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We report on experiments of the quasi-static growth and detachment of air bubbles in
water from a superhydrophobic substrate, overcoming the maximum size limitation of
conventional injectors due to the Rayleigh–Taylor instability. The observations are in good
agreement with a hydrostatic model, demonstrating that bubbles grow through a sequence
of quasi-equilibrium states. Our experiments corroborate the theoretical prediction of a
maximum bubble volume of approximately 6.04π and a critical base radius of 3.22, both
numbers in units of the capillary length (Michael & Williams, Proc. R. Soc. Lond. A.
vol. 351, 1976, pp. 117–127). This maximum is also reached when bubbles grow in an
unbounded, ideally non-wetting surface, establishing the ultimate size limit of quasi-static
bubble formation.
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1. Introduction

The growth and release of gas bubbles in liquids is a key process in nature (Sparks
1978; McGinnis et al. 2006; Gonnermann & Manga 2007; Papadopoulou et al. 2013)
and technology (Rodríguez-Rodríguez et al. 2015; Anna 2016). Although most recent
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Figure 1. Sketch showing the definition of the contact angle, as well as the advancing (adv) and receding (rec)
movement of the contact line in the cases of (a) a drop, and (b) a bubble. (c) Zoomed area indicated in red in
(b) displaying the Cassie or fakir state in which the liquid does not penetrate into the irregular roughness of the
surface.

studies have focused on microbubbles due to their promising biomedical applications,
there are still relevant open problems at the capillary length scale, where buoyancy and
capillary forces are of comparable importance. These millimetre-sized bubbles appear in
many natural processes and are of interest to industry, e.g. in water treatment, aeration
processes in bioreactors and chemical reactors, mineral purification by flotation techniques
or the removal of dissolved gas. Several techniques have been developed to produce large
bubbles, such as gas trapping and release (Chu et al. 2019), or the injection of large gas
flow rates leading to bubble coalescence (Higuera 2005; Higuera & Medina 2006), but
they lack precise control of the generated bubble size.

The injection of gas from a submerged orifice or nozzle into a quiescent liquid
represents the easiest method to generate bubbles in a controlled way, and has been
extensively studied (Longuet-Higgins, Kerman & Lunde 1991; Og̃uz & Prosperetti 1993;
Bolaños-Jiménez et al. 2008). In the quasi-static regime, the volume of the detached
bubble, V̄f , is determined by a balance between the buoyancy force, O(ρgV̄f ), and the
surface tension force, O(σ ā), providing V̄f ∼ (σ ā)/(ρg) ∼ l2σ ā, where lσ = (σ/ρg)1/2 is
the capillary length, and ā is the injector radius. Here, ρ, σ and g are the liquid density,
the liquid–gas surface tension coefficient and the gravitational acceleration, respectively.
Throughout the article, barred symbols denote dimensional variables. Note that, in the
common case of air bubble injection in water, which is the only one considered in the
present study, the capillary length lσ ≈ 2.71 mm. The maximum bubble volume achieved
with this technique is limited by the Rayleigh–Taylor instability, whose onset occurs for
a critical injector radius of āc = 1.84 lσ (Plateau 1873; Maxwell 1876). In this case the
contact line is pinned to the injector rim, and the quasi-static shape of the bubble can be
determined as a function of its volume using hydrostatics (Longuet-Higgins et al. 1991;
Chesters 1978).

The volume of the released bubble is affected by the wettability of the solid, measured
by the static contact angle θ , which is defined from the liquid side, i.e. between the
solid/liquid contact area and the contact line (Bonn et al. 2009), as depicted in figure 1
for both a drop and a bubble. The advancing (receding) movement of the contact line
is defined when the solid/liquid contact surface increases (decreases). Thus, the contact
angle when the contact line advances (recedes) is known as advancing (receding) contact
angle, θa (θr). Consequently, in the case of a bubble (figure 1b), the receding contact angle,
θr is defined when the bubble base expands, while the advancing one, θa, corresponds
to the retraction of the contact line towards the air injection orifice. Since the contact
line is pinned whenever θr < θ < θa (De Gennes 1985), if θ becomes equal to or lower
than its receding value, the bubble would spread over the surface, increasing V̄f with
respect to the case of a pinned contact line. When the bubble base expands (Byakova et al.

