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Abstract. We classify all non-affine Hopf algebras H over an algebraically closed
field k of characteristic zero that are integral domains of Gelfand–Kirillov dimension
two and satisfy the condition Ext1

H(k, k) �= 0. The affine ones were classified by the
authors in 2010 (Goodearl and Zhang, J. Algebra 324 (2010), 3131–3168).
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1. Introduction. Throughout let k be a base field that is algebraically closed of
characteristic zero. All algebras and Hopf algebras are assumed to be k-algebras.
The main result of [6] is the classification of the affine Hopf k-algebras H that are
integral domains of Gelfand–Kirillov dimension two and satisfy the extra homological
condition:

Ext1
H(k, k) �= 0, (�)

where k also denotes the trivial module H/ ker ε. We say that H is affine if it is
finitely generated over k as an algebra. Geometrically, the condition (�) means that
the tangent space of the corresponding quantum group is non-trivial. By [6, Theorem
3.9], the condition (�) is equivalent to the condition that the corresponding quantum
group contains a classical algebraic subgroup of dimension one. The authors asked
whether the condition (�) is automatic when H is an affine domain of Gelfand–Kirillov
dimension (or GK-dimension, for short) two [6, Question 0.3]. This question was
answered negatively in [21]. Some affine Hopf algebra domains of GK-dimension two
that do not satisfy (�) were given and studied in [21].

All Hopf domains of GK-dimension one are listed in [6, Proposition 2.1]. All affine
Hopf domains of GK-dimension two satisfying (�) are listed in [6, Theorem 0.1]. The
main goal of the present paper is to classify non-affine Hopf domains of GK-dimension
two satisfying (�). Together with [6, Theorem 0.1], this provides a complete list of all
Hopf domains of GK-dimension two satisfying (�).
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THEOREM 1.1. Let H be a Hopf domain of GK-dimension two satisfying (�). Then,
it is isomorphic, as a Hopf algebra, to one of the following.

(1) kG where G is a subgroup of �2 containing �2.
(2) kG where G = L � R for some subgroup L of � containing � and some subgroup

R of �(2) containing �.
(3) U(g) where g is a two-dimensional Lie algebra over k.
(4) AG(e, χ ) where G is a non-zero subgroup of � [Example 2.2].
(5) CG(e, τ ) where G is a non-zero subgroup of � [Example 2.3].
(6) BG({pi}, χ ) where G is a non-zero subgroup of � [Construction 3.1].

In part (2) of the above theorem, �(2) denotes the localization of the ring � at the
maximal ideal (2), that is, the ring of rational numbers with odd denominators.

There are more Hopf domains of GKdim two if the hypothesis (�) is removed from
Theorem 1.1, see [21].

We also study some algebraic properties of the algebras in Theorem 1.1. Parts
(1)–(5) of the following are easy consequences of Theorem 1.1, whereas part (6) is
given in [6, Theorem 0.1].

COROLLARY 1.2. Let H be as in Theorem 1.1. Then, the following hold.
(1) H is pointed and generated by grouplike and skew primitive elements.
(2) H is countable dimensional over k.
(3) The antipode of H is bijective.
(4) Let K be a Hopf subalgebra of H. Then ,HK and K H are free.
(5) If H is as in parts (1–5) of Theorem 1.1, then 2 ≤ gldim H ≤ 3, whereas if H is

as in part (6), then gldim H = ∞.
(6) H is affine if and only if it is noetherian.

By [6, Proposition 0.2(b)], if H in Theorem 1.1 is noetherian, then injdim H = 2.
So, we conjecture that injdim H = 3 if H in Theorem 1.1 is non-noetherian.

There have been extensive research activities concerning infinite dimensional
Hopf algebras (or quantum groups) in recent years. The current interests are mostly
on noetherian and/or affine Hopf algebras. One appealing research direction is to
understand some global structure of noetherian and/or affine and/or finite GK-
dimensional Hopf algebras.

A classical result of Gromov states that a finitely generated group G has polynomial
growth, or equivalently, the associated group algebra has finite GK-dimension, if and
only if G has a nilpotent subgroup of finite index [7]. So, group algebras of finite GK-
dimension are understood. It is natural to look for a Hopf analogue of this result, see
[22, Question 0.1]. Another vague question is “what can we say about a Hopf algebra
of finite GK-dimension?”. Let us mention a very nice result in this direction. Zhuang
proved that every connected Hopf algebra of finite GK-dimension is a noetherian and
affine domain with finite global dimension [25]. Here, the term “connected” means that
the coradical is one-dimensional. In general, the noetherian and affine properties are
not consequences of the finite GK-dimension property. To have any sensible solution,
we might restrict our attention to the domain case. A secondary goal of this paper is to
promote research on Hopf domains of finite GK-dimension which are not necessarily
noetherian nor affine.

Let us start with some definitions.

DEFINITION 1.3. Let H be a Hopf algebra with antipode S.

https://doi.org/10.1017/S0017089516000410 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000410


NON-AFFINE HOPF ALGEBRAS 565

(1) H is called locally affine if every finite subset of H is contained in an affine
Hopf subalgebra of H.

(2) H is said to have S-finite type if there is a finite dimensional subspace V ⊆ H
such that H is generated by

⋃∞
i=0 Si(V ) as an algebra.

(3) H is said to satisfy (FF) if for every Hopf subalgebra K ⊆ H, the K-modules
HK and K H are faithfully flat.

It is clear that H is affine if and only if H is both locally affine and of S-finite
type. The question of whether H satisfies (FF) has several positive answers [4, 12,
15, 16, 19, 20]. In 1993, Montgomery asked if every Hopf algebra satisfies (FF) [11,
Question 3.5.4]. A counterexample was given in [17]. Hence, Montgomery’s question
was modified to encompass only the Hopf algebras with bijective antipode. By a
result of Skryabin [18, Theorem A], every Hopf domain of finite GK-dimension has
bijective antipode. Prompted by Zhuang’s result and Corollary 1.2, we ask the following
questions.

QUESTIONS 1.4. Let H be a Hopf domain of finite GK-dimension.

(1) Is the k-dimension of H countable, or equivalently, is H countably generated
as an algebra?

(2) Is H locally affine?
(3) Is H equal to the union of an ascending chain of affine Hopf subalgebras?
(4) Is “affine” equivalent to “noetherian”? See also [24, Question 5.1], [2,

Questions D and E] and [5, Question 2.4].
(5) Does H satisfy (FF)?
(6) Is injdim H bounded by a function of GKdim H?
(7) If gldim H is finite, is gldim H bounded by a function of GKdim H?

If any of Questions 1.4(1–3) has a positive answer, it would indicate that H is
somewhat close to being affine. We also have the following result connecting some of
these concepts. Note that pointed Hopf algebras satisfy (FF) by [16].

THEOREM 1.5. Let H be a Hopf algebra that is left noetherian.

(1) Suppose H satisfies (FF). Then, H is of S-finite type. As a consequence, dimk H
is countable.

(2) Suppose H satisfies (FF) and H is locally affine. Then, H is affine.
(3) If H is pointed, then it is affine.

Theorem 1.5(3) partially answers [24, Question 5.1] in the pointed case, see also
[5, Question 2.4] and [2, Question D].

1.1. Notation. Fix an algebraically closed base field k of characteristic zero
throughout.

Elements u and v of a k-algebra are said to quasi-commute if uv = qvu for some
q ∈ k×, in which case they are also said to q-commute.

We shall reserve the term skew primitive for (1, g)-skew primitive elements z,
meaning that g is grouplike and �(z) = z ⊗ 1 + g ⊗ z. In this situation, g is called
the weight of z, denoted wt(z). General skew primitive elements can be normalized to
the kind above, since if w is (a, b)-skew primitive, then a−1w is (1, a−1b)-skew primitive.
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Let G be an additive subgroup of (�,+). For convenience we sometimes identify
it with the multiplicative x-power group, namely,

G = {xg | g ∈ G},
where xgxh = xg+h for g, h ∈ G and x0 = 1. If 1 ∈ G, then we also write x for x1.
Similarly, the group algebra kG is identified with

⊕
g∈G k xg. In Section 3, we will

also use an additive submonoid M ⊆ �. Then, in this case, we identify M with the
multiplicative y-power monoid, namely,

M = {ym | m ∈ M}.
By using these different notations, one sees the different roles played by G and M in
Section 3.

2. Non-affine construction of types A and C. We start by recalling a result of [6]
that classifies all (not necessarily affine) Hopf domains of GK-dimension one. Note
that a domain of GK-dimension one is automatically commutative (e.g., [6, Lemma
4.5]).

LEMMA 2.1 ([6, Proposition 2.1]). Assume that a Hopf algebra H is a domain of
GK-dimension one. Then, H is isomorphic to one of the following:

(1) an enveloping algebra U(g), where dim g = 1;
(2) a group algebra kG, where G is infinite cyclic;
(3) a group algebra kG, where G is a non-cyclic torsionfree abelian group of rank 1,

i.e., a non-cyclic subgroup of �.
As a consequence, H satisfies (�).

Proof. The main assertion is [6, Proposition 2.1] and the consequence follows by
an easy computation. �

Note that every Hopf algebra H in Lemma 2.1 is countable dimensional and is
completely determined by its coradical.

In [6, Constructions 1.2–1.4], we constructed some affine Hopf domains of GK-
dimension two, labelled as types A, B and C. Non-affine versions of types A and C can
be constructed similarly and appeared also in other papers. One way of defining these
is to use the Hopf Ore extensions introduced in [3,14]. We review the definition briefly,
and refer to [3, 14] for more details.

Given a Hopf algebra K , an automorphism σ and a σ -derivation δ of K , a Hopf
Ore extension (or HOE, for short) of K , denoted by K [z; σ, δ], is a Hopf algebra H
that is isomorphic to the usual Ore extension K [z; σ, δ] as an algebra and contains K
as a Hopf subalgebra. HOEs have been studied in several papers including [3, 14, 23].
When δ = 0, the HOE H is abbreviated to K [z; σ ], and when σ = IdK , it is abbreviated
to K [z; δ]. If K is a domain, then H is also a domain.

EXAMPLE 2.2 ([23, Example 5.4]). Let K = kG where G is a group and let χ : G →
k× be a character of G. Define an algebra automorphism σχ : K → K by

σχ (g) = χ (g)g, ∀ g ∈ G.

Let δ = 0. By [23, Example 5.4], H := K [z; σχ ] is a HOE of K with �(z) = z ⊗ 1 + e ⊗ z
for any choice of e in the center of G. This Hopf algebra is denoted by AG(e, χ ).
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We are mostly interested in non-trivial subgroups G ⊆ �. In this case,

GKdim kG = 1, and GKdim H = 2,

using, e.g., [8, Lemma 2.2] for the second equality. If k = �, then there are many
characters of G. For example, let λ be a real number, then expλ : r → exp(2π irλ) is a
character from � to �×.

A special case is when G = � (identified with {xi}i∈�). Suppose the character χ :
G → k× is trivial (in this case σ = IdkG) and �(z) = z ⊗ 1 + x ⊗ z. This special HOE,
denoted by A�(1, 0), is the commutative Hopf algebra A(1, 1) given in [6, Construction
1.2] (by taking (n, q) = (1, 1)). More generally, if n ∈ �, q ∈ k×, and χ : � → k× is
the character given by χ (i) = q−i, then A�(n, χ ) is the Hopf algebra A(n, q) of [6,
Construction 1.2].

