
2

Spaces and Manifolds of Smooth Maps

In this chapter, we consider spaces of differentiable mappings as infinite-
dimensional spaces. These spaces will then serve as the model spaces for
manifolds of mappings, that is, manifolds of differentiable mappings between
manifolds.

2.1 Topological Structure of Spaces of Differentiable
Mappings

In this section, we denote by M,N (possibly infinite-dimensional) manifolds.

2.1 Definition Endow the space C∞(M,N ) with the initial topology with
respect to the map

Φ : C∞(M,N ) →
∏

k ∈N0

C(T k M,T k N )c.o., f �→ (T k f )k ∈N0 ,

where the spaces on the right-hand side carry the compact open topology (see
§B.2). The resulting topology on C∞(M,N ) is called the compact open C∞-
topology.

2.2 Remark (a) The map Φ is clearly injective (as T0 f � f ). Therefore, Φ
is a homeomorphism onto its image.

(b) Note that the compact open C∞-topology is also the initial topology with
respect to the mappings

T k : C∞(M,N ) → C(T k M,T k N )c.o, f �→ T k f , k ∈ N0.

(c) If M ⊆◦ E,N ⊆◦ F for E,F locally convex spaces, the compact open C∞-
topology is the initial topology with respect to the mappings

dk : C∞(M,N ) → C(M × Ek ,N )c.o., f �→ dk f , k ∈ N0.
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2.1 Topological Structure of Spaces of Differentiable Mappings 31

(d) By construction the compact open C∞-topology is finer than the compact
open topology (i.e. the topology induced by the inclusion C∞(M,N ) →
C(M,N )). In particular, if M is locally compact (i.e. M is finite dimen-
sional), the evaluation ev: C∞(M,N ) × M → N , ( f , x) �→ f (x) is contin-
uous by Lemma B.10.

2.3 Lemma Let L,O be manifolds and h : L → M and f : N → O be smooth.
Then the pushforward and the pullback

f∗ : C∞(M,N ) → C∞(M,O), g �→ f ◦ g,
h∗ : C∞(M,N ) → C∞(L,N ), g �→ g ◦ h

are continuous.

Proof Since the compact open C∞-topology is initial with respect to the fam-
ily (T k )k ∈N0 , it suffices to prove that T k ◦ f∗ and T k ◦ h∗ are continuous for
each k ∈ N0. However, the chain rule yields for each k commutative diagram

C∞ (M, N ) C∞ (M,O) C∞ (M, N ) C∞ (L, N )

C (T kM, T kN )c.o. C (M,O)c.o., C (T kM, T kN )c.o. C (T k L, T kN )c.o.

f∗

Tk
T k

h∗

Tk T k

(Tk f )∗ (Tk h)∗

The pushforward and the pullback in the lower row are continuous by
Lemma B.8. We conclude that f∗ and h∗ are continuous. �

2.4 Proposition Let E be a locally convex space. Then the compact open C∞-
topology turns C∞(M,E) with the pointwise operations into a locally convex
space.

Proof The compact open C∞-topology is initial with respect to the map

Φ : C∞(M,E) →
∏

k ∈N0

C(T k M,T k E)c.o.︸���������������︷︷���������������︸
�C (T k M,E2k )c.o.

, f �→ (T k f )k ∈N0 .

Now the spaces C(T k M,E2k )c.o. are locally convex spaces by Lemma B.7
since E2k is a locally convex space. The product of locally convex spaces
is again a locally convex space. Thus every linear subspace of the product
becomes a locally convex space. Now it is easy to see that Φ is linear with
respect to pointwise addition and scalar multiplication. Thus the image of Φ is
a linear subspace andΦ is an isomorphism of locally convex spaces identifying
C∞(M,E) as a locally convex subspace of

∏
k ∈N0

C(T k M,E2k ). �
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32 Spaces and Manifolds of Smooth Maps

Interlude: Certain Open Sets in the Compact Open C∞-topology

In this section, we recall the classic arguments (see e.g. Hirsch, 1994) that cer-
tain subsets of mappings are open in the compact open C∞-topology. Observe
that one needs here (and we shall require it in the whole section) for the source
manifold to be compact. For non-compact source manifolds, the sets discussed
here will, in general, not be open in the compact open C∞-topology. We will
need the results collected in this subsection in Chapter 3 when discussing the
group of diffeomorphisms.

2.5 Lemma Let M,N be manifolds, M compact and a finite open cover
U1, . . . ,Un of M. Then the map

Ψ : C∞(M,N ) →
n∏

i=1

C∞(Ui ,N ), f �→ ( f |Ui )i∈I

is a homeomorphism onto

I � {( f i ) ∈
n∏

i=1

C∞(Ui ,N ) | f i |Ui∩U j ≡ f j |Ui∩U j , for all i, j ∈ I}.

Moreover, I is closed in
∏n

i=1 C∞(Ui ,N ).

Proof To see that I is closed, we introduce, for every i, j ∈ I � {1, . . . ,n}
and x ∈ Ui ∩Uj , the map evx, i, j :

∏n
i=1 C∞(Ui ,N ) → N × N , (γk )1≤k≤n �→

(γi (x), γ j (x)). These are continuous since projections onto components in a
product and the point evaluations are continuous (see Remark B.5). Now we
denote by ΔN ⊆ N × N the diagonal (i.e. all elements of the form (n,n)),
which is closed in N × N due to N being Hausdorff. Then I is closed as the
preimage:

I =
⋂

x∈�i, j∈IUi∩U j

ev−1
x, i, j (ΔN ).

