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REGULAR, COMMUTATIVE, MAXIMAL 
SEMIGROUPS OF QUOTIENTS 

BY 

JURGEN ROMPKE 

1. Introduction. A well-known theorem which goes back to R. E. Johnson 
[4], asserts that if R is a ring then Q(R), its maximal ring of quotients is regular 
(in the sense of v. Neumann) if and only if the singular ideal of R vanishes. In 
the theory of semigroups a natural question is therefore the following: Do there 
exist properties which characterize those semigroups whose maximal semigroups 
of quotients are regular? Partial answers to this question have been given in [3], 
[7] and [8]. In this paper we completely solve the commutative case, i.e. we give 
necessary and sufficient conditions for a commutative semigroup S in order that 
Q(S), the maximal semigroup of quotients, is regular. These conditions reflect 
very closely the property of being semiprime, which in the theory of commutative 
rings characterizes those rings which have a regular ring of quotients. 

2. Preliminaries. All semigroups considered in this paper are commutative: 
they are not required to have a zero or an identity. We briefly sketch the con­
struction of the maximal semigroups of quotients; all details and further properties 
are found in [1] or [6]. 

Let S be a semigroup. An ideal D in S is said to be dense if and only if for s, 
t e S the equations sd=td for all de D imply s=t. With D± and D2 the ideals 
D±D2 and Dx n D2 are dense, as well as any ideal containing a dense ideal. The 
semigroup S is called reductive if it contains at least one dense ideal. 

For each dense ideal D in S, we denote with Hoi%(2), S) the set of all S-
homomorphisms from D into S, i.e. all those maps / : D^~S satisfying /(ds)= 
f(d)s for all de D and all s e S. Each such/:D->S is called a fraction. For a 
reductive semigroup S denote with H(S) the union of all Hon%(Z>, S), D a dense 
ideal. H(S) is a semigroup by composing f^. D±-^S and f2:D2-+S in the following 
way: fxf2:D1D2-^S by f1f2(d1d2)=f1(d1)f2(d2). Q(S) the maximal semigroup of 
quotients is H(S) modulo the congruence which identifies two fractions if and only 
if they agree on some dense ideal. 

To each element s e S there corresponds the fraction s:S-+S defined by s(x)=sx. 
The map which associates with each s e S the congruence class containing s, is 
an embedding of S into Q{S). 

We shall largely be concerned with separative semigroups, i.e. those semigroups 
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where the equation x2=xy=y2 implies x=y. Let us shortly recall their structure 
(see [2, ch. 4.3] for more details): Each separative semigroup S is a semilattice of 
cancellative, archimedean semigroups, i.e. S= \JaeY Sa, where the union is dis­
joint, 7 i s a (lower) semilattice, and SaSp^SaAp. Each Sa, a e F, is a cancellative 
subsemigroup of Sand each Sa is archimedean, i.e. each element divides some power 
of every other element. 

Each separative semigroup is reductive; this we see as follows: assume sx=tx 
for all x e S. Then we have in particular s2=ts and st=t2 and therefore s=t; 
so S is dense in itself. 

We need one last definition : we call a semigroup S regular if and only if to each 
element s e S there exists s' e S such that ss's=s and s'ss'=s'. 

3. Some lemmata. If S is reductive and Q(S) is regular, then Q(S) is a semi-
lattice of groups. Since S can always be embedded into Q(S), we have S necessarily 
separative. Therefore we want to describe in this section how fractions act in 
separative semigroups. In the following lemmata, let S= \JaeY $* t>e a separative 
semigroup with archimedean components Sa and tetf:D-+S be a fraction. 

LEMMA 1. S satisfies the following cancellation law: 
If anb—ancfor some natural number n then ab=ac. 

Proof. We assume that n>\. Then 

(ab)n = anbn = anb • bn~x = anc • bn~x = ac^ab)71'1 

(ac)n = ancn = anc • c"-1 = anb • c*"1 = abiac)"-1 

The equality follows now from [3, Cor. 4.15], q.e.d. 

LEMMA 2. If s e D2 n Sa and iff(s) e Sp then /5<a. 

Proof. Since s e D2, we have/[/(j)] well defined. Letf[f(s)] e SY then 

s-flf(s)]=m-f(s)eSjAanSfi 

Hence y A oc=/? or /?<oc, q.e.d. 

LEMMA 3. IfseD2C\Sa andf{s) e Sp thenf(D2 n SJ^Sfi. 

Proof. For « > 1 we have 

[f(sn)f = / [ / ( S
2 " ) ] = s2"-2/[/(s2)] 

Hence f(sn) e Sp for all natural numbers n. Now let a e D2 O Sx be arbitrary. 
Since Sa is archimedean there exists x e Sx such that ox=,sm for some m e N . 
ïff(à) e S7, then we know from lemma 1 that y < « . Hence 

f(ax) = /( f l)x = f(sm) e SyAa n S , = S , n S , 

Therefore y=j8, q.e.d. 