EXAMPLE 2.3 ([23, A special case of Example 5.5]). Let K = kG, where G is a
group and let e be an element in the center of G. Let τ : G → (k,+) be an additive
character of G. Define a k-linear derivation δ : K → K by

δ(g) = τ (g)g(e − 1), ∀ g ∈ G.

Then, H := K [z; δ] is a HOE of K with �(z) = z ⊗ 1 + e ⊗ z. This Hopf algebra is
denoted by CG(e, τ ).

Later, we will take G to be a subgroup of �. Since we assume k has characteristic
zero, there are many additive characters from G to (k,+). For example, let λ be a
rational number, then iλ : r → rλ is an additive character from G → (k,+).

A special case is when G = � (identified with {xi}i∈�), e = 1 − n for some n ∈ �,
and τ = i1 (the inclusion map � → k). Then C�(1 − n, i1) is the Hopf algebra C(n) of
[6, Construction 1.4].

The next result of [23] says that AG(e, χ ) and CG(e, τ ) are natural classes of Hopf
algebras. Let G(H) denote the group of all grouplike elements in a Hopf algebra H.

THEOREM 2.4 ([23, Theorem 7.1]). Let H be a pointed Hopf domain. Suppose that
G := G(H) is abelian and that

GKdim kG < GKdim H < GKdim kG + 2 < ∞.

If H does not contain A(1, 1) as a Hopf subalgebra, then H is isomorphic to either
AG(e, χ ) or CG(e, τ ) as given in Examples 2.2 and 2.3.

As a consequence, the following corollary is obtained.

COROLLARY 2.5. Let H be a pointed Hopf domain of GK-dimension two. Suppose
that the coradical of H has GK-dimension one and that H does not contain A(1, 1) as
a Hopf subalgebra. Then, H is isomorphic to either AG(e, χ ) or CG(e, τ ), where G is a
non-zero subgroup of �.

Proof. Since H is pointed, the coradical of H is kG, where G = G(H). Since
GKdim kG = 1, by Lemma 2.1, G is a non-zero subgroup of �. So, G(H) = G is
abelian. Now,

1 = GKdim kG < 2 = GKdim H < GKdim kG + 2 = 3.

https://doi.org/10.1017/S0017089516000410 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000410


568 K. R. GOODEARL AND J. J. ZHANG

Hence, the hypothesis of Theorem 2.4 holds, and the assertion follows from the
theorem. �

Hopf algebras of GK-dimension two that contain A(1, 1) are more complicated.
We will construct a family of them in the next section.

3. Non-affine construction of type B.

3.1. Construction. We construct a Hopf algebra BG({pi}, χ ) based on the
following data.

Data. Let G be a subgroup of (�,+) that contains �, and write its group algebra
in the form

kG =
⊕
a∈G

k xa,

as in Notation 1.1.
Let I be an index set with |I| ≥ 2. Let {pi | i ∈ I} be a set of pairwise relatively

prime integers such that pi ≥ 2 and 1/pi ∈ G for all i ∈ I , and let M be the additive
submonoid of � generated by {1/pi | i ∈ I}. Due to the relative primeness assumption,
1/pipj ∈ G for all distinct i, j ∈ I . Obviously M ⊆ G, but we want to keep the algebras
of M and G separate, as these are playing different roles. Following Notation 1.1 we
write the monoid algebra of M in the following form:

kM =
⊕
b∈M

k yb.

Set

GM = {a1m1 + · · · + atmt | t ∈ �≥0, al ∈ G, ml ∈ M} =
∑
i∈I

G(1/pi),

an additive subgroup of �, and let χ : GM → k× be a character (i.e., a group
homomorphism) such that

(1) χ (1/p2
i ) is a primitive pi-th root of unity for all i ∈ I .

Note that (1) implies that
(2) χ (1/pi) = χ (1/p2

i )pi = 1 for i ∈ I , and
(3) χ (1) = χ (1/pi)pi = 1.
Observation. For any distinct i, j ∈ I , we have 1/pipj ∈ GM and there are ci, cj ∈ �

such that cipi + cjpj = 1, whence

χ (1/pipj) = χ ((ci/pj) + (cj/pi)) = χ (1/pj)ciχ (1/pi)cj = 1. (E3.1.1)

Algebra structure. Let G act on kM by k-algebra automorphisms such that

a · yb = χ (ab)yb ∀ a ∈ G, b ∈ M.

Use this action to turn kM into a left kG-module algebra, form the smash product

B = BG({pi}, χ ) := kM#kG,
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and omit #s from expressions in B. If we write yi := y1/pi for i ∈ I , then we can present
B by the generators {xa | a ∈ G} � {yi | i ∈ I} and the relations

x0 = 1,

xaxa′ = xa+a′
(a, a′ ∈ G),

xayi = χ (a/pi)yixa (a ∈ G, i ∈ I),

yiyj = yjyi (i, j ∈ I),

ypi
i = ypj

j (i, j ∈ I).

(E3.1.2)

These relations are very similar to the relations in [6, (E1.2.1) in Construction 1.2].
Consider a non-empty finite subset J ⊆ I . If c := ∏

j∈J pj, the submonoid of M
generated by {1/pj | j ∈ J} is a submonoid of the additive monoid Mc := �≥0(1/c).
The subalgebra of B generated by {xa | a ∈ G} � {yj | j ∈ J} is a subalgebra of a skew
polynomial ring:

kMc#kG = kG[y1/c; σc],

where σc is the automorphism of kG such that σc(xa) = χ (−a/c)xa for all a ∈ G. It
follows that kMc#kG is a domain of GK-dimension two.

Since B is a directed union of subalgebras of the form kMc#kG, we conclude that
B is a domain of GK-dimension two.

Hopf structure. It is clear from the presentation in (E3.1.2) that there is an algebra
homomorphism ε : B → k such that ε(xa) = 1 for all a ∈ G and ε(yi) = 0 for all i ∈ I .

Obviously (xa ⊗ xa)(xa′ ⊗ xa′
) = xa+a′ ⊗ xa+a′

for all a, a′ ∈ G. Set xi := x1/pi and
δi := yi ⊗ 1 + xi ⊗ yi for i ∈ I . It is clear that (xa ⊗ xa)δi = χ (a/pi)δi(xa ⊗ xa) for all
a ∈ G and i ∈ I . For any distinct i, j ∈ I , we have

xiyj = χ (1/pipj)yjxi = yjxi (E3.1.3)

because of (E3.1.1), and likewise xjyi = yixj. It follows that δiδj = δjδi. Moreover, since

(xi ⊗ yi)(yi ⊗ 1) = χ (1/p2
i )(yi ⊗ 1)(xi ⊗ yi)

with χ (1/p2
i ) a primitive pi-th root of unity, it follows from the q-binomial formula that

δ
pi
i = y1 ⊗ 1 + x1 ⊗ y1. Likewise, δ

pj

j = y1 ⊗ 1 + x1 ⊗ y1, so that δ
pi
i = δ

pj

j . Therefore,
there is an algebra homomorphism � : B → B ⊗ B such that �(xa) = xa ⊗ xa for all
a ∈ G and �(yi) = δi for all i ∈ I .

Observe that (ε ⊗ id)�(xa) = xa for all a ∈ G and (ε ⊗ id)�(yi) = yi for all i ∈
I . Consequently, (ε ⊗ id)� = id, and similarly (id ⊗ ε)� = id. We also observe that
(� ⊗ id)� and (id ⊗ �)� agree on xa and yi for all a ∈ G and i ∈ I , and consequently
(� ⊗ id)� = (id ⊗ �)�. Therefore, (B,�, ε) is a bialgebra.

Next, observe that (x−a′
)(x−a) = x−(a+a′) for all a, a′ ∈ G and that

(−x−1
i yi)x−a = χ (a/pi)x−a(−x−1

i yi)

for all a ∈ G and i ∈ I . For any distinct i, j ∈ I , we see using (E3.1.3) that

(−x−1
j yj)(−x−1

i yi) = (−x−1
i yi)(−x−1

j yj).
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We also have

(−x−1
i yi)pi = (−1)pi x−1

i yix−1
i yi · · · x−1

i yi = (−1)piχ (−1/p2
i )pi(pi+1)/2y1x−1.

If pi is odd, then pi divides pi(pi + 1)/2 and so χ (−1/p2
i )pi(pi+1)/2 = 1. On the other

hand, if pi is even, then χ (−1/p2
i )pi(pi+1)/2 = (−1)pi+1 = −1 due to the primitivity of

χ (−1/p2
i ). In both cases, we end up with (−x−1

i yi)pi = −y1x−1. Likewise, (−x−1
j yj)pj =

−y1x−1, so that (−x−1
i yi)pi = (−x−1

j yj)pj . Therefore, there is an algebra homomorphism
S : B → Bop such that S(xa) = x−a for all a ∈ G and S(yi) = −x−1

i yi for all i ∈ I .
Finally, observe that m(S ⊗ id)�(xa) = 1 = ε(xa)1 for all a ∈ G, where

m : B ⊗ B → B is the multiplication map, and m(S ⊗ id)�(yi) = 0 = ε(yi)1 for all
i ∈ I , from which we conclude that m(S ⊗ id)� = u ◦ ε, where u : k → B is the unit
map. Similarly, m(id ⊗ S)� = u ◦ ε. Therefore, (B,�, ε, S) is a Hopf algebra. We shall
denote it BG({pi}, χ ), as indicated above. The Hopf algebra structure is uniquely
determined by the conditions

xa is grouplike for all a ∈ G,

yi is (1, xi)-skew primitive for all i ∈ I.
(E3.1.4)

The construction above can also be carried out when the index set I is a singleton,
but then the resulting Hopf algebra is isomorphic to AG(e, χ ) for suitable e and χ . We
leave the details to the reader.

3.2. Examples. The data (G, {pi}, χ ) can be chosen so that BG({pi}, χ ) contains
infinitely many skew primitive elements which are linearly independent modulo its
coradical, as follows.

EXAMPLE 3.1. Let p1, p2, . . . be any infinite sequence of pairwise relatively prime
integers ≥ 2, and let G be the subgroup of (�,+) generated by 1/pi for all i ∈ �.
Set M := ∑∞

i=1 �≥0(1/pi) and G2 := ∑∞
i=1 �(1/p2

i ). Note that GM = G2, which is a
subgroup of (�,+). For each i ∈ �, let βi ∈ k× be a primitive pi-th root of unity. The
cosets 1/p2

i in �/� generate finite cyclic subgroups of pairwise relatively prime orders,
whence the sum of these subgroups is a direct sum. Hence, there is a homomorphism

χ0 :
∞∑

i=1

�
(

1/p2
i

) =
∞⊕

i=1

�
(

1/p2
i

) → k×

such that χ0

(
1/p2

i

) = βi for all i. Since k× is a divisible abelian group, it is injective in the
category of all abelian groups, and so χ0 extends to a homomorphism χ : G2/� → k×.
Compose χ with the quotient map G2 → G2/� to obtain a character χ : G2 → k×. By
the choice of χ , we have χ (1/p2

i ) = βi for all i ∈ �. As a consequence, χ (a) = 1 for all
a ∈ G.

Thus, by the construction in the previous subsection, we obtain a Hopf algebra
B = BG({pi}, χ ) that contains distinct skew primitive elements yi, for i ∈ �, which are
linearly independent modulo the coradical kG of B.