Note that we can write the restriction f �→ f |Ui as the pullback f |Ui = f ◦
ιUi = (ιUi )

∗( f ) with the inclusion of Ui into M . Hence the restriction map is
continuous by Lemma 2.3, and as a consequence Ψ is continuous. Moreover,
Ψ is clearly injective and we only have to prove that Ψ is an open mapping
onto its image. To see this, we need to check that finite intersections of sets of
the form

�K,U, k� � { f ∈ C∞(M,N ) | T k f (K ) ⊆ U },
K ⊆ T k M compact, U ⊆◦ T k N, k ∈ N

are mapped to open sets by Ψ (recall that the topology is initial with respect to
the T k ). Now since M is compact, Lang (1999, II, §3 Proposition 3.2) implies
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2.1 Topological Structure of Spaces of Differentiable Mappings 33

that there are open sets Vi ⊆ V i ⊆ Ui ,1 ≤ i ≤ n and M ⊆ ⋃
1≤i≤n Vi .

Consider now f ∈ ⋂
1≤r ≤� �Kr ,Ur , kr � and define T kr V i � π−1

kr
(V i ), where

πkr : T krUi → Ui is the bundle projection. Note that T kr V i is closed in T krUi

for every 1 ≤ i ≤ n. Then clearly

γ |Ui ∈
⋂

1≤r ≤�
�Kr ∩ T kr V i ,Or , kr � for all 1 ≤ i ≤ n. (2.1)

Now let (gi )1≤i≤n ∈ I such that every gi satisfies (2.1) for i. Since the T kr Vi

cover Kr , the unique map g defined by g |Ui = gi satisfies g ∈ ⋂
1≤r ≤�

�Kr ,Ur , kr �. We conclude
n∏

i=1

⋂

1≤r ≤�
�Kr ∩ T kr V i ,Or , kr � ⊆ Ψ �




⋂

1≤r ≤�
�Kr ,Ur , kr ��

�

and thus Ψ is open onto its image. �

2.6 Lemma Let M be a compact manifold and N a finite-dimensional mani-
fold. Then the sets

Imm(M,N ) = { f ∈ C∞(M,N ) | f is an immersion},
Sub(M,N ) = { f ∈ C∞(M,N ) | f is a submersion}

are open in the compact open C∞-topology.

Proof Since M is compact (hence finite dimensional), a map is an immersion
(submersion) if and only if it is infinitesimally injective (surjective). We need
to check that these properties define an open set in C(T M,T N ), whence they
induce an open set in the compact open C∞-topology.

Consider a map f ∈ C∞(M,N ) and pick a pair of charts (Uϕ , ϕ) of M and
(Uκ , κ) of N such that f (Uϕ ) ⊆ Uκ . In addition, we pick a compact set Kϕ ⊆
Uϕ with non-empty interior. By compactness of M , we can choose a finite set
of pairs of charts and compact sets such that the interior of the Kϕ cover M .
Apply Lemma 2.5 to obtain an embedding C∞(M,N ) → ∏n

i=1 C∞(Uϕi ,N ).
We will now construct for each Kϕi an open neighbourhood in C∞(Uϕi ,N )
which consists only of immersions (submersions) if f has this property. Pulling
back the product of these neighbourhoods with the embedding then yields the
desired neighbourhood of f in C∞(M,N ).

To this end, we consider the smooth map g � κ ◦ f ◦ ϕ−1 ∈ C∞(Vϕ ,Vκ )
where Vϕ ⊆◦ Rd and Vκ ⊆◦ Rn . Set L � ϕ(Kϕ ) and observe that g is an
immersion (submersion) if and only if f is an immersion (submersion). Recall
that on open subsets of vector spaces we have Tg = (g,dg) ∈ C(TVϕ ,TVκ ) =
C(Vϕ × Rd ,Vκ × Rn ). Let e1, . . . ,ed be the standard basis of Rd . For x ∈
L we represent the Jacobian as Jx (g) =

[
df (x; e1), . . . ,df (x,ed )

]
. If g is
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34 Spaces and Manifolds of Smooth Maps

an immersion (submersion) then the Jacobi matrix has for every x maximal
rank, that is, if g is an immersion, the differential is injective if and only if
rkJx (g) = d ≤ n. In particular, the rank of the Jacobi matrix is constant, say,
rkJx (g) = N for all x ∈ L. We can thus pick for every x ∈ L a subset Ix ⊆
{1, . . . ,d} of N elements such that {dg(x; e j )} j ∈Ix is linearly independent (note
that the indices will, in general, depend on x!). If {df (x; e j )} j ∈Ix is linearly
independent, then there exists εx > 0 such that every tuple (x1, . . . , xN ) ∈∏

j ∈Ix Bε (dg(x; e j )) is linearly independent (where Bε (z) is the ε-ball in Rd ;
see Margalef-Roig and Domínguez, 1992, Lemma 1.6.7). By continuity of
dg, there is for every x ∈ L a compact neighbourhood Nx of x such that
(dg(y; e j1 ), . . . ,dg(y; e jN )) ∈ ∏

j ∈Ix Bε (dg(x; e j ) for all y ∈ N x . Thus

dg ∈ Ω(g, x) �
⋂

j ∈Ix
�Nx × {e j },Bεx (df (x; e j ))� . (2.2)

