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1. Introduction

This paper deals with the study of a particular md-class of sets. The
underlying theory was introduced and studied by J. C. E. Dekker in [4].
We shall assume that the reader is familiar with the terminology and main
results of this paper; in particular with the concepts of md-class of sets,
gc-class of sets, gc-set, gc-function and the RET of a gc-class of sets. We also
use the following notations of [4]:

e = the set of all non-negative integers (numbers),
R = Req (s).

{pn} will stand for the well-known canonical enumeration of the class of all
finite sets and rx for the recursive function defined by rx = the cardinality
of px. We write C for inclusion and ^ for proper inclusion. For any set a
and any number k, we write

C(oc, k) = {n \Pn C a and rn = k),

Bin(a) = {C(a,*)|Jfe ^ 1}.

C(a, k) will also be denoted by (?). The familiar recursive functions /,
k and I, such that / maps e2 one-to-one onto s and j(k(n), l(n)) = n, will be
used.

We recall that a one-to-one function tn from e into e is regressive, if
the mapping

has a partial recursive extension. While regressive functions with finite
domains have been recently introduced [cf. 5], we shall always assume that
a regressive function is everywhere defined, i.e., has domain e.

It is known [4, p. 630] that for every set a, Bin (a) is an wcZ-class of

1 The problem considered in this paper was suggested to the author by Professor
J. C. E. Dekker at Rutgers University. Research was supported by the U. S. National Science
Foundation.
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sets. On the other hand, Bin (a) is a gc-class if and only if a is regressive or
contains an infinite r.e. subset. Let a denote any set and tn any regressive
function. We are interested in the class of sets obtained by indexing the
members of Bin (a) with the function tn,

We note that Bin(2n, a) is an wrf-class of sets. In addition, it is easily seen
that if Bin (a) is age-class then so is Bin(£n, a). One consequence of this fact
is that if a is finite then Bin(£n, a) is a gc-class; and in this case its RET is
readily shown to equal the cardinality of a. The main object of this paper
is the following:

Let tn be any regressive function. We wish to find a necessary and suf-
ficient condition on a set oc in order that ~B'm(tn, <x) be a gc-class; and in the
event that it is a gc-class, we want to determine its RET.

2. Preliminaries and terminology

We shall henceforth assume that the regressive function tn is fixed.
Also, in view of an earlier remark, we may restrict our attention to the case
that oc is an infinite set.

REMARK. It is easy to show that if tn is a recursive function then
^ , a) is a gc-class if and only if Bin (a) is a gc-class; moreover, if
£n, a) is a gc-class, it has the same RET as Bin (a). We could therefore

suppose that the function tn is regressive, yet not recursive; however, this
is not necessary for the discussion which follows.

Throughout this paper we let n denote the range of tn and let
T = Req(7i). If tn is a recursive function then n is a recursive set and T = R;
otherwise, n is an immune regressive set and T is an infinite regressive isol.

If / is a function, then df will denote its domain and pf its range. Let
un and vn be two one-to-one functions from e into e. Then «„ ^ * vn, if there
is a partial recursive function / such that

(1) p M C 5

In addition, un and vn are said to be recursively equivalent (denoted un ^ vn),
if there is a one-to-one partial recursive function / such that (1) holds.
Clearly one has,

»n = Vn~>pUn 2 PVn.

Also, it can be shown [3], that

un £ vn o {un ^*vn and vn ^ * «„).

https://doi.org/10.1017/S1446788700004146 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004146


[3] An Afi-class of sets 303

In [4, § 4] the concept of a gc-function of a gc-class is introduced. It
turns out to be useful to introduce the following modification of this notion.

DEFINITION. Let / be a partial recursive function and let

y = {j{tklek+1)\k^o}

be a choice set of Bin(£n, a). Then / is agc-j'unction of y, if for every number
k and every w

j(tk, w) e df and fj{tk, w) = j{tk, ek+1).

Regarding this definition, it is readily seen that y is a gc-set of Bin(^m) a) if
and only if y has at least one gc-function.