Since there are uncountably many different choices of χ0, there are uncountably
many non-isomorphic Hopf domains of GK-dimension two by Proposition 3.6 below.
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Certain natural finitely generated subalgebras of BG({pi}, χ ) are Hopf algebras
isomorphic to some of the Hopf algebras A(n, q) and B(n, p0, . . . , ps, q) of [6,
Constructions 1.1, 1.2], as follows.

LEMMA 3.2. Let B := BG({pi}, χ ) as in the previous subsection. Let G̃ be a finitely
generated subgroup of G, Ĩ a non-empty finite subset of I such that 1/pi ∈ G̃ for all i ∈ Ĩ ,
and B̃ the subalgebra of B generated by {xa | a ∈ G̃} � {yi | i ∈ Ĩ}. Then, B̃ is a Hopf
subalgebra of B.

Assume that Ĩ = {1, . . . , s} for some positive integer s and p1 < · · · < ps. Set m :=
p1p2 · · · ps and mi := m/pi for i ∈ Ĩ .

(1) There are positive integers n and p0 such that G̃ = �(1/mn) and 1/m2n ∈ GM,
while q := χ (1/m2n) is a primitive 
-th root of unity, where 
 := mn/p0.
Moreover, p0 | n and p0 is relatively prime to each of p1, . . . , ps.

(2) If s = 1, then B̃ ∼= A(n, q).
(3) If s ≥ 2, then B̃ ∼= B(n, p0, . . . , ps, q).

Proof.
(1) Since G̃ is a finitely generated subgroup of � containing �, it has the form

G̃ = �(1/t) for some positive integer t. For i ∈ Ĩ , we have 1/pi ∈ G̃, whence
pi | t. Then, since the pi are pairwise relatively prime, m | t. Thus, t = mn for
some positive integer n. Let M̃ be the submonoid

∑
i∈̃I �≥0(1/pi).

The pairwise relative primeness of the pi implies that gcd(m1, . . . , ms) = 1, and
so there exist integers ci such that c1m1 + · · · + csms = 1, whence

(c1/p1) + · · · + (cs/ps) = 1/m. (E3.2.1)

This does not imply that 1/m ∈ M̃, since some of the ci may be negative, but
we do get

1
m2n

= c1

p1mn
+ · · · + cs

psmn
=

(
c1

t

) (
1
p1

)
+ · · · +

(
cs

t

)(
1
ps

)
∈ G̃M̃ ⊆ GM.

Therefore q := χ (1/m2n) ∈ k× is defined. Since qm2n = χ (1) = 1, the order of
q in the group k× is finite, say |q| = 
. Thus, q is a primitive 
-th root of unity.
For i ∈ Ĩ , the power

qm2
i n = χ (1/m2n)m2

i n = χ (1/p2
i )

is a primitive pi-th root of unity, which implies that pi | 
. Consequently, m | 
.
On the other hand, qpim2

i n = 1, whence 
 divides pim2
i n = mimn for all i ∈ Ĩ , and

so 
 | mn. Thus, mn = 
p0 for some positive integer p0. Since m | 
, it follows
that p0 | n.
Since χ (1/pi) = 1 for all i ∈ Ĩ , we can invoke (E3.2.1) to obtain χ (1/m) = 1,
from which it follows that

χ (1/mi) = 1, ∀ i ∈ Ĩ . (E3.2.2)

Set di := gcd(p0, pi), and write p0 = diui and pi = divi for some positive
integers ui, vi. Since 
diui = 
p0 = mn = divimin, we find that 
 | vimin, and
consequently

1 = qvimin = χ (1/m2n)vimin = χ (1/p2
i mi)vi .
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Now p2
i and mi are relatively prime, whence aip2

i + bimi = 1 for some integers
ai, bi, and so 1/p2

i mi = (ai/mi) + (bi/p2
i ). Thus, taking account of equation

(E3.2.2),

1 = χ (1/p2
i mi)vi = χ (ai/mi)viχ (bi/p2

i )vi = χ (1/p2
i )bivi .

Since χ (1/p2
i ) is a primitive pi-th root of unity, pi | bivi, from which it follows

that pi divides aip2
i vi + bimivi = vi, and so di = 1. Thus, p0 and pi are relatively

prime, for each i ∈ Ĩ . By now, we have checked all assertions in part (1).
(2) In this case, m = p1. Set x̃ := x1/mn, so that B̃ is generated by {̃x±1, y1}.

We have x̃y1 = χ (1/mnp1)y1x̃ = qy1x̃, so there is an algebra isomorphism
φ : B̃ → A(n, q) with φ(̃x) = x and φ(y1) = y. Since x1 = x1/p1 = x̃n and
�(y1) = y1 ⊗ 1 + x1 ⊗ y1, we see that φ preserves comultiplication. Observe
also that φ preserves counit and antipode. Therefore, φ is an isomorphism of
Hopf algebras.

(3) Again, set x̃ := x1/mn, and observe that B̃ can be presented by the generators
x̃±1, y1, . . . , ys and the relations

x̃̃x−1 = x̃−1x̃ = 1

x̃yi = qmi yĩx (1 ≤ i ≤ s)

yiyj = yjyi (1 ≤ i < j ≤ s)

ypi
i = ypj

j (1 ≤ i < j ≤ s).

(E3.2.3)

Comparing (E3.2.3) with [6, (E1.2.1)], we see that there is an algebra
isomorphism φ : B̃ → B(n, p0, . . . , ps, q) such that φ(̃x) = x and φ(yi) = yi for
i = 1, . . . , s. Since φ also preserves the Hopf algebra structures, we conclude
that φ is an isomorphism of Hopf algebras.

�
PROPOSITION 3.3. Let B := BG({pi}, χ ) as in Section 3.1. There is an ascending chain

of Hopf subalgebras

B〈1〉 ⊆ B〈2〉 ⊆ · · · ⊆ B〈n〉 · · · ⊆ B

such that B = ⋃∞
n=1 B〈n〉 and each B〈n〉 is a finitely generated Hopf algebra of type B as

in [6, Construction 1.2].

Proof. Since G is countable, we list its elements as {g1, g2, . . . , gn, . . .}. Write I as
either {1, 2, . . . } or {1, . . . , t}, and in the latter case set pi = pt for all i > t. For n ∈ �,
let G̃〈n〉 be the subgroup of G generated by {g1, . . . , gn, 1/p1, . . . , 1/pn+1}. Let B〈n〉 be
the subalgebra of B generated by G̃〈n〉 and {y1, . . . , yn+1}. By Lemma 3.2(3), B〈n〉 is
a finitely generated Hopf algebra of type B as in [6, Construction 1.2]. It is clear that
B = ⋃∞

n=1 B〈n〉. �

3.3. Basic properties. We next derive some basic properties of the Hopf algebras
BG({pi}, χ ).

LEMMA 3.4. Let B := BG({pi}, χ ) as in Section 3.1.
(1) There is a unique Hopf algebra map π : B → kG such that π is the identity on

kG and π (yi) = 0 for all i ∈ I.

https://doi.org/10.1017/S0017089516000410 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000410


NON-AFFINE HOPF ALGEBRAS 573

(2) The maps λ := (π ⊗ id)� and ρ := (id ⊗ π )� make B into a left and a right
kG-comodule algebra, respectively.

(3) B is a G-graded algebra via λ, with

Ba = {z ∈ B | λ(z) = xa ⊗ z}, ∀ a ∈ G.

(4) xa ∈ Ba for all a ∈ G, and yb ∈ Bb for all b ∈ M.
(5) The subalgebra Bco ρ of ρ-coinvariants in B equals kM.

Proof. (1) It is clear from the presentation in (E3.1.2) that the identity map on kG
extends to an algebra map π : B → kG such that π (yi) = 0 for all i ∈ I , and we observe
that π is a Hopf algebra map.

(2, 3) These are standard consequences of (1).
(4) The first statement is clear since λ(xa) = xa ⊗ xa for all a ∈ G.
Given b ∈ M, write b = ∑

i∈I ni/pi for some ni ∈ �≥0, where at most finitely many
ni are non-zero. Then, yb = ∏

i∈I yni
i , whence

λ(yb) = (π ⊗ id)

(∏
i∈I

(yi ⊗ 1 + xi ⊗ yi)ni

)
=

∏
i∈I

(xni
i ⊗ yni

i ) = xb ⊗ yb.

Thus, yb ∈ Bb, as claimed.
(5) Since ρ(yi) = (id ⊗ π )(yi ⊗ 1 + xi ⊗ yi) = yi ⊗ 1 for i ∈ I , we see that each yi is

a ρ-coinvariant, and consequently kM ⊆ Bco ρ .
Consider a non-zero element z ∈ B, and write z = ∑m

l=1 xal zl for some distinct
elements al ∈ G and some non-zero elements zl ∈ kM. Then,

ρ(z) =
m∑

l=1

xal zl ⊗ xal .

If z is a ρ-coinvariant, we must have m = 1 and a1 = 0, whence z = z1 ∈ kM. Therefore,
Bco ρ = kM. �

A skew primitive element of the Hopf algebra BG({pi}, χ ) is called non-trivial if it
is not in kG. Recall the notation x := x1 and y := y1.

LEMMA 3.5. Let B := BG({pi}, χ ) as in Section 3.1.

(1) The only grouplike elements of B are the xa for a ∈ G.
(2) For a ∈ G, all (1, xa)-skew primitive elements of B are in k(1 − xa) + kM.
(3) Every non-trivial skew primitive element of B is of the form byi + c(1 − xi) or

by + c(1 − x) for some scalars b, c ∈ k.

Proof.

(1) Recall from Section 3.1 that B is a directed union of subalgebras of skew
polynomial rings of the form kMc#kG = kG[y1/c; σc] (see the end of Algebra
structure). In such a skew polynomial ring, the only units are the units of kG,
so the only units in B are those in kG, that is, the elements αxa for α ∈ k× and
a ∈ G. Since grouplike elements are units, statement (1) follows.
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(2) We first show that any non-zero (1, xa)-skew primitive element w ∈ kG must be
a scalar multiple of 1 − xa. Write w = ∑m

l=1 αlxal for some αl ∈ k× and some
distinct al ∈ G. Then,

m∑
l=1

αlxal ⊗ xal = �(w) =
m∑

l=1

αl
(
xal ⊗ 1 + xa ⊗ xal

)
. (E3.5.1)

It follows that any non-zero al must equal a, whence m ≤ 2. If m = 1, then,
after multiplying by α−1

1 , (E3.5.1) reduces to

xa1 ⊗ xa1 = xa1 ⊗ 1 + xa ⊗ xa1 ,

which is impossible. Thus, after a possible renumbering, we must have a �= 0
and w = α1 + α2xa. In this case, (E3.5.1) says that

α1 ⊗ 1 + α2xa ⊗ xa = α1(1 ⊗ 1 + xa ⊗ 1) + α2(xa ⊗ 1 + xa ⊗ xa).

It follows that α1 + α2 = 0 and so w = α1(1 − xa), as desired.
Now suppose that z is a (1, xa)-skew primitive element of B, for some a ∈ G.
Then, π (z) must be a (1, xa)-skew primitive element of kG, and so the claim
above shows that π (z) = α(1 − xa) for some α ∈ k. Consequently, z′ := z −
α(1 − xa) is a (1, xa)-skew primitive element of B with π (z′) = 0. Then,

ρ(z′) = (id ⊗ π )(z′ ⊗ 1 + xa ⊗ z′) = z′ ⊗ 1,

whence z′ ∈ Bco ρ . By Lemma 3.4(4), z′ ∈ kM, and therefore z ∈ k(1 − xa) +
kM.