By construction, every h ∈ C∞(Vϕ ,Vκ ) with dh ∈ Ω(g, x) has a Jacobian of
rank N at every point in Nx . In other words every such h is an immersion (sub-
mersion) on Nx if g is such a map. In Exercise 2.1.4 we shall now construct
from Ω(g, x) an open neighbourhood of f in C∞(Uϕ ,N ) consisting only of
maps which restrict to immersions (submersions) on Kϕ if f is an immersion
(submersions). We conclude that Imm(M,N ) and Sub(M,N ) are neighbour-
hoods of their points, hence open. �

2.7 Proposition Let M be a compact manifold and N a finite-dimensional
manifold. Then the set of embeddings

Emb(M,N ) � { f ∈ Imm(M,N ) | f is a topological embedding}

is open in the compact open C∞-topology.

Proof Let f ∈ Emb(M,N ) and fix a finite family of charts

(a) (Ui , ϕi ) of M and (Vi ,ψi ) of N such that f (Ui ) ⊆ Vi , and such that
(b) for every i there is a compact set Ki ⊆ Ui and the interiors of the Ki

cover M .

Recall that an embedding is, in particular, an injective immersion. Hence
Lemma 2.6 allows us to choose an open neighbourhood O f ⊆◦ C∞(M,N ) of
f consisting only of immersions which satisfy also property (a). We shall now
show that we can shrink O f to obtain an open neighbourhood of f consisting
only of immersions.

We have already seen in Lemma 1.50 that every immersion in O f restricts
locally to an embedding. However, since M,N are finite-dimensional mani-
folds, we can use the quantitative version of the inverse function theorem (see
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Glöckner, 2016, 1.1 and the references there) to obtain a uniform estimate on
the size of these neighbourhoods: Shrinking O f , we may assume that every
g ∈ O f satisfies

(c) g |Ui is an embedding for every i

(an alternative proof of this fact using uniform estimates can be found in
Hirsch, 1994, 2. Lemma 1.3). Now since f is an embedding, we see that for
every i the compact sets f (Ki ) and f (M \Ui ) are disjoint and we can thus find
disjoint Ai ,Bi ⊆◦ N such that f (Ki ) ⊆ Ai and f (M \ Ui ) ⊆ Bi . As there are
only finitely many i, we can shrink O f further such that every g ∈ O f satisfies

(d) g(Ki ) ⊆ Ai and g(M \Ui ) ⊆ Bi for all i.

We shall now show that g ∈ O f is injective. Let x, y ∈ M be distinct points
and x ∈ Ki . If y ∈ Ui , then g(x) � g(y) by (c). If y ∈ M \Ui , then g(x) ∈ Ai

and g(y) ∈ Bi by (d), so again g(x) � g(y). We conclude that g is injective.
Summing up, O f is an open set consisting entirely of injective immersions.

However, since M is compact, every injective immersion is an embedding (see
e.g. Margalef-Roig and Domínguez, 1992, Proposition 3.3.4). We conclude
that O f consists only of embeddings, whence Emb(M,N ) is open. �

2.8 Corollary If M is a compact manifold, the set of diffeomorphisms

Diff(M) � { f ∈ C∞(M,M) | there exists g ∈ C∞(M,M) with g ◦ f = idM }

is open in C∞(M,M) with the compact open C∞-topology.

Proof A diffeomorphism φ permutes the connected components of M and
induces on every component a diffeomorphism onto another component. Since
the components are compact, there is an open φ-neighbourhood in C∞(M,M)
whose elements map every component to the same component as φ. Thus we
may assume that M is connected.

A diffeomorphism φ : M → M is, in particular, a map which is an em-
bedding and a submersion. Assume conversely that ψ : M → M is a map-
ping which is a submersion and an embedding. Since the image of a submer-
sion is open (Exercise 1.7.5), the set φ(M) is open and closed in M , whence
φ(M) = M by connectedness of M . Hence φ is a bijective map. Its inverse is
smooth by Exercise 1.7.6 as φ is a submersion and idM = φ

−1◦φ (alternatively
a bijective embedding) is a diffeomorphism by Lemma 1.61. �

2.9 Remark As was already mentioned for non-compact M , the subsets con-
sidered in this subsection will, in general, not form open subsets of C∞(M,N )
with respect to the compact open C∞-topology. The reason for this is that the
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36 Spaces and Manifolds of Smooth Maps

compact open topology can only control a function’s behaviour on compact
sets. On a non-compact manifold, this topology is too weak to control the
behaviour of a function on all of M . For this reason, one has to refine the topol-
ogy if M is non-compact. The Whitney-type topologies are a common choice;
see Hjelle and Schmeding (2017). However, many results presented in the next
sections do not hold (at least not in the generality stated) for the Whitney-type
topologies. A few examples of this behaviour for M non-compact are:

• the pullback h∗ is, in general, discontinuous for the Whitney-topologies
(whereas it is continuous in the compact open topology by Lemma 2.3);

• the exponential law, Theorem 2.12, is wrong.