3. Fundamental properties of Bin(tn,a)

INTRODUCTORY REMARK. Let a be any infinite set and let Bin(^, a)
be age-class. We wish to observe here that the RET of Bin(tn, a) is regressive.
Let

V = O'fe. «*+i) I* ^ 0}

denote a gc-set of Bin(2n, a). Clearly, there exists a recursive function y(x)
such that

, whenever x

Using this fact together with the regressiveness of the function tn, it can
readily be shown that

represents a regressive enumeration of the set y. Hence y is a regressive set
and therefore the RET of Bin(£n, a) is also regressive.

DEFINITION. For any two sets a and /?, a ^ * /? if there is a partial
recursive function g such that

(2) a C <5g, g is one-to-one on a, and g(a) C /S.

We shall say "«. sS * /? by g" if g is a partial recursive function such that (2)
holds.

THEOREM 1. Let « be any set with n ^ * a. TAe« Bin(tfB, a) is a gc-class
and its RET is T.

PROOF. Assume the hypothesis and let n ^ * a by g. We note that a
is infinite since n is infinite. Set an = g(tn), and let the function en be defined
by

e0 = 0 and PtU+1) = (a0, ax, • • •, «„).
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Since g is one-to-one on n, it follows that an and en are also one-to-one func-
tions. In addition, rein) = n and therefore for each number n,

Let

Then 8 is a choice set of Bin(tn, a). To complete the proof it suffices to show
that

(a) 8 is a gc-set of Bin(tn, a),
(b) Req(«5) = T.

According to the definition of an, we see that tn ^ * an. Combining this
with the fact that tn is a regressive function, it follows that

(3) tn^*en+1.

From (3) we see that the mapping

i (*« . *) ~M (<»> <Wi). f o r ». * e £,

has a partial recursive extension. Any one of these extensions will be a
gc-function for 8 and hence 8 is agc-set. This proves (a).

For part (b), consider the two relations,

tn ^ * j{tn, en+1) and /(*„, ««+1) ^ * tntn.

The first follows from (3) and the second is clear. Together they imply that
tn ^ j(tn, en+1), which gives n ~ 8 and therefore 8 eT. This proves (b) and
completes the proof of Theorem 1.

REMARK. We wish to observe here that there are sets a for which
Bin(£n, a) is a gc-class while Bin (a) is not. It is well-known that there exist
immune sets which are not regressive, yet contain infinite regressive sub-
sets. Let us suppose that a is such a set and that the regressive function
tn ranges over a subset of a. Then clearly n ^ * a and therefore Bin(£n, a)
is a gc-class. On the other hand, Bin (a) will not be age-class since a is neither
regressive nor contains an infinite r.e. subset.

PROPOSITION 1. Let a be an infinite set. If Bin(£n, a) is a gc-class, then
it has a gc-set

<5 = { ? ( '
with the property that

PROOF. Left to the reader.
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PROPOSITION 2. Let Bin(fB, a) be a gc-class having a gc-set

<5= {/('*. ek+1)\k ^ 0 }
such that (4) holds and ^

Then, 1

(a) n ^ * a,

(b) flEr (Binft,, a)) = T.

PROOF. By Theorem 1, (a) implies (b) and therefore we may restrict
our attention to proving (a). Let / denote a gc-function of <5 and

oo

uea.— 2 />„<*)•
In addition, set 1

(ao) = Ped) >

( « 0 ' a i . - ' •» an) = Pe(n+D-

Note that u ^ an for every n. To prove that TT ^ * a, it is sufficient to show
that tn :g * an, i.e., that the mapping

(*) K -»•««»

has a partial recursive extension. This will be our approach here.
Assume that the value of tn is given. Using the regressiveness of the

function tx we can find the w+2-numbers n and t0, tlt • • •, tn. We can now
determine the number

«>oe("j such that p% = {u),

and then compute j(t0, ex) = fj(t0, w0). From this value the number e1

can be found and hence so can the value a0. We now consider the three
numbers tt, u and a0 and proceed to determine ax. First we find the number

w1 e K j such that pWi = {u, a0),

and then we compute j(tlt e2) = fj(tlt wx). The number e2 can now be found
and hence also the number ax, since (ax) = /»e(2)-P«(i) • It is readily seen that
by continuing in this fashion we shall be able to find the number an. Since
the procedure is effective, we conclude that the mapping indicated by (*)
has a partial recursive extension. This gives n :£ * a and completes the
proof.
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4. Two theorems

INTRODUCTORY REMARK. Let an be an everywhere defined one-to-
one function. Consider the mapping / defined by

i(sm, «») -^ i(sh. «J . where h = minimum (m, n).