(3) By Proposition 3.3, we may assume that B is finitely generated and isomorphic
to a Hopf algebra of type B as in [6, Construction 1.2]. By [21], these type
B Hopf algebras form a special class of the K({ps}, {qs}, {αs}, M) defined in
[21, Section 2]. By [21, Lemma 2.9(a)], any non-trivial skew primitive element
f in B is a linear combination of {yi}i∈I and y modulo kG. Write a (1, g)-
skew primitive element f as f = ay + ∑

i∈I aiyi + f0 where f0 ∈ kG. By [21,
Lemma 2.9(a)], g = xi or x. Since all xi and x are distinct, we have that only
one of {ai}i∈I ∪ {a} is non-zero. The assertion follows by combining this with
part (2). �

The next proposition is similar to [6, Lemma 1.3].

PROPOSITION 3.6. Let B := BG({pi}, χ ) and B̃ := B(G̃, {̃pi}, χ̃ ) as in Section 3.1.
Then, B ∼= B̃ if and only if G = G̃, {pi | i ∈ I} = {̃pi | i ∈ Ĩ}, and χ = χ̃ .

Proof. Let φ : B → B̃ be an isomorphism of Hopf algebras.
Label the canonical generators of B as above, namely as xa for a ∈ G and yi for

i ∈ I , and label those of B̃ as x̃a for a ∈ G̃ and ỹi for i ∈ Ĩ . Write M and M̃ for the
additive submonoids of � generated by {1/pi | i ∈ I} and {1/̃pi | i ∈ Ĩ}, respectively.

The group of grouplike elements of B is isomorphic to G, and that of B̃ to G̃,
so it follows from Lemma 3.5(1) that there is an isomorphism γ : G → G̃ such that
φ(xa) = x̃γ (a) for all a ∈ G. Since G and G̃ are additive subgroups of �, γ is given by
multiplication by some r ∈ �×. Thus, G̃ = rG and φ(xa) = x̃ra for all a ∈ G.

https://doi.org/10.1017/S0017089516000410 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000410


NON-AFFINE HOPF ALGEBRAS 575

We next show that φ maps kM onto kM̃. For i ∈ I , the element yi is (1, x1/pi )-skew
primitive, and x1/pi yi = qiyix1/pi where qi := χ (1/p2

i ) is a primitive pi-th root of unity.
Then, φ(yi) is a (1, x̃r/pi )-skew primitive element of B̃ such that x̃r/piφ(yi) = qiφ(yi )̃xr/pi .
By Lemma 3.5(2), φ(yi) = α(1 − x̃r/pi ) + z for some α ∈ k and z ∈ kM̃. Hence,

qiα(1 − x̃r/pi ) + qiz = qiφ(yi) = x̃r/piφ(yi )̃x−r/pi = α(1 − x̃r/pi ) + x̃r/pi z̃x−r/pi ,

and so (qi − 1)α(1 − x̃r/pi ) ∈ kM̃. Since qi �= 1 and r �= 0, this forces α = 0, whence
φ(yi) = z ∈ kM̃. Thus, φ(kM) ⊆ kM̃. By symmetry, φ−1(kM̃) ⊆ kM, and therefore
φ(kM) = kM̃.

By Lemma 3.4(1), the identity map on kG extends to a Hopf algebra map π :
B → kG such that π (yi) = 0 for all i ∈ I , and there is a corresponding Hopf algebra
map π̃ : B̃ → kG̃. Since φ maps kM ∩ ker ε to kM̃ ∩ ker ε ⊆ ker π̃ , we conclude that
φ|kGπ = π̃φ. The lemma shows that the maps

λ := (π ⊗ id)� : B → kG ⊗ B and λ̃ := (π̃ ⊗ id)� : B̃ → kG̃ ⊗ B̃

make B and B̃ into left comodule algebras over kG and kG̃, respectively, whence B is
G-graded and B̃ is G̃-graded. Since φ|kGπ = π̃φ, we see that

(
φ|kG ⊗ φ

)
λ = λ̃φ, and

thus φ transports the grading on B to the grading on B̃, namely, φ(Ba) = B̃ra for all
a ∈ G.

We claim that kM ∩ Ba = 0 for all a ∈ G \ M. Any non-zero element v ∈ kM
can be written v = ∑n

l=1 αlybl for some distinct bl ∈ M and some αl ∈ k×. In view of
Lemma 3.4(4),

λ(v) =
n∑

l=1

αl(xbl ⊗ ybl ).

Hence, λ(v) = xa ⊗ v for some a ∈ G only if n = 1 and b1 = a. This forces a ∈ M and
verifies the claim. Similarly, kM̃ ∩ B̃a′ = 0 for all a′ ∈ G̃ \ M̃. Since φ maps kM ∩ Ba

isomorphically onto kM̃ ∩ B̃ra for all a ∈ G, and rG = G̃, it follows that rM = M̃. Note
that this forces r > 0.

The atoms of the monoid M (i.e., the additively indecomposable elements) are
exactly the 1/pi for i ∈ I , as one sees from the pairwise relative primeness of the pi.
Similarly, the atoms of M̃ are exactly the 1/̃pi. Since we have an isomorphism b �→ rb
from M onto M̃, it follows that {1/̃pi | i ∈ Ĩ} = {r/pi | i ∈ I}. Consequently, we may
assume that Ĩ = I and 1/̃pi = r/pi for all i ∈ I .

Finally, write r = s/t for some relatively prime positive integers s, t, and reduce
the final equation of the previous paragraph to tpi = s̃pi. Thus, s divides tpi for all
i ∈ I . Since there are distinct indices i, j ∈ I , and pi, pj are relatively prime, it follows
that s | t. By symmetry, t | s, whence r = 1. Therefore, G̃ = G and p̃i = pi for all i ∈ I .
Moreover, φ(kM ∩ B1/pi ) = kM̃ ∩ B̃1/pi , from which we see that ỹi is a non-zero scalar
multiple of φ(yi) (due to the fact that kM̃ ∩ B̃a is one-dimensional for all a ∈ G̃).
It thus follows from the relations xayi = χ (a/pi)yixa that x̃ãyi = χ (a/pi )̃yĩxa, whence
χ̃ (a/̃pi) = χ (a/pi) for all a ∈ G and i ∈ I . Therefore, χ̃ = χ . �

4. Initial analysis. In this section, we will finish most of the analysis of the pointed
case.
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4.1. Classification by GK-dimension of the coradical. Throughout this subsection
we assume that Hopf algebras are pointed. We will review some results from other
papers.

Suppose H is a Hopf domain of GK-dimension two. Since H is pointed, the
coradical C0(H) of H is a group algebra kG for the group G = G(H) of all grouplikes
in H. Hence, GKdim kG ≤ GKdim H = 2. Since GKdim kG is an integer, GKdim kG
is either 0, or 1, or 2, see [21, Section 2.1]. We shall refer to GKdim kG as the GK-
dimension of G, for short.

If GKdim kG = 0, then C0(H) = k (as H is a domain). This means that H is
connected. By [21, Theorem 1.9], H is isomorphic to U(g) for a two-dimensional Lie
algebra g. This is part (1) of the following proposition.

For the statement of part (3) in the next proposition, recall that the localization
�(2) is the subring of � consisting of all rational numbers with odd denominators.
There is a non-trivial group homomorphism ϕ : �(2) → Aut � such that ker ϕ = 2�(2)

and the remaining elements of �(2) are sent to the automorphism (−1) · (−). We shall
also use ϕ to denote the corresponding homomorphism from a subgroup R of �(2) to
the automorphism group of a subgroup L of �.

PROPOSITION 4.1. Let H be a pointed Hopf domain of GK-dimension two.
(1) If GKdim C0(H) = 0, then H ∼= U(g) for a two-dimensional Lie algebra g.
(2) If GKdim C0(H) = 2 and C0(H) is commutative, then H ∼= kG where G is a

subgroup of �2 containing �2.
(3) If GKdim C0(H) = 2 and C0(H) is not commutative, then H ∼= kG where G =

L �ϕ R for some subgroup L of � containing � and some subgroup R of �(2)

containing �.

Proof.
(1) This is [21, Theorem 1.9].

Let C0(H) = kG. In both (2) and (3), we have GKdim kG = 2. By [21, Lemma
1.6], H = C0(H) = kG. Then,

G =
⋃

N∈N
N, (E4.1.1)

a directed union, where N is the set of all finitely generated subgroups of G of
GK-dimension two.

(2) If H = C0(H) is commutative, meaning G is abelian, then every N ∈ N is
isomorphic to �2 by [21, Theorem 1.7]. If M ⊆ N ⊆ G, where M has GK-
dimension two, then M ∼= N ∼= �2 and N/M is finite. This is true for all
such N, which implies that G/M is torsion. Therefore, G is isomorphic to a
subgroup of �2 containing �2. Conversely, every subgroup of �2 containing
�2 has GK-dimension two. The assertion follows.

(3) This is the case when G is non-abelian. By [21, Theorem 1.7], we may assume
that every N in N is isomorphic to the non-trivial semidirect product � � �.
Then, N is generated by elements xN and yN satisfying xNyNx−1

N = y−1
N . It is

clear that xN and yN have infinite order. Moreover, the following properties
are easily checked:
(a) Z(N) = 〈x2

N〉.
(b) YN := 〈yN〉 is a normal subgroup of N.
(c) CN := CN(YN) = YNZ(N) and [N : CN ] = 2.
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(d) For any a ∈ N \ CN , we have a2 ∈ Z(N) and ayNa−1 = y−1
N . Moreover,

〈a〉Z(N) is infinite cyclic.
A short calculation reveals that, for a fixed a in (d),

{b ∈ N | aba−1 = b−1 for some a ∈ N} = YN

for any N ∈ N . It follows that YN ⊆ YM whenever N ⊆ M in N , and so

YG :=
⋃

N∈N
YN

is a normal subgroup of G. Since each YN is infinite cyclic, YG is isomorphic
to a subgroup L of � containing �.

If N ⊆ M in N , then N ∩ CM ⊆ CN , because YN ⊆ YM . Since [M : CM ] = 2, it
follows that N ∩ CM = CN . In particular, CN ⊆ CM . Now

CG :=
⋃

N∈N
CN

is a normal subgroup of G containing YG. Pick some N0 ∈ N , and set

xG := xN0 .

For any N ∈ N containing N0, the equation N0 ∩ CN = CN0 implies xG /∈ CN .
Consequently, in view of (c), we have

(e) xG /∈ CG and [G : CG] = 2.
When N ⊆ M in N , we have xN /∈ CM because N ∩ CM = CN , and so it follows

from (d) and (a) that Z(N) ⊆ Z(M). Thus,

Z(G) =
⋃

N∈N
Z(N).