While one can develop a general theory for function spaces on non-compact
manifolds (see e.g. Michor, 1980), these examples show already that the result-
ing theory will require a much higher technical investment. We refrain from a
discussion in the context of this book and refer the interested reader instead to
the literature (Hjelle and Schmeding, 2017; Michor, 1980).

Exercises

2.1.1 Fill in the details for Remark 2.2.

(a) Show that the compact open C∞-topology is the initial topology
with respect to (T k )k ∈N.
Hint: A mapping into a product is continuous if and only if each
component is continuous.

(b) If M,N are open subsets of locally convex spaces, show that
the initial topologies with respect to the families (T k )k ∈N0 and
(dk )k ∈N0 coincide.
Hint: Exercise 1.6.3 yields one inclusion of topologies. For the
converse show inductively that dk ◦ f , for all k ∈ N0 continuous,
implies T k ◦ f continuous for all f : Z → C∞(M,N ).

2.1.2 Let ϕ : M → N be a smooth map between smooth manifolds and
E a locally convex space. Show that the pullback ϕ∗ : C∞(N,E) →
C∞(M,E), f �→ f ◦ϕ is continuous linear. Deduce that if ϕ is a diffeo-
morphism, then ϕ∗ is an isomorphism of locally convex
spaces.

2.1.3 Let K,L be compact manifolds and M be a manifold. Show that
the composition map Comp: C∞(K,M) × C∞(L,K ) → C∞(L,M),
( f ,g) �→ f ◦ g is continuous.
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2.2 The Exponential Law and Its Consequences 37

2.1.4 Fill in the missing details in the proof of Lemma 2.6. Show, in partic-
ular, that, thanks to the compactness of L, the Ω(g, x) yield an open
neighbourhood of g in C∞(Vϕ ,Vκ ) consisting only of mappings whose
Jacobian has maximal rank on the compact set L. Moreover, construct
a neighbourhood of f ∈ C∞(M,N ) consisting entirely of immersions
(submersions) if f is an immersion (submersion).

2.2 The Exponential Law and Its Consequences

In this section, we prove a version of the exponential law, Theorem 2.12, for
smooth mappings. Before we begin, let us observe a crucial fact about the
compact open C∞-topology.

Assume that M is a compact manifold and E a locally convex space. Since
the compact open C∞-topology is finer than the compact open topology, we
see that for every

O ⊆◦ E, C∞(M,O) � { f ∈ C∞(M,E) | f (M) ⊆ O}

is an open subset. Now C∞(M,E) is a locally convex space by Proposition 2.4,
whence C∞(M,O) becomes a manifold and it makes sense to consider differ-
entiable mappings with values in C∞(M,O).

We now prepare the proof of the exponential law by providing several aux-
iliary results.

2.10 Lemma Let E,F,H be locally convex spaces, U ⊆◦ E and V ⊆◦ F. If
f : U × V → H is smooth, then so is f ∨ : U → C∞(V,H) f ∨(u) � f (u, ·). Its
derivative is given by

df ∨(x; ·) = (d1 f )∨(x). (2.3)
Proof

Step 1: f ∨ is continuous.
It suffices to prove that dk ◦ f ∨ : U → C(V ×Fk ,H)c.o. is continuous for every
k ∈ N0 (see Remark 2.2 and Exercise 2.1.1). For k = 0 this was proved in
Proposition B.13. We prove by induction that

dk ◦ f ∨(x) = dk ( f ∨(x)) = (dk
2 f )∨(x) for all x ∈ U. (2.4)

The induction start for k = 0 is trivial. For the induction step let k > 0 and we
compute
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dk ( f ∨(x))(y; v1, . . . ,vk )

= lim
t→0

t−1
(
dk−1( f ∨(x))(y + tvk ; v1, . . . ,vk−1)

−dk−1( f ∨(x))(y; v1, . . . ,vk−1)
)

= lim
t→0

t−1
(
dk−1( f (x, y + tvk ; (0,v1), . . . , (0,vk−1))

−dk−1( f (x, y; (0,v1), . . . , (0,vk−1))
)

= dk f (x, y; (0,v1), . . . , (0,vk )).

Thus we have identified dk ◦ f as (dk
2 f )∨ which is again continuous by Propo-

sition B.13. We conclude that f ∨ is continuous.

Step 2: f ∨ is C1 and the derivative satisfies (2.3).
Pick x ∈ U , z ∈ E and t ∈ R small. We shall show that

Δ(t, x, z) � t−1( f ∨(x + t z) − f ∨(x))
t→0−−−→ (d1 f )∨(x, ·; z)

in C∞(V,H). Recall that the compact open C∞-topology is initial with respect
to the family (dk : C∞(V,H) → C(V × Fk ,H)c.o)k ∈N0 . Thus Δ(t, x, z) con-
verges for t → 0 if and only if dk ◦Δ(t) converges. Therefore, we pick k ∈ N0

and a neighbourhood �K,U� of dk ((d1 f )∨), i.e. K ⊆ V × Fk is compact such
that (d1 f )∨(x, ·, z)(K ) ⊆ U ⊆◦ H . Since higher differentials are symmetric by
Schwarz’ theorem (Exercise 1.3.3), we have

dk (d1 f )∨(x; z)(y; v1, . . . ,vk ) = dk+1 f (x, y; (z,0), (0,v1), . . . , (0,vk ))

= dk+1 f (x, y; (0,v1), . . . , (0,vk ), (z,0)).