LEMMA 4. 7/y(Z)2) n 5 ^ 0 thenf(D* n S J s S , . 
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Proof. Let aeD2 and f(a) e Sa. By lemma 2 we have f(a2)=af(a) e D2 n Sa. 
Therefore/[^(a)]= [/(a)]2 6 »Sa and the rest follows from lemma 3, q.e.d. 

REMARK. The restriction of D2 rather than D appearing in the lemmata cannot 
be removed : Consider for example F the free abelian semigroup on the generators 
x andy. Then since Fis cancellative, every ideal is dense, in particular (x) the prin­
cipal ideal generated by x. Define / : (x)->S by f(x)=y. Then f(x) G Sfi9 with 
jŜ Çoc, since the archimedean subsemigroup containing y is {yn \ n e N}. 

4. The main theorem. We are now ready to state and prove the main theorem 
of this paper. 

THEOREM 1. For a (commutative) semigroup S the following are equivalent 
statements: 

(1) S is reductive and Q(S) is regular. 
(2) S is separative and for a G S the ideal T(a)={s G S \ there exists b GaS such 

that bt=stfor all t G aS) is dense. 
(3) S is separative, S= \JaeY S*> and to every a G S, a G Sa say, there exists 

a dense ideal D[a] such that for all x G D[a], x G SÇ say, there exists w G 5aA^ 
such that xa=wa. 

Before proving this theorem some remarks seem appropriate: 

REMARK 1. S separative does not imply that Q(S) is regular as one sees from the 
following example: Let S=S0 u Sl9 where S0={an

 | « G N } , 5'1={6n | n G N}, 
both copies of the infinite cyclic semigroup. Define an-bm=an, i.e. SQS^SQ. 

Then the fraction a:S-+S, defined by a(s)=as, cannot have a regular inverse: 
Suppose âfâ(d)—â(d) for a l l - i n some dense ideal D. Since each dense ideal must 
contain some elements of Sx we have for some m G N : 

a2f(bm) = âfâ(bm) = â(bm) = a 

But this equation is impossible whether f(bm) G S0 or f(bm) G SV SO Q(S) is not 
regular. 

REMARK 2. If S is the multiplicative semigroup of a (commutative) ring R, 
we have S separative if and only if R is semiprime, a property which is equivalent 
to having a regular quotient ring [5, §2.4]. The condition that V(a) has to be 
dense, corresponds to the fact that in a semiprime ring all ideals of the form 
K-\-&rm(K), K any ideal, are dense. If again S is the multiplicative semigroup of 
the ring R, then we can express T(a)=aR+3,nn(a). It is however not true that VI 
(analogously defined as T(a)) is dense for every ideal / i n a semigroup S. 

REMARK 3. If S is a semilattice of groups, i.e. S is regular already, then T(a) 
is always dense, and we get (for the commutative case) the statements already 
proven in [7]. 
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Proof of theorem 1. 

(1)=>(2) : If Q(S) is regular, then a : S-^Shas a regular inverse/. So on some dense 
ideal D we have âfâ(d)=â(d), for all de D. We show that D ç T O ) , which then 
makes Y (a) dense. For de D we have af(d)a=da. Multiplying with .yeSwe get 
af(d) - as=d- as. This means we can simulate the multiplication of d with elements 
of aS by af(d), and element in aS, i.e. D ^ r ( a ) . That £ is separative under the 
assumption we have seen earlier. 

(2)=>(3): Put D[a] = T(a) which is dense. Let xe D[a] = T(a) be arbitrary. 
Then there exists w eaS such that x • as=w • as for all s e S. Hence xa2=wa2 

and by lemma 1 we have xa=wa. If a e Sa, x e Sç and w e Sp, then we have to 
show that (3=a A £. Since w e a S we get jS<a. We know that xaeSaAç and 
wa G SpAa=Sp. Hence a A f=/?. 

(3)=>(1): We shall construct for a fraction / : D-+S a regular inverse g:G-+Sy 

such t h a t / and fgf agree on some dense ideal. 
First of all we define 

(ker(/))* = {s G S \ sa = sb for all (A, 6) G ker(/)} 

Clearly (ker(/))* is an ideal. It is non-empty since f(D)^ (ker(/))*. Next we show 
that/when restricted to D n (ker(/))*ismonomorphic(notethatD O (ker( /))*^ 
0 since Df(D)^D n / ( D ) c i ) n (ker(/))*): Assume that f(d^=f(d2) with 
rfl5 d2e D C\ (ker(/))*. Then d1d2=d1d1 since ^ G (ker(/))* and d2d2=d2d1 

since J2
 G (ker(/))*. Now d1=d1d2=d2 and since 5 is separative we get dx=d2. 