If we now set

XG := 〈xG〉Z(G) =
⋃

N0⊆N∈N
〈xG〉Z(N),

then (d) tells us that XG is a directed union of infinite cyclic groups. Hence, XG is
isomorphic to a subgroup R of � containing �, with xG �→ 1. Moreover,

XGYG = 〈xG〉CG = G,

because of (e). Note also that YGZ(G) ⊆ CG, whence XG ∩ YG ⊆ 〈x2
G〉Z(G) = Z(G),

and so XG ∩ YG ⊆ YG ∩ Z(G) = 1. Therefore

G ∼= YG � XG ∼= L �α R

for some homomorphism α : R → Aut L.
Because of (e) and (d), we have xGyx−1

G = y−1 for all y ∈ YG, so α(1) must be
the automorphism ν := (−1) · (−) of L. Since the automorphisms of L are given by
multiplication by certain elements of �×, the automorphism ν has no square root in
Aut L, whence 1 /∈ 2R. It follows that a/b /∈ R for any odd integer a and any non-zero
even integer b, and therefore R ⊆ Z(2). We similarly conclude that α(R) = {idL, ν},
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whence α(R ∩ 2�(2)) = {idL} and α(R \ 2�(2)) = {ν}. Therefore, α = ϕ, completing the
proof. �

The only case left is when C0(H) = kG and G has rank one. By Lemma 2.1(3), G is
isomorphic to a subgroup of � containing �. Further analysis assuming this is given
in the next subsection.

4.2. Analysis of skew primitives. In the first result of this subsection, we assume
that H is a pointed Hopf domain of GK-dimension two and that C0(H) = kG where
G is a subgroup of � containing �. We identify elements a ∈ G ⊆ � with elements
labelled xa ∈ G(H). Since type A and type C Hopf algebras are easy to understand
(Examples 2.2 and 2.3), we are focusing on algebras that are not types A and C. By
Corollary 2.5, we may assume that H contains A(1, 1) as a Hopf subalgebra. This
means that H contains a grouplike element x ∈ G and a skew primitive element y /∈ kG
such that

xy = yx, and �(y) = y ⊗ 1 + x ⊗ y. (E4.1.2)

By replacing G with an isomorphic subgroup of �, we may assume that x = x1.

LEMMA 4.2. If y is, up to a scalar, the only non-trivial skew primitive element (modulo
kG(H)) in H, then H is either type A or type C.

Proof. This follows from the proof of [23, Theorem 7.1].
Let K be the subalgebra of H generated by y and C0(H). It is clear that K is a Hopf

subalgebra. Applying [22, Lemma 2.2(c)] to V := ky + k(x − 1), there is an element
z ∈ V \ k(x − 1) such that either

(i) there is a character χ : G → k× such that h−1zh = χ (h)z for all h ∈ G, or
(ii) there is an additive character τ : G → k such that h−1zh = z + τ (h)(x − 1) for

all h ∈ G.

In the first case K is a quotient of AG(x, χ ) and in the second case K is a quotient of
CG(x, τ ). We claim that K ∼= AG(x, χ ) in the first case and that K ∼= CG(x, τ ) in the
second case. We only prove the claim for the second case (the first case was given in the
proof of [23, Theorem 7.1]). Consider the natural Hopf map f : CG(x, τ ) → H which
is injective on C0 + C0z = C1(H) by definition. By [11, Theorem 5.3.1], f is injective.
Consequently, K ∼= CG(x, τ ). By definition, K is generated by all the grouplikes and
skew primitive elements of H. By [23, Corollary 6.9(2)], the primitive cohomological
dimension PCdim K defined in [23, Definition 1.2] equals 1. Finally, by [23, Proposition
2.4(2)], H = K as desired. �

NOTATION 4.3. We shall also need information about the skew primitive elements
of the affine Hopf domains of types A, B, C from [6, Section 1]. To make the notation
compatible with the present paper, we express these Hopf algebras as follows.

(1) A(n, q), for n ∈ �≥0 and q ∈ k×, is presented by generators x±1, z with xz = qzx,
where x is grouplike and z is (1, xn)-skew primitive. We restrict to n ≥ 0 because
A(m, q) ∼= A(−m, q−1).

(2) B(n, p0, . . . , ps, q), for s ∈ �≥2, n, p0, . . . , ps ∈ �>0, and q ∈ k× satisfying
certain conditions, is presented by generators x±1, y1, . . . , ys with relations
described in [6, Eq. (E1.2.1)], where x is grouplike and each yi is (1, xmin)-skew
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primitive. (Here mi = m/pi with m = p1p2 · · · ps.) The restriction s ≥ 2 rules
out the situation B(n, p0, p1, q) ∼= A(n, q).

(3) C(n), for n ∈ �≥2, is presented by generators x±1, z with the relation zx =
xz + (x2−n − x), where x is grouplike and z is (1, x1−n)-skew primitive. We
restrict to n ≥ 2 because C(1) ∼= A(0, 1) and C(m) ∼= C(2 − m). In particular,
this means zx �= xz.

PROPOSITION 4.4.
(1) Let A = A(n, q) where qn is either 1 or a non-root of unity. Then all non-trivial

skew primitive elements in A have weight xn, and they are linear combinations
of z and 1 − xn.

(2) Let A = A(n, q) where qn is a primitive d-th root of unity for some d > 1. Then
any non-trivial skew primitive element of A has weight either xn or xdn, and it is
a linear combination of z and 1 − xn or of zd and 1 − xdn, respectively.

(3) Let B = B(n, p0, . . . , ps, q), with m, mi as above. Any non-trivial skew primitive
element of B has weight either xmn or xmin for some i = 1, . . . , s, and it is a linear
combination of yp1

1 and 1 − xmn or of yi and 1 − xmin, respectively.
(4) Let C = C(n). All non-trivial skew primitive elements in C have weight x1−n,

and they are linear combinations of z and 1 − x1−n.

Proof. In each case, the elements of the stated forms are skew primitive with the
given weights, as proved in [6, Constructions 1.1, 1.2, 1.4].

(1,2) Suppose f ∈ A is a non-trivial skew primitive with weight xm, for some m ∈ �.
Write f = ∑d

i=0 cizi for some ci ∈ k[x±1] with cd �= 0. Then,

d∑
i=0

�(ci)(z ⊗ 1 + xn ⊗ z)i = �(f ) =
d∑

i=0

cizi ⊗ 1 +
d∑

i=0

xm ⊗ cizi. (E4.4.1)

Comparing terms from A ⊗ k[x±1] in this equation, we see that

d∑
i=0

�(ci)(zi ⊗ 1) = xm ⊗ c0 +
d∑

i=0

cizi ⊗ 1.

A comparison of terms from k[x±1]zi ⊗ k[x±1] then yields �(ci) = ci ⊗ 1 for i > 0
and �(c0) = xm ⊗ c0 + c0 ⊗ 1. It follows that c0 ∈ k(1 − xm) and ci ∈ k for i > 0. The
non-triviality of f forces d > 0.

If d = 1, (E4.4.1) implies that c1xn ⊗ z = xm ⊗ c1z, whence m = n. In this case, f
is a linear combination of z and 1 − xn, and we are done. Assume now that d > 1.

Since c0 ∈ k(1 − xm) and c1, . . . , cd are scalars, (E4.4.1) reduces to

d∑
i=1

ci(z ⊗ 1 + xn ⊗ z)i =
d∑

i=1

cizi ⊗ 1 +
d∑

i=1

cixm ⊗ zi.

Comparing terms from A ⊗ kzi yields

d∑
i=j

(
i
j

)
qn

cizi−jxjn = cjxm, for 1 ≤ j ≤ d. (E4.4.2)

From the case j = d, we get m = dn.
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For 1 ≤ j < d, (E4.4.2) implies that
(d

j

)
qn

= 0. Thus, by [6, Lemma 7.5], qn must

be a primitive d-th root of unity. As in [6, Construction 1.1], it follows that zd is skew
primitive with weight xm, hence so is f − cdzd . If f − cdzd is non-zero, let e be its
z-degree. Applying the above analysis to f − cdzd , we find that e = 0 or m = en, the
latter case being impossible. Therefore f − cdzd is a scalar multiple of 1 − xdn, and f
has the required form.

(3) This follows from Lemma 3.5.
(4) Suppose f ∈ C is a non-trivial skew primitive with weight xm, for some m ∈ �,

and write f = ∑d
i=0 cizi for some ci ∈ k[x±1] with cd �= 0. As in cases (1)(2), we get

equation (E4.4.1), but with xn replaced by x1−n. Moreover, it follows that c0 ∈ k(1 − xm)
and ci ∈ k for i > 0, and then that d > 0. In case d = 1, we obtain m = 1 − n and f is
a linear combination of z and 1 − x1−n.

Now suppose that d > 1. After canceling common terms, (E4.4.1) reduces to

d∑
i=1

ci(z ⊗ 1 + x1−n ⊗ z)i =
d∑

i=1

cizi ⊗ 1 +
d∑

i=1

cixm ⊗ zi.

Comparing terms in C ⊗ k[x±1]zd in this equation, we find that m = d(1 − n). Turning
to C ⊗ k[x±1]zd−1, we obtain

cd−1x(d−1)(1−n) + dcdx(d−1)(1−n)z + cdh = cd−1x1−n

for some h ∈ k[x±1]. Since dcd �= 0, this is impossible, and the proof is complete. �
COROLLARY 4.5. Suppose H is one of the affine Hopf domains of types A, B, C.

For any grouplike g in H, the space of skew primitive elements in H with weight g has
k-dimension at most 2.

COROLLARY 4.6. Let H1 � H2 be affine Hopf domains of types A, B, C.
(1) If H2 is of type A, so is H1.
(2) If H1 is of type B, so is H2.
(3) H1 is of type C if and only if H2 is of type C.

Proof. We take account of the behaviour of the non-trivial skew primitives
described in Proposition 4.4. In all three types, non-trivial skew primitives exist. In
types A and B, each skew primitive quasi-commutes with its weight, whereas in type C,
no non-trivial skew primitive quasi-commutes with its weight. Statement (3) follows.

In type A, at most two grouplikes are weights of non-trivial skew primitives, while
in type B, at least three grouplikes are weights of skew primitives. Statements (1) and
(2) now follow. �

4.3. Locally affine Hopf algebras. We recall the definition of the local affine
property.

DEFINITION 4.7. Let H be a Hopf algebra.
(1) An element f ∈ H is called locally affine if it is contained in a Hopf subalgebra

that is affine.
(2) Let V be a subset of H. We say that V is locally affine if every element in V is

locally affine.
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LEMMA 4.8. Let H be a Hopf algebra.

(1) Every finite set of locally affine elements of H is contained in an affine Hopf
subalgebra of H.

(2) The locally affine elements in H form a Hopf subalgebra of H, and this Hopf
subalgebra is a directed union of affine Hopf subalgebras.

(3) If a subset V ⊆ H is locally affine, and if H is generated by V as an algebra,
then H is locally affine.

(4) [25, Corollary 3.4] If H is pointed, then it is locally affine.
(5) Let V be a subset of H such that

∑
i≥0 kSi(v) is finite dimensional for each

v ∈ V. If H is the k-span of V, then H is locally affine.
(6) If S has finite order, then H is locally affine. As a consequence, if H is commutative

or cocommutative, then it is locally affine.

Proof.

(1) This follows from the observation that if �1, . . . , �n are affine Hopf
subalgebras of H, then the subalgebra of H generated by

⋃n
i=1 �i is an affine

Hopf subalgebra.
(2) If f, g ∈ H are locally affine, then in view of part (1), f ± g and fg are locally

affine. Of course, the identity 1 ∈ H is locally affine, because 1 ∈ k. Therefore
the set L of locally affine elements of H is a subalgebra of H. Any finite subset
of L is contained in an affine Hopf subalgebra � of H by (1), and � ⊆ L by
definition of L. Hence, L is a directed union of affine Hopf subalgebras of H.
In particular, L is a Hopf subalgebra.