Now, we saw in Lemma 1.21 that the difference quotient extends continuously
to t = 0 by the differential. We apply this to dk f : For each y � (y0,v1, . . . ,vk ) ∈
K ⊆ V × Fk , there exists y ∈ Ny ⊆◦ V × Fk and εy > 0 such that

Ny×] − εy , εy [ \{0} → H,

(w, t) �→ t−1(dk f (x + t z,w0; (0,w1), . . . , (0,wk ))

− dk f (x,w0; (0,w1), . . . , (0,wk )),

where w = (w0, . . . ,wk ) the function takes values in U and extends contin-
uously to some function Ny×] − εy , εy [→ U . Exploiting compactness of K
we cover it by finitely many of these neighbourhoods Ny1

, . . . ,Ny� . Hence if
|t |<min1≤i≤� εy i

, we see that

t−1(dk f (x + t z,v; (0,v1), . . . , (0,vk )) − dk f (x,v; (0,v1), . . . , (0,vk )) ∈ U.

In other words, dnΔ(t, x, z)(v) ∈ U for all t small enough and v ∈ K , hence
(2.3) holds. Since (d1 f )∨ is C0 by Step 1, we see that f ∨ is C1.
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Step 3: f is Ck for each k ≥ 2.
Note that h : (U × E) × V → H , ((x, z), y) �→ d1 f (x, y; z) is smooth. Now we
argue by induction, where Step 2 is the induction start. Also Step 2 shows that
df ∨ = h∨. The induction hypothesis shows that h∨ is Ck−1, so f ∨ must be Ck

and since k was arbitrary, f ∨ is smooth. �

2.11 Proposition Let E be a finite-dimensional space, F be locally convex
and U ⊆◦ E. Then the evaluation map ev: C∞(U,F) ×U → F is smooth.

Proof We already know from Remark 2.2 that ev is continuous. Moreover, ev
is linear in the first component and thus d1 ev( f , x; g) = ev(g, x) (this implies,
in particular, that all partial derivatives with respect to the first component
exist). Let us now compute d2 ev. For f ∈ C∞(U,F) and x ∈ U , w ∈ E
and small t, we have

t−1 ev( f , x + tw) − ev( f , x) = t−1( f (x + tw) − f (x)) → df (x;w) as t → 0.

Hence d2 ev( f , x;w) exists and is given by

d2 ev( f , x;w) = df (x;w) = ev1(df , (x,w)),

where ev1 : C∞(U × E,F) × (U × E) → F, (γ, z) �→ γ(z) is continuous. We
conclude that

d ev( f , x; g,v) = d1 ev( f , x; g) + d2 ev( f , x; v) = ev(g, x) + ev1(df , (x,v))
(2.5)

exists and is continuous (the mapping C∞(U,F) → C∞(U × E,F), f �→ df is
clearly continuous and linear hence smooth). Thus ev (and also ev1) is C1. We
see that inductively ev is Ck as its derivative is already Ck−1. �

We will now formulate and prove the exponential law, Theorem 2.12. To
justify the name, denote the set of all functions from X to Y by Y X . In this
notation, the exponential law for arbitrary maps becomes (ZY )X � ZX×Y ,
hence its name.

2.12 Theorem (Exponential law) Let M be a compact manifold and O ⊆◦
E,U ⊆◦ F be open subsets of locally convex spaces. Then

(a) If f : U × M → O is smooth, so is f ∨ : U → C∞(M,O), f ∨(x)(y) �
f (x, y).

(b) The evaluation map ev: C∞(M,O) × M → O, (γ, x) �→ γ(x) is smooth
and the map C∞(U × M,O) → C∞(U,C∞(M,O), f �→ f ∨ is a bijection.

In particular, the mapping f is smooth if and only if f ∨ is smooth.
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Proof Since C∞(M,O) is an open submanifold of C∞(M,E), Lemma 1.39
shows that for the purpose of this proof we may assume without loss of gener-
ality that O = E.

(a) Pick a finite atlas {(ϕi ,Ui )}1≤i≤n of the compact manifold M and obtain
from Lemma 2.5 a topological embedding with closed image

Ψ : C∞(M,E) →
n∏

i=1

C∞(Ui ,E), f �→ ( f |Ui )1≤i≤n .

Now since the image ofΨ is closed we apply Lemma 1.25: For any smooth
f : U × M → O, the map f ∨ : U → C∞(M,O) ⊆◦ C∞(M,E) will be
smooth if and only if Ψ ◦ f ∨ is smooth. In other words, f ∨ is smooth if
and only if for every 1 ≤ i ≤ n the map U � x → f ∨(x) |Ui ∈ C∞(Ui ,E)
is smooth. Applying Exercise 2.1.2, this is equivalent to the smoothness
of the mappings U � x → f ∨(x) |Ui ◦ ϕ−1

i ∈ C∞(ϕi (Ui ),E) and these
mappings are smooth by Lemma 2.10.

(b) The map ev: C∞(M,O) × M → O is smooth if locally around each
point it is smooth. Hence we choose ( f , x) ∈ C∞(M,O) × M and pick
ϕ : U → V ⊆◦ Rd a chart of M around x. We obtain another evaluation
map evϕ : C∞(V,O) × V → O such that

ev(η, z) = evϕ ((ϕ−1)∗(η), ϕ(z)), (η, z) ∈ C∞(M,O) ×U.