912 A25-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
98

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1098


Giant quasi-static bubbles on superhydrophobic substrates

2003), the shape can be computed assuming a constant contact angle during the process
(Gerlach et al. 2005; Higuera 2005). These bubbling conditions have been investigated
both experimentally (Lin, Banerji & Yasuda 1994; Gnyloskurenko et al. 2003; Corchero,
Medina & Higuera 2006; Vafaei & Wen 2010; Mirsandi et al. 2020), and theoretically
(Byakova et al. 2003; Gharedaghi et al. 2017), demonstrating that V̄f is substantially
increased using hydrophobic surfaces with 90◦ < θ � 120◦.

Additionally, superhydrophobic surfaces (Feng et al. 2002; Quéré 2005, 2008) realise
extreme non-wetting states with θ � 150◦ due to their ability to entrap air at the scale of
their roughness. These air micro-layers, also known as plastrons (Thorpe 1950; Flynn &
Bush 2008), can be found in nature, with the self-cleaning property of lotus leaves as the
prominent example (Marmur 2004; Cheng & Rodak 2005; Wang et al. 2009). Although
there are several bubble formation experiments conducted with superhydrophobic surfaces
(Ling, Lu & Ng 2011; Huynh et al. 2015), a systematic experimental and theoretical
account of the maximum bubble base radius and its corresponding volume is still lacking,
and constitutes the main objective of the present paper, where we experimentally perform
the controlled inflation of a plastron until its stability limit is reached.

The paper is organised as follows. In § 2 the experimental set-up and the measurement
techniques are presented, followed by a brief explanation of the quasi-static model in § 3.
The main results of the paper are reported in § 4, and some concluding remarks are finally
presented in § 5.

2. Experiments

In our experiments we injected air quasi-statically into still water at a constant flow
rate Q̄ � Q̄c, where Q̄c = π(16σ 5R̄5/3ρ5g2)1/6 is the critical flow rate below which
quasi-static conditions prevail (Og̃uz & Prosperetti 1993), and R̄ is the bubble base
radius. For completeness, let us briefly summarise the arguments used by Og̃uz &
Prosperetti (1993) to deduce the previous equation for Q̄c. Note first that, under purely
hydrostatic conditions, Q̄ � Q̄c, the volume of the released bubble is determined, in a
first approximation, by equating the buoyancy and the surface tension forces, ρgV̄F =
2πσ R̄, where V̄F = 2πσ R̄/(ρg) is usually referred to as the Fritz volume. Under constant
flow rate injection conditions, the instantaneous bubble volume is V̄(t̄) = Q̄ t̄, where t̄
is the time, and the instantaneous vertical position of the bubble centroid measured
from the injector exit is z̄(t̄) = gt̄2/2 (for a detailed derivation, see Og̃uz & Prosperetti
(1993)). It is further assumed that, at the instant of bubble detachment t̄f , z̄(t̄f ) =
R̄f , where R̄f is the final bubble radius, whence t̄f = (2/g)1/2R̄1/2

f . Thus, the final

bubble volume is V̄f = Q̄ t̄f = Q̄(2/g)1/2R̄1/2
f ⇒ V̄f = Q̄(2/g)1/2[3V̄f /(4π)]1/6 ⇒ V̄f =

[6/(πg3)]1/5Q̄6/5, where a spherical bubble shape is assumed. Equating V̄f = V̄F for
Q̄ = Q̄c, the desired equation for Q̄c is finally deduced. In particular, the critical gas
flow rate associated with the smallest bubble base radius used in this work, R̄ = 4 mm,
is Q̄c = 413 ml min−1, a value much higher than the maximum gas flow rate injected in
the experiments, namely Q̄ = 10.5 ml min−1.

The air was supplied from a pressurised line through an orifice of radius ā = 0.5 mm
drilled in a poly(methyl methacrylate) (PMMA) plate. To ensure a constant air flow feeding
the bubble, a large pressure drop along the gas injection line was induced by means of a
long and thin capillary just upstream of the orifice (Og̃uz & Prosperetti 1993; Gordillo,
Sevilla & Martínez-Bazán 2007). Indeed, it was carefully verified that the bubble volume
increased linearly with time in all the cases reported hereinafter. The water free surface
level, approximately 10 cm above the orifice, and the pool cross-section, 10 × 10 cm2,
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Case Mode R̄s (mm) R θ (◦) Ve
f /π Vm