Denote from now on E=D n (ker(/))*. Let g' :f(E)-+E be the inverse mapping 
of/1 £. g' is clearly an S-homomorphism. We shall show later that g' can be ex­
tended to a fraction g:G->S. 

We claim next that f^1f(E)={s e D \f(s) ef(E)} is a dense ideal. Let us therefore 
assume that xs=ys for all s ef~]f(E) and that moreover x,y e D3, a dense ideal. 
If we can show that these equations imply x=y, then, since Dz is dense, it follows 
t ha t / -y (£ ) is dense. If then xeD3, xe S f say, then/(jc) G D2 and/(x) ef^fifi). 
By our hypothesis there exists for/(x) , / (x) G Sa say, a dense ideal D[f(x)] such 
that for Û?GZ)[/ (X)] , deSô say, there exists w with dx -f(x)=w -f(x). Since 
x G D 3 ç D2 we have by lemma 2 that a < f. Clearly dx e D[f(x)] n S^Aô and hence 
w can be chosen in SçAôAa=SaAô. By lemma 4 we have/[/(Jx)] G SaAÔ since f(dx)= 
df(x) G Z)2 n 5aA5. Since 5aA5 is archimedean, there exists # e SaAô, m e N , such 
that f[f(dx)] -a=wm. Now ww ef(E) since/[/(*)] G / ( £ ) which is an ideal. The 
equation dx •f(dx)=w -f(dx) implies: 

f[(dxT+1] = (dxrf(dx) = wmf(dx) ef(E) 

or (dx)m+1 ef-yiE). 
We assumed that x and y act the same on f~]f(E), and therefore we get 

x(dx)m+1=y(dx)m+1 or by lemma 1 : x2d=xyd. Since this equation can be derived 
for every de D[f(x)]y a dense ideal, we must have x2=xy. Similarly one shows 
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J 2 = J X , and since S is separative we may conclude x=y and hence f^fQE) is 
dense. 

So far we have established that fg'f and / agree on the dense ideal /-y(2J). 
It remains to extendg' to a fraction g:G^~Sin such a way thatfgf and/agree on 

Define the ideal G as follows : 

G = r ( / (£ ) ) = {s G 5 I there exists b e/(JE) such that st = bt for all t e/(JE)} 

Clearly G contains/(is). We note that the element b ef(E) on which s e G founds 
its existence is unique : let st=bt=ct for b, c ef(E) and all t £f{E). Then in particu­
lar sb=b2=cb and sc=bc=c2. Hence b=c and we denote this particular element 
by bs. On G we now define g : G— Ŝ by g(y)=g'(ôs). The uniqueness of bs makes first 
of all g an extension of g' and secondly makes g into an S-homomorphism : If 
st=b$ • / then xst=xbs • / and so bxs=xbs. Now 

g(«) = **(* J = g ' (M) = * ' ( * > = g(s)x 

and g is an S-homomorphism. 
By showing that G is dense we complete the proof. Let xs=ys for all s e G. 

As before, it suffices to take x and y from some dense ideal. In this case we take 
x, y ef^ftE) n D2. As before to/(x) exists a dense ideal D[f(x)] such that for 
d± e D[f(x)] we have 

d1xf{d1x) = wfidtx) 

By lemma 2 and since x e D2, we can choose w to be in the same archimedean 
component a s / ^ x ) . For arbitrary d2 e D2 we have 

d±d2 ' f{dxd2x) = d2w -f(d1d2x) 

with d2w a n d / ^ i ^ x ) still in the same archimedean component, say Sa. Then we 
have Sa C\f(D2)y£ 0 and by lemma 4 we conclude that/(J2w) e S^ as well. Since 
Sa is cancellative we deduce from 

/ ( dxd2x)f( dx d2x) = f{d2w)f{d1d2x) 

t h a t / ^ ^ x ^ / O ^ w ) ; and then also that 

f[(dxd2x)n] = f[(d2w)n] for all n e N . 

Since Sa is archimedean, there exist a e Sa and m G N such that f(dxd2x) • a = 
(rf2w)m. S ince / (^ 2 x) e / (£ ) we now have (d2w)m ef(E). 

We next show that {dxd2x)m e G: Let t ef(E) be arbitrary. Then 

{dxd2xTt = ( r f^ rMO = /[tfA*Hg'(0 

=/[(^r]g'(o = (^r/g,(o 
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Since (d2w)m ef(E) we have (d^x^eG. Hence x(d1d^c)m=y(d1d2pc)m and by 
lemma 1 again x2d1d2=xyd1d2. Using the denseness of D[f(x)] and D2 we conclude 
that x2=xy. Similar y2=yx and since S is separative, we get x=y. Therefore G 
is dense, q.e.d. 
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