Note that (ϕ−1)∗ : C∞(M,O) → C∞(V,O) is the restriction of the con-
tinuous linear (hence smooth) map (ϕ−1)∗ : C∞(M,E) → C∞(V,E) to
the open set C∞(M,O) (see Exercise 2.1.2). Hence (ϕ−1)∗ is smooth and
ev will be smooth if evϕ is smooth for each chart ϕ of M . However, the
smoothness of evϕ was established in Proposition 2.11.

We finally have to check that C∞(U × M,O) → C∞(U,C∞(M,O),
f �→ f ∨ is bijective. Obviously it is injective; hence we need to check
surjectivity. If f : U → C∞(M,O) is smooth, then the following map is
smooth:

U × M → C∞(M,O) × M, (u,m) �→ ( f (u),m).

Composing with ev, the map f ∧ : U × M → O, (u,m) �→ f (u)(m) is
smooth and satisfies ( f ∧)∨ = f . This establishes surjectivity. �

2.13 Remark One can even show that the map from Theorem 2.12(b) is a
homeomorphism. Moreover, one can obtain similar results for finite orders of
differentiability. We skip the details here and refer instead to Alzaareer and
Schmeding (2015) for more information.
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Note that compactness of the manifold M is a crucial ingredient and the
statement of the exponential law becomes false for general non-compact M;
see Michor (1980).

Exercises

2.2.1 Let M be compact and E be a finite-dimensional vector space. Show
that the evaluation map ev: C∞(M,E) × M → E is a submersion. (If
you fancy a real challenge, prove this for a locally convex
space E.)

2.2.2 Let f : U × M → O and p : O → N be smooth maps. As always,
we denote by p∗ : C∞(M,O) → C∞(M,N ), h �→ p ◦ h, the push-
forward and assume that the exponential law, Theorem 2.12, holds
for the spaces C∞(U × M,O) and C∞(U × M,N ). Prove
that

p∗ ◦ ( f ∨) = (p ◦ f )∨.

2.3 Manifolds of Mappings

In this section, we discuss spaces of smooth mappings between manifolds as
infinite-dimensional manifolds. We shall not directly construct the manifold
structure for general spaces (see Appendix C for a sketch).

General Assumption In this section K will be a compact smooth manifold,
M,N will be smooth (possibly infinite-dimensional) manifolds.

2.14 Definition A smooth manifold structure on C∞(K,M) is canonical if

• the underlying topology is the compact open C∞-topology, and
• for each (possibly infinite-dimensional) C∞-manifold N and for a map

f : N → C∞(K,M), said map is C∞ if and only if

f ∧ : N × K → M, (x, y) �→ f (x)(y) is C∞.

2.15 Remark A canonical manifold structure enforces a suitable version of
the exponential law, Theorem 2.12. This enables differentiability properties of
mappings to be verified on the underlying manifolds.

A similar notion of canonical manifold exists also for spaces of finitely often
differentiable mappings (Amiri et al., 2020; Glöckner and Schmeding, 2022).
We hasten to remark that the usual constructions of manifolds of mappings
yield canonical manifold structures (see Appendix C).
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2.16 Lemma If C∞(K,M) is endowed with a canonical manifold structure,
then

(a) The evaluation map ev: C∞(K,M) × K → M, ev(γ, x) � γ(x) is a C∞-
map.

(b) Canonical manifold structures are unique: writing C∞(K,M)′ for
C∞(K,M) with another canonical manifold structure, then

id : C∞(K,M) → C∞(K,M)′, γ �→ γ

is a C∞-diffeomorphism.
(c) Let N ⊆ M be a submanifold such that the set C∞(K,N ) is a submanifold

of C∞(K,M). Then the submanifold structure on C∞(K,N ) is canonical.
(d) If M1 and M2 are smooth manifolds such that C∞(K,M1) and C∞(K,M2)

have canonical manifold structures, then the manifold structure on the
product manifold C∞(K,M1) ×C∞(K,M2) � C∞(K,M1 × M2) is canoni-
cal.

Proof (a) Since id : C∞(K,M) → C∞(K,M) is C∞ and C∞(K,M) is
endowed with a canonical manifold structure, it follows that id∨:
C∞(K,M) × K → M , (γ, x) �→ id(γ)(x) = γ(x) = ev(γ, x) is C∞.

(b) The map f � id : C∞(K,M) → C∞(K,M)′ satisfies f ∧ = ev and is
thus C∞, by (a). Since C∞(K,M)′ is endowed with a canonical mani-
fold structure, it follows that f is C∞. By the same reasoning, f −1 =

id : C∞(K,M)′ → C∞(K,M) is C∞.
(c) As C∞(K,N ) is a submanifold, the inclusion ι : C∞(K,N ) → C∞(K,M),

γ �→ γ is C∞ (see Lemma 1.39). Likewise, the inclusion map j : N → M
is C∞. Let L be a manifold and f : L → C∞(K,N ) be a map. If f is
smooth, then ι◦ f is smooth, entailing that (ι◦ f )∧ : L×K → M , (x, y) �→
f (x)(y) is C∞. As the image of this map is contained in N , which is a
submanifold of M , we deduce that f ∧ = (ι ◦ f )∧|N is C∞. If, conversely,
f ∧ : L × K → N is C∞, then also (ι ◦ f )∧ = j ◦ ( f ∧) : L × K → M is C∞.
Hence ι ◦ f : L → C∞(K,M) is C∞ (the manifold structure on the range
being canonical). As ι ◦ f is a C∞-map with image in C∞(K,N ) which is
a submanifold of C∞(K,M), we deduce that f is C∞.