(3) This is clear from part (2).
(4) This was proved by Zhuang [25], and we give a different proof below.

We show, by induction, that f ∈ Cn(H) is locally affine where {Cn(H)}n≥0 is the
coradical filtration of H. Suppose n = 0. Since H is pointed, C0(H) = kG
for a group G. It is clear that kG is locally affine. Now suppose that
Cn−1(H) is locally affine and let f ∈ Cn(H) for some n ≥ 1. By [11, Theorem
5.4.1], f = ∑

g,h∈G(H) fg,h where �(fg,h) = fg,h ⊗ g + h ⊗ fg,h + wg,h for some
wg,h ∈ Cn−1 ⊗ Cn−1. It suffices to show that each fg,h is locally affine, so assume
that f = fg,h. It is clear that f is locally affine if and only if xf is locally affine
for some (or any) grouplike element x. By replacing f by xf for some grouplike
x, we can assume that �(f ) = f ⊗ 1 + g ⊗ f + w, where g is grouplike and
w ∈ Cn−1 ⊗ Cn−1. By the antipode axiom, ε(f ) = S(f ) + g−1f + w0, where
w0 ∈ C2

n−1, or S(f ) = −g−1f + v for some v ∈ C2
n−1. By part (2) and the

induction hypothesis, all tensor components of w are contained in an affine
Hopf subalgebra of H, say �. In particular, v ∈ �. Let B be the subalgebra
of H generated by g±1, f and �. Then, B is an affine Hopf subalgebra of H.
Since f ∈ B, f is locally affine. The assertion follows by induction.

(5) Let f ∈ H and let W be a finite dimensional subcoalgebra of H containing f .
By hypothesis, X := ∑

i≥0 Si(W ) is finite dimensional. Then f is contained in
the affine subalgebra k〈X〉 which is a Hopf subalgebra as X is a subcoalgebra
with S(X) ⊆ X .

(6) This is a consequence of part (5). (Recall from [11, Corollary 1.5.12] that
S2 = Id if H is commutative or cocommutative.)

�
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PROPOSITION 4.9. Let H be a Hopf algebra and K a locally affine Hopf subalgebra
of H. If H is generated by K and x ∈ H as an algebra, then H is locally affine.

Proof. Let f ∈ H. Since H is generated by K and x, there is a finite dimensional
subspace V ⊆ K such that

(a) f, S(x) ∈ k〈x, V〉 =: A, and
(b) �(x) ∈ A ⊗ A ⊆ H ⊗ H.

Since V ⊆ K is finite dimensional, there is an affine Hopf subalgebra K0 ⊆ K that
contains V . Let H0 be the subalgebra of H generated by K0 and x. By definition, A ⊆ H0

and H0 is affine. Moreover, f ∈ H0. By (a) and (b), S(x) ∈ H0 and �(x) ∈ H0 ⊗ H0.
Since K0 is a Hopf subalgebra of K , it is easy to see that H0 is a Hopf subalgebra of
H. Therefore, H is locally affine. �

Given a Hopf algebra H, note that Ext1
H(k, k) ∼= (m/m2)∗ where m = ker ε [6,

Lemma 3.1(a)]. So, Ext1
H(k, k) �= 0 if and only if m �= m2.

PROPOSITION 4.10. Let H be a Hopf algebra domain of GK-dimension two satisfying
(�). If H is locally affine, then it is pointed.

Proof. Let V be a simple subcoalgebra of H, and let f ∈ m \ m2. By Lemma 4.8(1),
there is an affine Hopf subalgebra K ⊆ H that contains V and f . Since f ∈ mK \ m2

K
where mK := ker εK , K satisfies (�). By [6, Theorem 0.1], K is pointed, whence dimk V =
1. Therefore, H is pointed. �

We finish this section with a well-known lemma.

LEMMA 4.11. Let H be a Hopf algebra with countable dimensional C1(H). If H is
generated (as an algebra) by C1(H), then H is a union of an ascending chain of affine
Hopf subalgebras, each of which is finitely generated by its grouplikes and skew primitives.

Proof. Let G = {gi}i∈I be the group of grouplikes in H and C = {yj}j∈J a set of
non-trivial skew primitive elements with weights in G. Then

⋃
i∈I giC spans the space

C1(H). Since dimk C1(H) is countable, so are I and J. We list elements in G and C

G = {g1, . . . , gn, . . .} and C = {y1, . . . , yn, . . .}.
Let B〈n〉 be the Hopf subalgebra of H generated by y1, . . . , yn and a finite set
of grouplike elements containing g±1

1 , . . . , g±1
n and all x±1 where x appears in the

expression �(yi) for some i = 1, . . . , n. Then B〈n〉 is an affine Hopf subalgebra of H
and H = ⋃

n B〈n〉. We may choose the B〈n〉 so that B〈n〉 ⊆ B〈n + 1〉 for all n. �

5. Classification results. In this section, we prove a couple of classification
theorems for Hopf domains of GK-dimension two.

5.1. Classification in the pointed case with (�). We start with a classification of
pointed Hopf domains of GK-dimension two satisfying (�).

LEMMA 5.1. Let H be a locally affine Hopf domain of GK-dimension two satisfying
(�), and assume that GKdim G(H) = 1. Then, dimk H = ℵ0.

Proof. Obviously H is infinite dimensional.
By Lemma 4.8(2), H is a directed union of affine Hopf subalgebras Kα, and we

may assume that all of them have GK-dimension two. We may also assume that G(Kα)
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is non-trivial, whence GKdim G(Kα) = 1. Because of (�), there is some f ∈ m \ m2,
where m = ker ε, and we may assume that f ∈ Kα for all α. Then, f ∈ mKα

\ m2
Kα

,
where mK = ker εK , so that Kα satisfies (�). Now by [6, Theorem 0.1], each Kα is of type
A, B, or C. In particular, Kα is generated by its grouplikes and skew primitives, so the
same holds for H.

In view of Corollary 4.5, we see that, for any grouplike g ∈ H, the space of
(1, g)-skew primitive elements in H is at most two-dimensional. Since H has only
countably many grouplikes (Lemma 2.1), there is a countable dimensional subspace V
of H that contains G(H) and all skew primitives. Therefore H = k〈V〉 has countable
dimension. �

THEOREM 5.2. Let H be a pointed Hopf domain of GK-dimension two satisfying (�).
Suppose H is not affine (or equivalently, not noetherian). Then, it is isomorphic to one of
the following.

(1) kG where G is a subgroup of �2 containing �2 that is not finitely generated.
(2) kG where G = L �ϕ R for some subgroup L of � containing � and some subgroup

R of �(2) containing �, and at least one of L or R is not finitely generated.
(3) AG(e, χ ) where G is a non-cyclic subgroup of �.
(4) CG(e, τ ) where G is a non-cyclic subgroup of �.
(5) BG({pi}, χ ) where G is a non-cyclic subgroup of �.

Proof. The cases when kG(H) has GK-dimension zero or two are done by
Proposition 4.1. Now assume GKdim G(H) = 1. We also assume that H is not
isomorphic to any Hopf algebra in parts (1)–(4), and we will prove that it is isomorphic
to one of those in part (5). By Corollary 2.5, it remains to consider the case when H
contains a Hopf subalgebra isomorphic to A(1, 1).

In view of Lemma 2.1, G(H) is isomorphic to a non-zero subgroup G of �. Write
G(H) in the form {xa | a ∈ G} as in Notation 1.1. Since H contains a copy of A(1, 1),
there are a grouplike x and a non-trivial skew primitive y in H such that

xy = yx, and �(y) = y ⊗ 1 + x ⊗ y.

After replacing G by an isomorphic subgroup of � if necessary, we may assume that
1 ∈ G and x = x1.

Since H is pointed, it is locally affine by Lemma 4.8(4). Thus, by Lemma 5.1 and
its proof, H is the union of an increasing sequence of affine Hopf subalgebras

K1 � K2 � . . . ,

each being one of type A, B or C from Notation 4.3. Since the Hopf subalgebra
k〈x±1, y〉 ∼= A(1, 1) is contained in some Kj, Corollary 4.6 implies that none of the Ki

is of type C. From the same corollary, we find that either all the Ki are of type A or all
but finitely many Ki are of type B. Since we may delete any Ki that does not properly
contain k〈x±1, y〉, there is no loss of generality in assuming that

k〈x±1, y〉 � K1 .

From Proposition 4.4 and the details of [6, Constructions 1.1, 1.2, 1.4], we see that
in each Ki, there is at most one grouplike gi which is the weight of a non-trivial skew
primitive that commutes with gi. Consequently, taking also Corollary 4.5 into account
the following.
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(i) the unique grouplike g ∈ G(H) which is the weight of a non-trivial skew
primitive that commutes with g is g = x. The space of (1, x)-skew primitives
in H is ky + k(1 − x).

Suppose first that all the Ki are of type A. If Ki ∼= A(ni, qi) with qi = 1 or qi not
a root of unity, it follows from Proposition 4.4(1) that y is, up to a scalar, the only
non-trivial skew primitive element modulo kG(Ki) in Ki. As a consequence, y is the
only non-trivial skew primitive element modulo kG(H) in H. By Lemma 4.2, H is
either type A or type C. This yields a contradiction.

Thus, after deleting some of the Ki, we may assume that K1
∼= A(n1, q1) where q1 is

a primitive d1-th root of unity for some d1 > 1. By Proposition 4.4(2), K1 = k〈x±1
1 , z1〉

for some grouplike x1 and some non-trivial skew primitive z1 with weight xn1
1 such

that xd1n1
1 = x and zd1

1 ∈ ky + k(1 − x). Since K1 then contains two non-trivial skew
primitives with different weights, so do all the Ki, and another application of the
proposition yields Ki ∼= A(ni, qi) where qi is a primitive di-th root of unity for some
di > 1. Moreover, Ki = k〈x±1

i , zi〉 for some grouplike xi and some non-trivial skew
primitive zi with weight xni

i such that xdini
i = x and zdi

i ∈ ky + k(1 − x). Further, xni+1
i+1 =

xni
i and zi+1 ∈ kzi + k(1 − xni

i ), from which we see that Ki+1 = k〈x±1
i+1, zi〉.

At this point, H is generated by G(H) ∪ {z1}. Let χ be the character of G(H)
determined by

g−1z1g = χ (g)z1 + τ (g)(1 − xn1
1 ), ∀ g ∈ G := G(H).

Since χ is non-trivial, one can choose τ (g) = 0 for all g by [22, Lemma 2.2(c)]. Then,
there is a surjective Hopf algebra map φ : AG(xn1

1 , χ ) → H. But AG(xn1
1 , χ ) is a domain

of GK-dimension two, so φ is an isomorphism, contradicting one of our assumptions.
Therefore, all but finitely many Ki are of type B. After deleting the exceptions, we

may assume that all Ki are of type B.
Each Ki is now generated by grouplikes x±1

i and finitely many non-trivial skew
primitives, say yij for j ∈ Ji. From the details of [6, Construction 1.2], we have positive
integers ni, p0i, and pij for j ∈ Ji and some qi ∈ k× such that for all j, l ∈ Ji,

(ii) |Ji| ≥ 2 and pij ≥ 2.
(iii) p0i | ni and p0i together with the pij are pairwise relatively prime.
(iv) qi is a primitive li-th root of unity, where li = mini/p0i and mi = ∏

j∈Ji
pij, and

q
m2

ijni
i is a primitive pij-th root of unity.

