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1

Introduction. A surface S of constant width is the
boundary of a convex set K of constant width in euclidean
3-dimensional space E3. (See [1] pp-127-139.)

Our first result concerns the interdependence of five
properties which a curve on such a surface may possess. Let
S be a surface of constant width D > 0 which satisfies the
smoothness condition that it be a 2-dimensional submaniicid
of E3 of class C%. We use the symbols P,E,G,L,*, A to

refer to properties of a curve C on S as follows:

Property P: C is planar, i.e. C 1is the intersection
with S of some plane M in E3 which passes through an
interior point of K. Since M is not the unique tangent plarne
to S at any point of C, C 1is a simple closed curve of class c?

Property E: C 1is the locus of points of S where the
outwardly directed surface normal vector [ satisfies an
equation N -u =0, for some fixed unit vector yg. We claim
that C is a simple closed curve, which we shall call an
equator of S. For, consider the projection of S onto a plane
perpendicular to 4. C isthe inverse image of the continuous
curve Cy which is the boundary of the image of S. Now a
surface S of constant width cannot contain any straight line
segments, since for each pair of points of S (or indeed of the
corresponding convex body K) there is contained in K a
""spindle' formed by intersecting all balls of radius D containing
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the two points ([1] p. 128). Hence each point of C; is the image
of exactly one point of C. Furthermore, by the same property
of S, the natural map from Cy to C is continuous, which
proves that C is a simple closed curve.

Property G: C 1is a geodesic, which we can characterize
as a curve of class C% on S with t' parallel to N, where ¢t
is the unit tangent vector to C and ' denotes differentiation
with respect to arc-length s. Curves with property G we
suppose to be already prolonged indefinitely in both directions
or to be closed. Any segment of a geodesic can be so prolonged
in the case of a compact surface of class C2 in E3 such as we
have before us. (See [3], and [4] p. 133.)

Property Li: C 1is a line of curvature. We characterize
these as being curves of class C' having N' parallelto t at
>y -~
each point.

Property *: C is a self-antipodal curve. Let us first
define what we mean by the antipodal curve to a given one. We
take any curve C of class ck (k< 2) on S, represented in
terms of arc-length by a ck_function r(s) defined on (-, x)
with values in S. Composing r(s) with the antipodal mapping
L ~r* of S (where r*=r-DN) which is of class cl, we get
r(s)* which represents a curve of class C™, m =min {k, 1},
on S. This antipodal curve to C can be reparametrized in
terms of its arc-length s*, and s#* =f(s) is of class C™.
Now for a self-antipodal curve, we require that we can choose
a function £(s) so that r(s)* =r(f(s)) for all real s. By
changing the sense of C if necessary, we can arrange for
f(s) > s. A self-antipodal curve is closed, for

£(s) =x(f(s)* = £(f(i(s)) ,

and hence f(f(s))=s + ¢, where f >0 is a constant. Thus r
is periodic and C 1is closed.

Property A: C has all of the properties P,E,G, L, *

Clearly C will then be a s1mp1e closed curve of class C% on S,

and the plane of C will contain the surface normal vectors N
along C.
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THEOREMI: Ifacurve C ona CZ surface of constant
width has any pair of the properties P,E,G, L, *, except for the
pairs (P, L), (E,*), (L,*), then it has A.

We shall show in section 1 after the proof of theorem I
that for our class of surfaces S, exclusion of the pairs (P, L),
(E, *), (L, *) is really necessary.

Our second result concerns the inner metric on a surface
S of constant width with no smoothness restrictions. The inner
distance p (p,q) between two points p and q of S is the
i

infimum of the lengths of rectifiable curves lyingin S and
connecting p and q. The maximum of the inner distances
taken over all pairs of points of S is the inner diameter D,
of S. (See [2] p.73 ff.) '

THEOREM II: Let S be a surface of constant width D
in E3. Then

(a) if S is a surface of revolution
D. = wD/2,
i

{b) if S is not a surface of revolution

wD/3 < Di < wD/2 .
The methods of proof for theorems I and II are elementary.
1. Proof of theorem I. We do not always mention the

differentiability of C 1in this proof, but it is easy to check that

at each stage the differentiability is enough for the operations
carried out.

1.) (P,*) = A: Let u be perpendicular to the plane of C.
By *, for each point on C given by a position vector I, the

oint - DN is on C, so that 1~\£ is in the plane of C, and

g

x
0

3z

‘ua =
~

Therefore E holds. N is perpendicular to t and in a fixed
plane with t, so t' is parallelto N and N' to t, giving
G, L, and hence A.
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2.) (P,E) > A, since E = *.

0 for some unit vector a. From

3.) (P,G) =2 A: Pt -us
=0, hence E and A hold.

G, it follows that N- u

+.) (E,G) ® A: Let u be a unit vector such that N-u
Then by G (r-u)'' =t'-

+

0.

r = uz0; and therefore r-uzas+b

(a,b constants). But by E, r 1is periodic, so a =0 and
r-uzb, i.e. P holds and hence A.

5.) (E,L) = A: N-5‘§0=)§4;"350, hencebyLL'gso,

r-u =zconst. Therefore P holds and hence A.

6.) (G,L)= A: NXt' =N' Xt=0 so N Xt=u for some unit
vector u. Therefore E, P, and A hold.

7.) (G, *) =@ A: (This part is more difficult than the others.)
If r is a point on C, then the principal normal line to C at
r is, by G, the same as the surface normal line at r ;
similarly at r*. But the same line is the surface normal at
r and r* ([1], p.127). C is therefore a Bertrand curve
with respect to itself as mate.