(d) If L is a manifold and f = ( f1, f2) : L → C∞(K,M1) ×C∞(K,M2) a map,
then f is C∞ if and only if f1 and f2 are C∞. As the manifold structures are
canonical, this holds if and only if f ∧1 : L×K → M1 and f ∧2 : L×K → M2

are C∞, which holds if and only if f ∧ = ( f ∧1 , f ∧2 ) is C∞. �

2.17 Proposition Assume that C∞(K,M) and C∞(K,N ) admit canonical
manifold structures. If Ω ⊆ K × M is an open subset and f : Ω → N is a
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C∞-map, then Ω′ � {γ ∈ C∞(K,M) | {(k, γ(k)), k ∈ K } ⊆ Ω} is an open
subset of C∞(K,M) and

f� : Ω′ → C∞(K,N ), γ �→ f ◦ (idK , γ)

is a C∞-map.

Proof In Exercise B.2.1 it was proved that Ω′ is open in C(K,M)c.o., and
so it is open in the finer compact open C∞-topology. By Lemma 2.16(a), the
evaluation map ev: C∞(K,M) × K → M is C∞, whence C∞(K,M) × K →
K × M , (γ, x) �→ (x, γ(x)) is C∞. Since f is C∞, the chain rule shows that

( f�)∧ : Ω′ × K → N, (γ, x) �→ f�(γ)(x) = f (x, γ(x)) = f (x,ev(γ, x))

is C∞. So f� is C∞, as the manifold structure on C∞(K,N ) is canonical. �

2.18 Corollary Assume that C∞(K,M) and C∞(K,N ) admit canonical man-
ifold structures. If f : K ×M → N is a C∞-map, then we obtain a smooth map

f� : C∞(K,M) → C∞(K,N ), γ �→ f ◦ (idK , γ).

Applying Corollary 2.18 with f (x, y) � g(y), we get the following.

2.19 Corollary Assume that C∞(K,M) and C∞(K,N ) admit canonical man-
ifold structures. If g : M → N is a C∞-map, then the pushforward is smooth

g∗ : C∞(K,M) → C∞(K,N ), γ �→ g ◦ γ.

To construct manifold structures on C∞(K,M) one needs an additional struc-
ture on M . This so-called local addition replaces the vector space addition not
present on M .

2.20 Definition Let M be a smooth manifold. A local addition is a smooth
map

Σ : U → M,

defined on an open neighbourhood U ⊆◦ T M of the zero-section of the tangent
bundle 0M � {0p ∈ TpM | p ∈ M } such that Σ(0p ) = p for all p ∈ M ,

U ′ � {(πM (v),Σ(v)) | v ∈ U }

is open in M × M and θ � (πTM ,Σ) : U → U ′ is a diffeomorphism.

If C∞(M,N ) is canonical and we interpret a tangent vector as an equiva-
lence class of smooth curves [t → c(t)], with c : ] − ε,ε[→ C∞(M,N ), the
derivative of c can be identified with the partial derivative of the adjoint map
c∧ : ] − ε,ε[×M → N . This shows that as a set we should have TC∞(M,N ) �
C∞(M,T N ). In the presence of a local addition, the set C∞(M,T N ) turns also
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into a canonical manifold and the bijection becomes an isomorphism of vector
bundles over the identity. Summing up, this identification yields the following
result.

2.21 Proposition If M admits a local addition1 , then C∞(K,M) admits a
canonical manifold structure and the tangent bundle can be identified with
C∞(K,T M).

We refer to Appendix C for more information about the proof.

2.22 Assume that M,N admit local additions and f : M → N is a C∞-map.
Then the identification TC∞(K,M) � C∞(K,T M) induces a commuting dia-
gram (Exercise 2.3.6):

TC∞(K,M) C∞(K,T M)

TC∞(K,N ) C∞(K,T N ).

�

T ( f∗) (T f )∗

�

(2.6)

We have seen in Corollary 2.19 and Exercise 2.3.1 that the pushforward
and the pullback of smooth functions are smooth with respect to canonical
manifolds of mappings. Viewing these mappings as partial mappings of the
full composition map

Comp: C∞(K,M) × C∞(L,K ) → C∞(L,M), ( f ,g) �→ f ◦ g,

we see that the full composition is separately smooth in its variables. This
immediately prompts the question as to whether the full composition map is
smooth. In the general case (of a possibly non-compact source manifold) when
one has no exponential law available this is complicated, but in our situation it
reduces to an easy observation.

2.23 Proposition Let K,L be compact manifolds and assume that the mani-
folds C∞(K,M),C∞(L,M) are canonical (C∞(L,K ) is automatically a canon-
ical manifold as L admits a local addition). Then the composition map

Comp: C∞(K,M) × C∞(L,K ) → C∞(L,M), ( f ,g) �→ f ◦ g

is smooth.