f /π

1 A 4.01 ± 0.06 1.48 ± 0.02 variable 2.62 ± 0.11 2.78
2 A 4.80 ± 0.03 1.77 ± 0.01 variable 3.74 ± 0.11 3.51
3 A 5.98 ± 0.06 2.21 ± 0.02 variable 4.50 ± 0.17 4.60
4 A 6.93 ± 0.06 2.55 ± 0.02 variable 5.45 ± 0.19 5.33
5 A 8.12 ± 0.06 2.99 ± 0.02 variable 6.05 ± 0.19 5.79
6 A 8.71 ± 0.06 3.21 ± 0.02 variable 6.08 ± 0.20 6.04
7 B 8.98 ± 0.06 variable ≈ 175 6.12 ± 0.21 5.98
8 B 9.55 ± 0.07 variable ≈ 175 6.23 ± 0.22 5.98
9 B 9.82 ± 0.06 variable ≈ 175 6.17 ± 0.20 5.98
10 B 11.24 ± 0.07 variable ≈ 175 6.22 ± 0.24 5.98

Table 1. Summary of the experimental cases, where Ve
f /π and Vm

f /π represent the experimental volume of
the released bubbles and that corresponding to the final equilibrium shape given by the model, respectively.
In mode A, R is prescribed, with R = Rs, while θ varies during the bubbling process. In mode B, the bubble
base changes while the contact angle is fixed. There, the value of θ ≈ 175◦ was established comparing the
experimental bubble shapes with the modelled ones.

were both large enough to avoid any influence of the oscillations of the upper free surface
and the walls, respectively. Finally, the gas flow rates used in all the experiments led
to very small bubbling frequencies of approximately 0.5 Hz, thus assuring a negligible
effect of the previously formed bubble on the reference one. The commercial product
NeverWet® was applied to produce a superhydrophobic coating by creating a hierarchical
texture and random multi-scale roughness (Quéré (2008), see figure 1c). In agreement
with the manufacturer’s fact sheet, a static contact angle θ = 166 ± 5◦, was measured by
gently depositing small single water droplets on the surface, as illustrated in figure 1(a),
corroborating the superhydrophobic properties of the coated surface. Given that the scale
of our measurements did not allow us to obtain the static contact angle at the scale of the
microscopic roughness (Bonn et al. 2009), the angle θ = 166 ± 5◦ measured with the drop
deposition method described above may be referred to as the macroscopic static contact
angle. However, it is important to point out that this angle is not the one that governs the
bubbling process under study, where the superhydrophobic surface is submerged in water,
forming an air plastron over the surface (Huynh et al. 2015). This situation is known as
a Cassie state, in which the liquid does not penetrate into the gaps of the rough surface,
since air gets trapped inside the surface cavities as a result of the formation of menisci over
a multitude of three-phase contact points (see figure 1c). Consequently, when the contact
line moves, it slips mostly over an air film rather than on a solid surface, and contact angles
of nearly 180◦ are found in this case. In addition, we tried to characterise the contact
angle hysteresis when the contact line is mobile, � θ = θa − θr, finding that � θ ≈ 0.
Thus, hysteresis effects can be neglected in the present work, and we will assume that
θ � θa � θr throughout the paper. This observation is in agreement with the low contact
angle hysteresis reported in previous studies of textured superhydrophobic surfaces in the
Cassie state (see for instance Cassie & Baxter 1944; Lafuma & Quéré 2003; Patankar
2003).

To control the bubble base expansion, the coating layer was applied over a circular zone
of radius R̄s � ā concentric with the orifice. The coating radius R̄s was varied using 10
different injectors, which were fabricated by depositing the coating on PMMA surfaces
with concentric masks whose radii varied from ≈4 to ≈11 mm in steps of 1 mm. Their
exact values, measured with image processing, are reported in table 1.
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Giant quasi-static bubbles on superhydrophobic substrates

Throughout the paper, the capillary length, lσ = √
σ/ρg, is used as the characteristic

length to non-dimensionalise the problem. Thus, the dimensionless bubble base radius is
R = R̄/lσ = √

Bo, where Bo = ρgR̄2/σ is the usual Bond number, and the dimensionless
bubble volume is V = V̄/l3σ . In addition, the constant injected flow rate, Q̄, is used to define
the dimensionless time as t = t̄ Q̄/l3σ . Since V̄ = Q̄t̄, the dimensionless time coincides with
the dimensionless instantaneous bubble volume, V = t. We recall here that barred symbols
denote dimensional variables, while their dimensionless counterparts are denoted without
bars. Table 1 summarises the main parameters of our experiments. Finally, note that all the
numbers reported in the paper were computed using ρ = 1000 kg m−3, g = 9.81 m s−2 and
σ = 0.072 N m−1.