Let t*(s) =t(f(s)), ~*(s) = 4(£(s)), n*(s) =n(f(s)) be
respectively the unit tangent vector, curvature, principal
normal vector to C, where f is the function used in defining
property *. Now t' and t*' =f'~*n* are, by G, bothin
the direction of N. Hence t'-t*=t-t*' =0. This leads to
the well-known result concerning Bertrand curves (E‘- L*)' =0,
i.e. t and t* remain at a fixed angle o from each other,
0<ac<am, t*¥=cosat+ sinoz'ﬁb”.

We conclude the proof of 7.) by splitting it into two cases:

Case a.) a#w: Let R be the position vector of a fixed point
on C. We wish to show

(1) [(5—1‘) “(t+t¥)] <0 forall r on C.
Assuming (1) is proved, we use the fact that (R-r) - (t+t*) is
periodic and vanishes for r =R to get (5—5) . (Ej-t*) =0.
Since this holds for arbitrary E{_‘ on C, and since a # m
implies t + t* #0, we see that C is planar. Butthen a =1,

a contradiction showing that case a.) cannot occur.
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Proof of (1): We use the Serret-Frenet formulas ([4] p. 14)
on r*¥=r + Dn to get

(2) fr t* = t+ D(tb - «t) .
. . i . .
Remark: R(s) =- N(s) is of class C, since N isa

class C! function on S and r(s) is of class c? by G.
Furthermore, the binormal vector b(s) =t(s) X n(s) to C is
also cl.

Taking the scalar product of (2) with t and 9_ successively,

we get
(3) f' cosa = 1-Dx
(4) f' sine = TD.

By the smoothness condition on S 1-D& < 0. For «,
being the curvature of a geodesic, is a normal curvature of S
at r, which is at least equal to the lesser &« of the two

- a

principal curvatures at T. The sum R'a + Ra* of the corres-

ponding principal radii of curvature at r and r* is D, and
R, Ra*>0’ so 0<R_<D and «>D 1

So we get cos a< 0 from (3), and

(5) T = tan a (D-i - K).

Differentiating the scalar product in (1) we obtain for the
left member

(R-r)'n [(1{+cosa)x-sinar]-1-cosa.
Since R lies on S, Oﬁ(}:{‘-s)-ns D, and so (1) will hold if
. -1
D[(1 + cosa)x - sinatana (D -«)]-1-cosa
i
(

=(1 +cosa)(cose)  (Dx-1)<0,

which is indeed the case!
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Case b.) a=m, tx=-t: Let R be fixed on C. We calculate
easily that

[(R-x)-t X (zx-z*)]' = 0, hence

" (R-r) -t X(r-r*) = 0.

M~ ~

Since R 1is arbitrary on C, P holds and hence A also.
This completes the proof of theorem I.

Let us now turn our attention to the exceptional cases in
theorem I.

8.) (P,L): If S is a surface of revolution, all of the parallels
are lines of curvature and planar, but only the one of largest
diameter will have A.

9.) (E,*): There are equators which are non-planar on every
surface of constant width except a sphere, by a theorem of
Blaschke ([1] p. 142).

10.) (L, *): On any part of a surface of constant width which is
spherical, any c! curve has L, anditis easy to construct
curves with (L, *) but not A, since the antipodal curve to any
curve with 1. also has L.

2. Proof of theorem II. If p. (p,q)=D
1

., consider a
1

plane M through p and q. The circumference of the
perpendicular projection of S on M is wD by Barbier's
principle, so the curve MMl S contains p and q and has
Iength< wD. (See [1] p.47.) This implies Dif_ wD/2.

If Di=1'rD/2, then every plane M through p and g must

intersect S in an equator. Consider a plane Q perpendicular
to the line pg and intersecting pq in c¢. The curve QN S
has at each one of its points d a support line in Q which is
perpendicular to cd. Hence Q NS must be a circle with
centre c, i.e. S is a surface of revolution with axis pq.

(To see that QN S is a circle, let n rays radiate from c¢ at
equal angles in Q and observe how the distances along these
rays to QN S can be estimated. Then let n - ©.)

20

https://doi.org/10.4153/CMB-1966-002-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-002-2

To show that D, > wD/3, we need only recall that if p and
i =

q are any antipodal points of S, then the '"spindle'’ formed by
intersecting all balls of radius D containing p and q 1is con-
tained in K.

If equality were attained in Di > = D/3, then we would

have for each pair of antipodal points p,q of S a plane M
through p and g suchthat Ml S would be a Reuleaux
triangle of width D with vertices p, q, r. But it is easy to
see that then there can be no such triangle with two of its
vertices being r and the midpoint of the side p,g of the
original Reuleaux triangle. This is a contradiction. Thus
Di > wD/3.

This completes the proof of theorem II.

3. Questions.
1.) Can the inequality D > wD/3 be improved?

i

2.) Ome can show (by putting 'bumps" and antipodal 'flattenings"
on a sphere) that there are surfaces of constant width which have
non-closed geodesics. Is the sphere the only surface of constant
width all of whose geodesics are closed?

3.) Using the inequality

(r-u)' =.~'(n-u.z-D.1 N-u

one can show that every geodesic ray cuts every equator N-.u =0
ona C2 surface of constant width. In fact, given any planar
equator, any geodesic segment of length D must cut that

equator. Are there stronger results than the above?

4.) Is there a simple "inner' criterion that a surface be of
constant width?
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