1 One can show that every paracompact strong Riemannian manifold (see Chapter 4), and thus
every finite-dimensional paracompact manifold, admits a local addition. Moreover, Lie groups
(see Chapter 3) admit local additions, C.2.
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Proof By the exponential law for canonical manifolds, Comp is smooth if
and only if the adjoint map

Comp∧ : C∞(K,M) × C∞(L,K ) × L → M, ( f ,g, l) �→ f (g(l))

is smooth. However, this shows that Comp∧( f ,g, l) = ev( f ,ev(g, l)) and since
the evaluation mappings are smooth for canonical manifolds, also the adjoint
map and thus the composition are smooth. �

We have already seen that certain properties ‘lift to the manifold of
mappings’. For example, if f : M → N is smooth, the pushforward
f∗ : C∞(K,M) → C∞(K,N ), g �→ f ◦ g is smooth. Another example of this
is the following result whose proof is remarkably involved and technical (we
omit the proof here and pose it as Exercise 2.3.7).

2.24 Lemma (Stacey–Roberts Lemma (Amiri and Schmeding, 2019, Lemma
2.4)) Let p : M → N be a submersion between finite-dimensional mani-
folds. Endowing the function spaces with their canonical manifold structure,
the pushforward p∗ : C∞(K,M) → C∞(K,N ) becomes a submersion.

In the following chapters, we will study other structures from differential
geometry which can be lifted from finite dimensions to spaces of differentiable
functions. For Lie groups this leads to the so-called current groups (whose
most prominent examples are the loop groups). In the context of Riemannian
geometry, the lifting procedure gives rise to the L2-metric and more generally
to the Sobolev type Riemannian metrics on function spaces. Some examples
of Sobolev type metrics will be discussed in §5.1 and Chapter 7.

Exercises

2.3.1 Let h : L → K be a smooth map. Assume that C∞(K,M) and
C∞(L,M) are canonical manifolds.

(a) Show that the pullback h∗ : C∞(K,M) → C∞(L,M), f �→ f ◦ h
is smooth.

(b) Assume that K,L are compact and M admits a local addition.
Then we identify TC∞(K,M) � C∞(K,T M) (see C.12). Show
that this identifies T (h∗) with h∗ : C∞(K,T M) → C∞(L,T M).

2.3.2 Let K be a compact manifold and O ⊆◦ E in a locally convex space.
Prove that C∞(K,O) ⊆◦ C∞(K,E) (Proposition 2.4) is a canonical
manifold.
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2.3.3 Let M be a finite-dimensional manifold and K be a compact mani-
fold. Endow C∞(K,M) with the canonical manifold structure from
Appendix C.

(a) Show that for x ∈ K the point evaluation evx : C∞(K,M) → M ,
γ �→ γ(x) is a submersion.2

(b) Deduce that the set S(x, y) � { f ∈ C∞(K,M) | f (x) = y} for
some fixed x ∈ K , y ∈ M is a split submanifold of
C∞(K,M).

(c) Is the set
⋂

1≤i≤n S(xi , yi ) also a submanifold of C∞(K,M) if
we pick points xi ∈ K , yi ∈ M for 1 ≤ i ≤ n and
n ∈ N?

2.3.4 Consider a compact manifold K and M a manifold with a local ad-
dition. We endow C∞(K,M) with the canonical manifold structure
induced by the local addition; see Appendix C.3. Compute the tan-
gent map of the evaluation map

ev: C∞(K,M) × K → M, (ϕ,m) �→ ϕ(m).

Hint: Apply the rule on partial differentials, Exercise 1.6.3. To com-
pute the derivative for the variable in C∞(K,M), exploit the fact that
TC∞(K,M) � C∞(K,T M); see C.12. After choosing a smooth curve
c : ] − ε,ε[→ C∞(K,M), apply the exponential law to carry out the
computation.

2.3.5 Assume that K,L are compact and M admits a local addition. Com-
pute a formula for the tangent map of the smooth map (see Proposi-
tion 2.23)

Comp: C∞(L,M) × C∞(K,L) → C∞(K,M), (g, f ) �→ g ◦ f .

2.3.6 Use the identification TC∞(M,N ) � [t �→ c] �→ (x �→ ∂
∂t c∧(t, x)) ∈

C∞(M,T N ) to establish the commutativity of the diagram (2.6).

2.3.7 Let K be a compact manifold and p : M → N a submersion between
finite-dimensional paracompact manifolds. Establish the Stacey–
Roberts Lemma by showing that the pushforward p∗ : C∞(K,M) →
C∞(K,N ) becomes a submersion.
Hint: This is an involved exercise in finite-dimensional geometry
which should only be attempted if one is familiar with Riemannian
exponential maps, parallel transport and horizontal distributions. The

2 It is also possible to prove that the evaluation map ev: C∞ (K, M ) × K → M , (γ, x) �→ γ(x)
is a submersion; see Schmeding and Wockel (2016, Corollary 2.9).
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idea is to construct a horizontal distribution H together with local
additions ηM , ηN (constructed from suitable Riemannian exponen-
tial maps) such that the following diagram commutes:

T M = V ⊕ H ΩM X

T N ΩN M.

0⊕T p |H

⊇
ηM

p

⊇
ηN

Using these local additions, the canonical charts of the manifold of
mappings become submersion charts.
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