(v) xiyijx−1
i = qmij

i yij, where mij = mi/pij.
(vi) yijyil = yilyij and ypij

ij = ypil
il .

(vii) yij has weight xmijni
i , and these elements do not commute.

(viii) ypij

ij is a non-trivial skew primitive element with weight xmini
i , and these elements

commute.
In view of (i), it follows that xmini

i = x and ypij

ij ∈ ky + k(1 − x). In particular,

1/mini ∈ G and xi = x1/mini .

Set Gi := �(1/mini), so that G(Ki) = {xc | c ∈ Gi}.
Define a character χi on the group Gi(1/mi) = �(1/m2

i ni) so that χi(1/m2
i ni) = qi,

and observe that

xc/mini yijx−c/mini = qcmij
i yij = χi(c/minipij)yij ∀ c ∈ �, j ∈ Ji .
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Temporarily set t := i + 1, and consider j ∈ Ji. Since yij is a non-trivial skew
primitive element of Kt with weight xmijni

i and yij does not commute with its weight,
Proposition 4.4(3) implies that there is some s ∈ Jt such that xmijni

i = xmtsnt
t and yij ∈

kyts + k(1 − xmtsnt
t ). Now, xmijni

i quasi-commutes with yij and yts but does not commute
with these elements, whereas it does commute with 1 − xmtsnt

t . Since yts /∈ kG(Kt), it
follows that yij ∈ kyts. After rearranging indices, we may thus assume that Ji ⊆ Jt and

xmijni
i = xmtjnt

t and yij = αjytj with αj ∈ k×, ∀ i ∈ Ji .

Note that x1/pij = xmijni
i = xmtjnt

t = x1/ptj implies pij = ptj. For j, l ∈ Ji, we have

(αjytj)ptj = ypij

ij = ypil
il = (αlytl)ptl ,

and for r ∈ Jt \ Ji we may choose αr ∈ k× such that α
ptr
r = α

ptj

j , so that (αrytr)ptr =
(αjytj)ptj . Hence, we may replace all the generators ytu of Kt by the elements αuytu. This
means there is no loss of generality in assuming that

xmijni
i = xmi+1,jni+1

i+1 , pij = pi+1,j , and yij = yi+1,j ∀ j ∈ Ji .

If di denotes the product of the pi+1,r for r ∈ Jt \ Ji (where an empty product equals
1), then mi+1 = dimi and mi+1,j = dimij for j ∈ Ji. Since xi ∈ G(Ki+1) = 〈xi+1〉, we have
xi = xei

i+1 for some non-zero integer ei, whence mi+1ni+1 = eimini. For any j ∈ Ji,

qmij
i yij = xiyijx−1

i = xei
i+1yi+1,jx

−ei
i+1 = qeimi+1,j

i+1 yi+1,j = qdieimij

i+1 yij,

whence qmij
i = qdieimij

i+1 . Since the GCD of {mij | j ∈ Ji} is 1, it follows that qi = qdiei
i+1.

Consequently,

χi+1(1/m2
i ni) = χi+1(diei/m2

i+1ni+1) = qdiei
i+1 = qi ,

and therefore χi+1 restricted to Gi(1/mi) equals χi.
Now G = ⋃∞

i=1 Gi = ⋃∞
i=1 �(1/mini), and

M :=
∞∑

i=1

∑
j∈Ji

�≥0(1/pij) =
∞⋃

i=1

�≥0(1/mi),

whence

GM =
∞∑

i=1

∑
j∈Ji

G(1/pij) =
∞⋃

i=1

�≥0(1/m2
i ni) =

∞⋃
i=1

Gi(1/mi).

Consequently, there is a well-defined character χ on GM which restricts to χi on
Gi(1/mi) for all i. The set

P := {pij | i ∈ �≥0, j ∈ Ji}

is a set of pairwise relatively prime integers ≥ 2, and each 1/pij = mijni/mini ∈ G.
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Moreover, the scalar

χ (1/p2
ij) = χi(m2

ijni/m2
i ni) = q

m2
ijni

i

is a primitive pij-th root of unity.
Our data now satisfy all the conditions required to define the Hopf algebra BG(P, χ )

as in Section 3.1, and there is a surjective Hopf algebra map π : BG(P, χ ) → H sending
the generators x±a, yij of BG(P, χ ) to the elements with the same names in H. Since
both BG(P, χ ) and H are domains of GK-dimension two, π is an isomorphism.

By construction, H is generated by {xa | a ∈ G} ∪ {yij | i ∈ �>0, j ∈ Ji}. If G were
cyclic, the non-affine hypothesis on H would imply that there are infinitely many yij,
whence P would be infinite. However, P consists of pairwise relatively prime integers
p ≥ 2 with 1/p ∈ G. This is not possible with G cyclic. Therefore, G is non-cyclic and
H is isomorphic to a Hopf algebra in part (5). �

5.2. Removing the “pointed” hypothesis. Our next goal is to prove Theorem 5.2
without assuming that H is pointed. By Proposition 4.10, it suffices to show H is locally
affine.

LEMMA 5.3. Let H be a Hopf domain of GK-dimension two satisfying (�). If H is
not commutative, then there is a quotient Hopf algebra K := H/I that is a commutative
domain of GK-dimension one. Furthermore, K is one of the Hopf algebras listed in Lemma
2.1.

Proof. Let m = ker ε and let I = ⋂
i≥1 mi. By [9, Lemma 4.7], I is a Hopf ideal.

Let e(H) be the dimension of Ext1
H(k, k) and let gr H = ⊕∞

i=0 mi/mi+1. By [6,
Proposition 3.4(b)], e(H) ≤ GKdim H = 2. Hence, e(H) = 1 or 2. By [6, Proposition
3.4(a)], gr H ∼= U(g), where g is a graded Lie algebra generated in degree 1 and
dimk g1 = e(H). If e(H) = 1, then gr H = k[x], which is commutative. If e(H) = 2, then
g1 = g by [6, Proposition 3.4(b)]. So, g is abelian and again gr H ∼= U(g) is commutative.

By [6, Lemma 3.5], H/I is commutative. Since H is a domain of GK-dimension
two and H is not commutative, I �= 0 and H/I has GK-dimension at most one. On
the other hand, Ext1

H(k, k) �= 0 implies m > m2, and consequently Ext1
H/I (k, k) �= 0.

Another application of [6, Proposition 3.4(b)] yields GKdim H/I ≥ e(H/I) > 0,
and thus GKdim H/I = 1. Moreover, gr(H/I) is an enveloping algebra and thus a
domain. Therefore H/I is a commutative domain of GK-dimension one. The assertion
follows. �

THEOREM 5.4. Let H be a Hopf domain of GK-dimension two satisfying (�). Then,
H is locally affine.

Proof. If H is commutative, the assertion follows by Lemma 4.8(6). From now on,
assume that H is not commutative. By Lemma 5.3, there is a Hopf ideal I such that
K := H/I is a Hopf domain of GK-dimension one. By Lemma 2.1, we are in one of
the following two cases:

Case 1: K = kG where G is a non-zero subgroup of �.
Case 2: K = k[t] is a polynomial ring, with �(t) = t ⊗ 1 + 1 ⊗ t.
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The following analysis is similar to the one in [6]. In fact, the ideas and arguments
are copied from [6]. Let π : H → K be the quotient map, set

ρ := (id ⊗ π )� : H → H ⊗ K and λ := (π ⊗ id)� : H → K ⊗ H,

and note that H becomes a right (respectively, left) comodule algebra over K via ρ

(respectively, λ), see [6, Section 4.1].
Case 1. Write K = kG in the form

⊕
a∈G kxa. For a ∈ G, let

Ha := {h ∈ H | ρ(h) = h ⊗ xa} and aH := {h ∈ H | λ(h) = xa ⊗ h}.
Then, H is a G-graded algebra in two ways:

H =
⊕
a∈G

Ha =
⊕
a∈G

aH,

where the first decomposition is called the ρ-grading and the second is called the λ-
grading. Let π r

a and π l
a be the respective projections from H onto Ha and aH in the

above decompositions. Then, by G-graded versions of [6, (E5.0.1) and (E5.0.2)], we
have

π r
aπ

l
b = π l

bπ
r
a, ∀ a, b ∈ G (E5.4.1)

and, writing aHb = aH ∩ Hb for all a, b ∈ G, we have

Hb =
⊕
a∈G

aHb, and aH =
⊕
b∈G

aHb. (E5.4.2)

In particular, these give G-gradings for the algebras H0 and 0H, and a (G × G)-grading⊕
a,b∈G aHb for H.

By the proof of [6, Lemmas 5.2 and 5.3], Ha ∩ aH �= 0 for each a ∈ G, and H is
strongly G-graded with respect to both the ρ-grading and the λ-grading. Then, G-
graded versions of [6, Lemma 5.4(a)(b)] imply that dimk H0 = ∞ and GKdim H ≥
GKdim H0 + 1. Since H0 is a domain, it cannot be algebraic over k, and therefore
GKdim H0 = 1.

Case 1a. Suppose that H0 = 0H. By [6, Lemma 4.3(c)], H0 is a Hopf subalgebra
of H. By Lemma 2.1, H0 is either k[t] or kG′ where G′ is a torsionfree abelian group of
rank one. Hence, H0 is a Bezout domain (see the proof of [6, Lemma 6.2]). Thus each
Ha is a free H0-module of rank one, say Ha = haH0. Since H is strongly G-graded, ha

must be invertible. In particular, ε(ha) �= 0, so we may replace ha by ε(ha)−1ha and thus
assume that ε(ha) = 1.

We claim that each ha is grouplike. By a G-graded version of [6, Lemma
5.1(b)], �(ha) ∈ Ha ⊗ Ha, and so �(ha) = (ha ⊗ ha)w for some w ∈ H0 ⊗ H0. Since
ha is invertible, so is w, and (ε ⊗ id)(w) = (id ⊗ ε)(w) = 1 by the counit axiom
applied to ha. By [6, Lemma 4.4(a)], w is a homogeneous invertible element of
H0 ⊗ H0. If H0 = k[t], then w = c1 ⊗ 1 for some c ∈ k×, while if H0 = kG′, then
w = cg ⊗ g′ for some c ∈ k× and g, g′ ∈ G′. In either case, it follows from the equations
(ε ⊗ id)(w) = (id ⊗ ε)(w) = 1 that w = 1 ⊗ 1. Therefore, ha is grouplike, as claimed.

Now, S2(ha) = ha for all a ∈ G. Since H0 is commutative, S2 is the identity on H0.
As H is generated by H0 and the ha, we find that S2 is the identity on H. Therefore, by
Lemma 4.8(6), H is locally affine.
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Case 1b. Suppose that H0 �= 0H. Either H0 � 0H or 0H � H0, say H0 � 0H. Then,
aH0 �= 0 for at least one non-zero a ∈ G. By a G-graded version of [6, Lemma 5.4(c)],
dimk aH0 ≤ 1 for all a ∈ G. For any a, b ∈ G, multiplication by a non-zero element
of −bH−b embeds aHb in a−bH0, whence dimk aHb ≤ 1. By a G-graded version of [6,
Lemma 5.1(d)], S2(aHb) ⊆ aHb for all a, b ∈ G. This implies that

∑
i≥0 Si(aHb) has

dimension at most two. Since H is spanned by the aHb, we conclude by Lemma 4.8(5)
that H is locally affine.

