxes vs spatial resolution using the same weather and
initial ice conditions and applying the two-layer scheme of
qi(z,t) are shown in Figure 10. The calculated net longwave
radiation is about —38 W m % The net downward solar radi-
ation at the surface is about 20 W m 2, and the part absorbed
by the surface layer together with an upward conductive heat
flux in the surface layer approximately balances the outgoing
longwave radiation, while the turbulent fluxes are small. The
effect of grid size on the absorbed solar radiation in the ice and
on the surface conductive heat flux for bare ice is qualitatively
similar to but stronger than that on those in snow. Low spatial
resolution leads to a large variability in the in-ice temperature
in the upper part of the ice due to the greater amount of solar
radiation available there for absorption. This suggests that the
impact of the spatial resolution on model results is likely to be
greatest near the surface because of the strong gradient in the
absorbed solar radiation. The sensitivity study indicated that
simulations using the gi(z,t) of Grenfell (1979) and Sahlberg
(1988), discussed in section 2.2, yield similar results to those
obtained using our two-layer scheme for ¢(z, t).

3.24. Warm-up season

In this case, the air temperature is close to the ice melting
point. The initial in-ice temperature is assumed to be a lin-
ear interpolation between —8° and —0.5°C.. This corresponds
to the average night-time steady minimum profile obtained
from runs with the March weather data for bare ice. The
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Fig. 11. Modelled surface temperature and surface heat fluxes
as in Figure 10, but using weather data for April.

simulations are made for a 5 day period with a time-step of
600s. In April, the monthly average diurnal solar radiation
is already so large that on the third day of the simulations,
surface melting has occurred when using a coarse spatial
resolution. The surface temperature and surface heat fluxes
vs spatial resolution are shown in Figure 11. The net longwave
radiation is =35 Wm ? and the turbulent fluxes of sensible
and latent heat are some 5 and ~12 W m % respectively. The
net downward solar radiation at the surface is 67 Wm > The
daily minimum surface temperature is sensitive to the spatial
resolution in this case. Because of more solar radiation avail-
able to the surface heat balance with a large Ah;, the surface
temperature rises and approaches the melting point very
quickly so that a downward conductive heat flux is pro-
duced. During the night, the heat loss from the surface leads
to a low surface temperature. On the other hand, for a small
Ahj, the large amount of solar radiation absorbed is consid-
ered an internal heat source. This energy is used to heat the
subsurface ice rather than to contribute directly to the sur-
face heat balance. Accordingly, an upward below-surface
conductive heat flux prevents low minimum surface tem-
peratures during the night by the thermal inertia effect.
The subsurface temperature may even increase up to the
melting point. The magnitude of solar radiation absorbed
in the surface layer is relatively small and may not comple-
ment the surface conductive heat flux (Fig. 11b).

Figure 12 shows the in-ice temperature variation on the
second day. The subsurface heating can be clearly seen at
higher spatial resolutions. Under suitable weather-forcing
conditions, a model using a high spatial resolution can yield
an in-ice maximum temperature reaching the melting
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point, thus inducing subsurface melting. This has been
found both in field measurements and in numerical sea-ice
modelling (Winther and others, 1996; Liston and others,
1999). Our model runs shown in Figure 12 indicate that a
high resolution gives a better estimate of the in-ice tempera-
ture profile. This suggests that the full numerical model
results are consistent with the solutions obtained from the
analytical studies. The spatial resolution may affect the
location where the ice first starts to melt.

During the melting season, the average air temperature is
normally well above the freezing temperature. For example,
the average weather data from IDA for May are T, = 4.6°C,
Va=41lm sfl, Rh =70%, C =06, and the daily mean of Qg =
310 W m 2 For an initial Hip = 04 m, a melting surface tem-
perature is obtained that then remains unchanged for each
spatial resolution applied. An isothermal layer developed from
the surface and the subsurface temperature maximum may no
longer exist. The in-ice temperature eventually reaches an iso-
thermal stage, i.e. a uniform melting temperature throughout
the ice layer. It should be emphasized that the thermal regime
of sea ice 1s affected by various positive feedbacks in response
to the warm weather during early spring. For example, surface
melting leads to a decrease in surface albedo, and thus more
energy is absorbed, resulting in more surface melting. Actual
ice melting may therefore be much more complex in response
to daily variations in weather forcing.