Under the assumption that sn is a recursive function, it is readily verified
that

an is a regressive function <-» / has a partial recursive extension.

We now relativize the notion of a regressive function.

DEFINITION. Let sn be a regressive function and an any one-to-one
function from e into e. Then an is regressive in sn, if the mapping

?(sm> an) -> j(h> an)> where h = minimum (m, n),

has a partial recursive extension.

DEFINITION. Let sn be a regressive function and a any infinite set.
Then a is regressive in sn, if there is an everywhere defined one-to-one func-
tion an ranging over the set a with an regressive in sn.

REMARK. Regarding the above definitions we note that

an regressive in sn -> j(sn, «„) is a regressive function.

In addition, if an and sn are both regressive functions then an is regressive
in sn. It follows from this fact that every infinite regressive set is regressive
in every regressive function.

Finally we wish to note that for each infinite set a there are c regressive
functions sn with a regressive in sn. To see this, note that for any every-
where defined one-to-one function an, the function

where pn denotes the « + l 8 t prime, is a regressive function. Moreover, an

is regressive in sn. Since there are c choices for a one-to-one function an

ranging over a, there will be c regressive functions of the type sn. Clearly,
«is regressive in each of these.

THEOREM 2. Let a be any infinite set which is regressive in tn. Then

(a) Bin(£n, a) is a gc-class,

(b) frj(tn,an)eRET(Bm(tnloL)),

where an is any everywhere defined one-to-one function ranging over a which
is regressive in tn.
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PROOF. Let an denote any everywhere defined one-to-one function
ranging over a which is regressive in tn. Let the function en be defined by

e0 = 0 a n d p e i n + 1 ) = {a0, ax, • • •, «„).
Then

d = {j(tk, ek+1)\k ^ 0} is a choice set of Bin(£n, a).

We now show that <5 is a gc-set of Bin(tn, a). For this purpose, let /
denote any partial recursive extension of the mapping

j(tm, «„) -> j{th, «»)» where h = minimum (m, n).
Set

and let w e a with w — j(tn, u). We have to show that there exists a partial
recursive function at least defined on a and mapping

Both numbers tn and M can be determined from w, and hence also the
numbers t0, tx, • • •, tn together with their respective indices. In addition,
the w+1-numbers

«u(o) < a«(i) < * * * < «„(„) such that Pu = (au(0), au(1), • • •, au(n))

can be found; however not necessarily their respective indices. We wish
to show that we can also determine the number j(tn, en+1). It is readily
seen that this amounts to finding the n-\- 1-numbers a0, a1( • • -, an. We first
observe that

flo = W*o» a«(o))> since 0 = minimum (0, u(0)),

and hence a0 can be found. To determine ax, compute the numbers

iitx.Bx) = fi(h, ««(o)).

i{K'av) = fi(h, ««(i))-

Since <n is a regressive function each of the numbers x and y can be found;
moreover x = 1 or y = 1, since maximum (w0, %) ^ 1. If x = 1 then
a i = a*> a n ( i if y = 1 then «! = «„; in any event the number «x can be
obtained. By continuing in this fashion it is readily seen that we can deter-
mine all of the « + 1-numbers a0, a1, • • •,an and hence also the number
j(tn, en+1). We can conclude therefore that d is a gc-set of ~Bin(tn, a).

To complete the proof, it remains to prove (b). Since d is a gc-set of
Bin(tn, a), this is equivalent to showing that

Pj(tn, an) S d.
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We shall establish this recursive equivalence by proving that

For this purpose, let us first suppose that the number j(tn, an) is given.
We can determine the numbers tn and an and hence also the numbers
tQ,tx, • • •,tn. Moreover, according to the definition of /, we have that

a{ = lfj{tit an), for i = 0, 1, • • •, n—1.