Case 2. By [6, Lemma 8.1], there are two commuting locally nilpotent derivations
δr and δl on H such that

ρ(h) =
∞∑

n=0

1
n!

δn
r (h) ⊗ tn and λ(h) =

∞∑
n=0

1
n!

tn ⊗ δn
l (h), ∀ h ∈ H.

In particular, H0 = ker δr and 0H = ker δl. Following the proofs of [6, Lemmas 9.2,
9.3], we find that H0 and 0H have GK-dimension one.

We claim that H0 = 0H. Suppose not, say, H0 �⊆ 0H = ker δl. Since δl commutes
with δr, H0 is δl-invariant. Thus, δl restricts to a non-zero locally nilpotent derivation
on H0, denoted by δ. Let H00 = ker δ, and choose u ∈ H0 \ H00. Then, H00[u] is a
polynomial subalgebra of H0 (by the argument of [6, Lemma 9.2]), which implies
that GKdim H00 = 0. Since k is algebraically closed, H00 = k. Since ker δ = k, there is
an element u ∈ H0 \ H00 such that δ(u) = 1. This implies λ(u) = 1 ⊗ u + t ⊗ 1, whereas
ρ(u) = u ⊗ 1 as u ∈ H0. Set y = π (u) ∈ K and compute �(y) in the following two ways:

�(y) = (π ⊗ π )�(u) = (π ⊗ id)ρ(u) = y ⊗ 1,

�(y) = (π ⊗ π )�(u) = (id ⊗ π )λ(u) = 1 ⊗ y + t ⊗ 1.

The counit axioms then yield y = ε(y) and y = ε(y) + t, giving a contradiction.
Therefore, we have proved that H0 = 0H.

Since H0 = 0H, by [6, Lemma 4.3(c)], H0 is a Hopf subalgebra of H. By [6,
Theorem 8.3(b)], H has the form H = H0[x; ∂], which is generated by H0 and x. Since
H0 is commutative, H0 is locally affine by Lemma 4.8(6). So H is locally affine by
Proposition 4.9.

Combining Cases 1 and 2, we have that H is locally affine. �

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 By Theorem 5.4, H is locally affine. By Proposition 4.10, H
is pointed. Therefore, the assertion follows from Theorem 5.2. �

We also have a slight modification of Theorem 1.1.

PROPOSITION 5.5. Let H be a Hopf domain of GK-dimension two. Suppose H is a
union of an ascending chain of Hopf subalgebras {Ki}∞i=1 such that all Ki satisfy (�). Then,
H satisfies (�). As a consequence, H is isomorphic to one of Hopf algebras in Theorem
1.1.

Proof. By Theorem 1.1, each Ki is pointed and generated by grouplikes and skew
primitives. Hence, H is pointed and generated by grouplikes and skew primitives.

It is well-known that all algebras in Proposition 4.1 satisfy (�). Therefore, we can
assume that GKdim C0(H) = GKdim G(H) = 1.
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Now, repeating the proof of Theorem 5.2 gives the result. The hard part is
concerning type B, where we give an alternative proof as below.

If all Ki are of type B, let Ii be the Hopf ideal of Ki generated by all non-trivial
skew primitives that quasi-commute with their weight. Then, Ki/Ii ∼= kG(Ki), which
induces an injection Ki/Ii ⊆ Ki+1/Ii+1 for all i. It is easy to see that Ii = Ii+1 ∩ Ki ⊆ Ii+1.
Let I = ⋃

i Ii. Then, I is a Hopf ideal of H and H/I is a union of Hopf subalgebras
isomorphic to Ki/Ii. As a consequence, H/I ∼= kG(H), where G(H) is a non-trivial
subgroup of �. Since kG(H) satisfies (�) (Lemma 2.1), so does H. �

6. Other properties. In this section, we will prove Corollary 1.2 and Theorem
1.5. We use some ideas of Takeuchi [19]. Some parts of the proofs were also suggested
by Q.-S. Wu (personal communication). We would like to thank Wu for sharing his
comments and proofs with us.

6.1. Takeuchi’s idea. In this subsection, we review some ideas of Takeuchi [19].
The following lemma was proved in [19] in the commutative case and the proof works
for a general Hopf algebra. Let H+ be the kernel of the counit of H.

LEMMA 6.1 ([19, Lemma 3.9]). Let H be a Hopf algebra. Suppose that K and K ′ are
Hopf subalgebras of H such that K ′ ⊆ K. Then, there is a right H-module isomorphism:

K ⊗K ′ H
τ−→ (K/K(K ′+)) ⊗ H, τ : x ⊗ y �→

∑
x̄1 ⊗ x2y,

with the inverse map

(K/K(K ′+)) ⊗ H
μ−→ K ⊗K ′ H, μ : ū ⊗ v �→

∑
u1 ⊗ S(u2)v.

Proof. Since the proof is very nice, we include it here.
For any x ∈ K , z ∈ K ′, and y ∈ H, we have∑

x1z1 ⊗ x2z2y −
∑

x1 ⊗ x2zy =
∑

x1z1 ⊗ x2z2y −
∑

x1ε(z1) ⊗ x2z2y

=
∑

x1(z1 − ε(z1)) ⊗ x2z2y ∈ KK ′+ ⊗ H.

This implies that the map τ is well defined by the definition of the tensor product. On
the other hand, for any u = xz ∈ K(K ′+), where x ∈ K , z ∈ K ′+, and v ∈ H, we have∑

u1 ⊗K ′ S(u2)v =
∑

x1z1 ⊗K ′ S(x2z2)v =
∑

x1z1S(z2) ⊗K ′ S(x2)v

=
∑

x1ε(z) ⊗K ′ S(x2)v = 0.

Hence, μ is well defined.
It is easy to see that

μτ (x ⊗K ′ y) = μ

(∑
x̄1 ⊗ x2y

)
=

∑
x1 ⊗K ′ S(x2)x3y

=
∑

x1 ⊗K ′ ε(x2)y = x ⊗K ′ y,
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and

τμ(ū ⊗ v) = τ

(∑
u1 ⊗K ′ S(u2)y

)
=

∑
ū1 ⊗ u2S(u3)v = ū ⊗ v.

Therefore, τ is invertible with the inverse μ. �
There is also a left H-module version of the above lemma. The next lemma is also

well known (even before [19]) and is used in the study of “faithfully flat descent” when
A is commutative. Since the proof is short, it is included here.

LEMMA 6.2. Suppose that B ⊆ A is a ring extension such that AB (or BA) is faithfully

flat. Then, the sequence 0 −→ B −→ A
f−→ A ⊗B A, where f is the map sending x �→

x ⊗ 1 − 1 ⊗ x, is exact.

Proof. Let C = ker(f ) = {x ∈ A | x ⊗ 1 = 1 ⊗ x}. It is clear that B ⊆ C. Since AB

is flat, there are embeddings

A = A ⊗B B ↪→ A ⊗B C ↪→ A ⊗B A.

For any element a ⊗ c ∈ A ⊗B C, we obtain that

a ⊗ c = a(1 ⊗ c) = a(c ⊗ 1) = ac ⊗ 1,

which implies that the map (A =)A ⊗B B → A ⊗B C is subjective. Consequently,
A ⊗B C/B = 0. Since AB is faithfully flat, C/B = 0 and C = B as desired. �

PROPOSITION 6.3. Let H be a Hopf algebra and K � H be a Hopf subalgebra of H.
Suppose that HK is faithfully flat. Then, HK+ �= H+.

Proof. We modify Takeuchi’s proof [19]. By Lemma 6.2, the sequence

0 → K −→ H
f−→ H ⊗K H

is exact, where f is the map x �→ x ⊗ 1 − 1 ⊗ x. By Lemma 6.1, the right H-module
map

τ : H ⊗K H → H/HK+ ⊗ H, x ⊗ y �→
∑

x̄1 ⊗ x2y

is an isomorphism. Hence,

0 → K −→ H
τ◦f−→ H/HK+ ⊗ H,

where τ ◦ f : x �→ ∑
x̄1 ⊗ x2 − 1 ⊗ x, is exact. Since K �= H, the map τ ◦ f �= 0, which

implies that H/HK+ �= 0. This completes the proof. �

6.2. Some consequences. If H is pointed, then it satisfies (FF) [16]. We now prove
Theorem 1.5.

THEOREM 6.4. Let H be a left noetherian Hopf algebra.
(1) If H satisfies (FF), then H is of S-finite type. As a consequence, dimk H is

countable.
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(2) If H is locally affine and satisfies (FF), then H is affine.
(3) If H is pointed, then H is affine.

Proof.
(1) Suppose H is not of S-finite type. Let K0 = k and define a sequence of

S-finite type Hopf subalgebras Kn inductively. Suppose Kn is generated by⋃∞
i=0 Si(Vn) where Vn is a finite dimensional subcoalgebra of H. Let W be a

finite dimensional subcoalgebra of H such that W � Kn. Let Vn+1 = Vn + W
and Kn+1 be the Hopf subalgebra generated by

⋃∞
i=0 Si(Vn+1). By definition,

Kn �= Kn+1 and Kn+1 is of S-finite type. Let K = ⋃
n Kn. Then, K is a Hopf

subalgebra that is not of S-finite type. Since H satisfies (FF), HK is faithfully
flat. Then, K is left noetherian. We may replace H by K and assume that
H = ⋃

n Kn without loss of generality.
Since H is left noetherian, there is an N such that HK+

n = HK+
N for n ≥ N.

Since H = ⋃
n Kn,

HK+
N =

⋃
n≥N

HK+
n = H

⋃
n≥N

K+
n = HH+ = H+.

By Proposition 6.3, H+ �= HK+
N , yielding a contradiction. Therefore, H is of

S-finite type.
Any Hopf algebra of S-finite type is countably generated and so has countable
k-dimension.

(2) This follows from part (1) and the fact that S-finite type plus local affineness
implies that H is affine.

(3) If H is pointed, then it is (FF) by [16]. By Lemma 4.8(4), H is locally affine.
The assertion follows from part (2).

�

6.3. Global dimension. In this subsection, we will prove Corollary 1.2. The
following lemma is known.

LEMMA 6.5 ([1, Corollary 1], [13, Proposition 2.1]). Let A be an algebra and
{A(n)}∞n=1 an ascending chain of subalgebras of A such that A = ⋃

n A(n). Then,

gldim A ≤ max{gldim A(n) | ∀ n} + 1.

Proof of Corollary 1.2

(1) and (2) follow by construction.
(3) This is a consequence of [18, Theorem A(ii)].
(4) This follows by [16].
(5) If H is in Theorem 1.1(1–5), then every affine Hopf subalgebra K of H of

GK-dimension two has global dimension two by the proof of [6, Proposition
0.2(1)]. Since HK and K H are free (see part (4)), by [10, Theorem 7.2.6],
gldim H ≥ gldim K = 2. By Lemmas 4.11 and 6.5, gldim H ≤ 3.
If H is in Theorem 1.1(6), then there is an affine Hopf subalgebra K of
H of GK-dimension two that has global dimension ∞ by the proof of [6,
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Proposition 0.2(1)]. Since HK and K H are free (see part (4)), by [10, Theorem
7.2.8(i)], gldim H ≥ gldim K = ∞. �

QUESTIONS 6.6. Let H be as in Theorem 1.1.
(1) In cases (1)–(5), is H affine if and only if gldim H = 2?
(2) In case (6), what is the injective dimension of H?
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