4. CONCLUSIONS

The impact of numerical resolution on the results of a one-
dimensional thermodynamic sea-ice model has been
studied using average climatic weather-forcing data corres-
ponding to ice-freezing, ice thermal equilibrium and ice
warm-up conditions. The numerical results were also com-
pared with traceable analytical solutions for simple model
cases. The study focused on the effect of spatial resolution.
During the freezing season, the model yields quite
accurate results compared with analytical solutions, indicat-
ing that the classical linear ice-temperature model is still
valid with reasonable accuracy. The sensitivity of the results
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to numerical resolution occurs for large values of the ratio of
the time-step (s) to the grid size (m). This sensitivity can be
decreased by using a fully implicit scheme or by reducing the
value of this ratio. Resolution tends more to affect model
results for short-term predictions. After adjustment to the
initial conditions, the ice growth rate converges with decreas-
ing grid size, and resolution has no significant influence on
model predictions.

For the ice-equilibrium stage, comparison with analytical
solutions shows that the ice model gives good results for both
Dirichlet and Neumann boundary conditions if V; is >10.
When the warm-up starts, the downward net solar radiation
at the surface becomes large and even comparable with other
upward surface fluxes. In this case, the model should have a
high spatial resolution in order to obtain good results, espe-
cially for a Neumann boundary. For these simplified ideal
cases, the accuracy of the result increases as Ah; decreases.

When the strong attenuation of transmitted solar radiation
in the surface layer causes the absorbed solar radiation to act
effectively as an internal heating source, the calculation of sur-
face temperature and surface fluxes by the full numerical ice
model 1s affected by the grid resolution. With low spatial reso-
lution, the absorbed solar radiation mostly contributes to the
surface heat balance. The heat-conduction Equation (1) can be
simplified to a parabolic diffusion equation without an internal
heating source. For such a condition, the accuracy of the result
can be increased by having more layers in the ice or snow. A
model with a large Ah; yields a large daily variation in the
surface temperature. Results remain sensitive to spatial reso-
lution, especially for fine-resolution cases.

For most thermodynamic ice models (e.g. Maykut and
Untersteiner, 1971; Gabison, 1987; Ebert and Curry, 1993),
the contribution of the absorbed solar radiation is divided
explicitly by assuming a certain portion (0.17-0.35) of the
total amount used in Equation (1) and the rest used for the
surface heat balance (Equation (2)). This corresponds to a
relatively weak effect of penetrating solar radiation ¢(z, t)
inside the ice. On the other hand, however, the grid spacing
in these models was >0.1 m, satisfying the physical distribu-
tion of ¢(z,1), i.e. a strong exponential decay near the sur-
face. However, with a grid spacing <0.1 m, the contribution
of absorbed solar radiation should be adapted from the par-
tition assumed above. This is particularly important for
process studies of subsurface melting of ice or snow. For
example, Boggild and others (1995) modelled the subsurface
melting by implementing an ice model using a resolution of
0.03 m near the surface. The results of Figure 12 implicitly
indicate that subsurface melting cannot be modelled with a
coarse-spatial-resolution model.

Finally, we should emphasize that our studies corres-
pond to somewhat simplified constant external forcing con-
ditions so that the results on the effect of resolution depend
on the validity of such an assumption. Other simplifications
are made in connection with the optical properties of snow
or ice, such as considering separately the surface albedo and
the extinction coefficient. The results presented were
obtained using an Eulerian grid, but additional sensitivity
studies indicated that similar characteristics can be
obtained using a Lagrangian grid. We suggest that for pro-
cess studies, an ice model should apply a time-step of about
600 s and a spatial resolution of 2-5 cm in ice or snow, if pos-
sible. For climatological studies, a relaxation of resolution is
certainly needed, but the ratio of time-step to grid size
should remain small.
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