Therefore the w+1-numbers a0, alt • • •, an can be found; hence also the
number en+1. This means that we can find the number j(tn, en+1). It follows
from these remarks that

(5) /(<„.««) ^ * / ( '» . ««+i)-

Now assume that the number j(tn, en+1) is given. Then the numbers
tn and en+1 can be found as well as the members of the (finite) set pe(n+1).
We wish to determine which member of pe(n+i> is an. This can be done by
computing the w+1-ordered pairs,

[kfj{tn, a), lfj{tn, a)), for a ePe{n+1).

Taking into account the definition of the function /, it follows that exactly
one of these pairs will have as its first member the number tn; the second
member of this particular pair will be an. Since these pairs can be effectively
obtained, we can find an and hence also the number j(tn, «„). We can con-
clude from these remarks that

(6) /(<»,e»+i) ^ •/(*«.««)•

Combining (5) and (6) we obtain

/(*». ««) = /(*». <W).

as was to be shown. This completes the proof of Theorem 2.

REMARK. Let AR denote the collection of all regressive isols. In
[3] Dekker introduced and studied an extension of the function
min(x, y) : e2 ->• e to a function min(X, Y) : A*R -*• AR. In terms of this
extension we can give the following corollary to Theorem 2.

COROLLARY. Let a. be a regressive immune set, and let A = Req(oc).
Let T = Keq(ptn) be a regressive isol. Then Bin(tn, a) is a gc-class and its
RET is min(r, A).

PROOF. Note that A, T e AR. Let an be any regressive function ranging
over a. Then an is regressive in tn and hence a is regressive in tn. Therefore
Bin(i!n, a) is a gc-class; let its RET be V. By Theorem 2,
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Pj(tn,an)eV.

In addition, according to the definition of the min(^T, Y) function [3, p.
361], the function j(tn, an) ranges over a set in min(7\ A). This gives the
desired result, V = min(r, A).

REMARK. The next theorem tells us that the disjunction of the two
properties mentioned in Theorems 1 and 2 characterizes the infinite sets a
for which ~Bm(tn, a) is a gc-class.

THEOREM 3. Let a be an infinite set. Then Bin(tn, a) is a gc-class if
and only if either n 5S * a or a is regressive in tn.

PROOF. In view of Theorems 1 and 2 we only need to show that the
condition is necessary. Assume that Bin(£m, a) is age-class and let

be one of its gc-sets. By Proposition 1, we may assume that d has property
(4). Set

y = 2

Clearly, y C a; also according to Proposition 2, y ^ a implies n 5S * a.
To complete the proof it therefore suffices to show that,

if y = a then a is regressive in tn.

This will be our approach here.
Let the function an be defined by

(7) («0. «i . ' * •' «»-i) = Peiny, for n ^ 1.

Since y = a, an is an everywhere defined (one-to-one) function which
ranges over a. We proceed to show that an is regressive in tn. Assume that
the number j(tm, an) is given and let h = minimum (m, n). We wish to
show that we can effectively find the number j(th, ah). First of all, we can
determine tm and hence also the numbers tQ, t1, • • •, tm together with their
respective indices. We can also find the number an, though not immediately
its index n. Let wQ be defined by

Then w0 e m and by computing

, wo) = 7(*o> eo).

we can find e0. In view of (7), we can also find a0. Now compare an with a0,
and at the same time consider tm (recall that the value of tn can be found).

If an = a0 or tm = t0, then it follows that h = 0 and hence
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and we are done. Otherwise an =£ a0 and h ^ 1. Set

By computing

we can effectively find et and hence also ax. Now compare an with ax and
at the same time consider tm.

If an = ax or tm = t±, then it follows that h = 1 and hence

and we are done. Otherwise an ^ ax and A ^ 2. We would now proceed to
determine a2, etc. By continuing in this way, exactly one of the following
two events will occur:

(I) We reach a point where ak is obtained with k < m, an = ak and

(II) We reach a point where ak is obtained with k = m.
Whether (I) or (II) occurs, we see that h = k and therefore

In any event j{th, ah) can be found. In view of the effectiveness of this
procedure, it follows that an is regressive in tn, as was to be shown. This
completes the proof of Theorem 3.
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