Bubbling events were recorded with a high-speed camera (Photron SA1.1) operated
between 250 and 1000 frames per second. A LED lamp and a cold fibre light source were
used to obtain the bubble silhouette. Either a Sigma 105 mm microlens or an Edmund
VZM-450 lens was used to get spatial resolutions ranging from 6 to 20 μm pixel−1.
Reproducibility of the experiments was ensured by recording many bubble formation
cycles during different days, and the axisymmetry of the growing bubbles was visually
confirmed. The dimensionless volume of the forming bubble was thus computed as
Ve(t) = π/4

∫ xm
O D2(x, t) dx, where the superscript e indicates the experimental bubble

volume, xm is the maximum vertical coordinate, D(x, t) is the bubble diameter at each
vertical position. Hereinafter, the experimentally measured volume of the released bubble
after its detachment will be denoted Ve

f (see table 1). The values of R and Ve
f reported in

the table are average values obtained from at least 10 different experimental runs in each
case, with the corresponding error being the maximum between the standard deviation
and the uncertainty associated with the measurements of R and Ve

f . Although the gas flow
rate always accomplished the quasi-static condition, Q � Qc, it was varied in the different
experiments performed for each set, allowing us to ensure that Q had a negligible effect
on the results.

The experiments performed showed the existence of two different behaviours of the
contact line depending on the radius of the coated surface, hereinafter referred to as mode
A and mode B, respectively. On the one hand, in mode A, the contact line was observed
to be pinned at the rim of the coated surface, and the radius of the bubble base is equal
to that of the coated surface, R = Rs. Under these conditions, after the detachment of the
previous bubble, the base radius of the forming one reaches the edge of the coated surface
very quickly. Since θ depends on the instantaneous bubble shape, the contact angle varies
with time during the bubble formation process in mode A, namely θ = θ(t). Figure 2
shows a sequence of images of a bubble formation cycle of experimental case 5 (mode A),
together with the relevant parameters of the problem in (a,b). The bubbling process is
divided into three stages. In the first stage, once the previous bubble detaches, the injected
air spreads quickly over the coated surface until the contact line reaches its rim, where it
gets pinned (figure 2b). In the second stage, the bubble grows quasi-statically with a fixed
base radius R (figure 2b–e), so that the coated surface acts as a virtual nozzle of radius Rs.
In the third stage, the buoyancy force overcomes the surface tension force, and the bubble is
rapidly stretched in the vertical direction while the contact line retracts towards the orifice
(figure 2f –h), until the bubble finally pinches off. This final stage, taking place between the
last equilibrium state and the bubble detachment, is very short compared with the bubbling
time, with a relative duration of less than 4.5 % in the experimental case 5. On the other
hand, in mode B, which prevails for sufficiently large values of Rs (see table 1), the bubble
base does not reach the edge of the coated surface. Therefore, the contact line is not pinned
to the surface rim and moves freely along the substrate, providing a time varying bubble
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Figure 2. Quasi-static growth and dynamic detachment of an air bubble in still water, corresponding to
experimental case 5 in table 1. A constant air flow rate Q̄ = 10.5 ml min−1 is injected from a submerged orifice
of radius ā = 0.5 mm placed on a superhydrophobic coating of radius R̄s = 8.12 mm. The white meniscus
plotted in ( f ) is the quasi-static bubble of maximum volume when the contact line is pinned at the edge
of the orifice. The time of maximum theoretical static volume is 2.046 s, and the pinch-off time is 2.142 s.
Times are: (a) t̄ = 0.000 s; (b) t̄ = 0.500 s; (c) t̄ = 1.000 s; (d) t̄ = 1.500 s; (e) t̄ = 2.000 s; ( f ) t̄ = 2.124 s;
(g) t̄ = 2.132 s; (h) t̄ = 2.140 s.

base radius, R(t) < Rs, while the contact angle remains fixed. A noteworthy feature of
mode B is the loss of axisymmetry during the bubbling process, a phenomenon reported
also by Huynh et al. (2015) for air plastrons.

3. Theoretical model

The quasi-static and axisymmetric bubble growth in the second stage is modelled by
defining a cylindrical coordinate system (x, y) with origin at the bubble apex O, as depicted
in figure 2(e). The arclength s from the origin is used to locate a generic point in the
interface, with the angle α defined between the tangent at that point and the horizontal
direction, such that dx/ds = sin α and dy/ds = cos α. Assuming that the interface is
an equilibrium shape resulting from the balance of buoyancy and capillary forces, the
dimensionless Young–Laplace equation yields a pressure pB = p + (κ1 + κ2) inside the
bubble, where p = p0 + x is the liquid pressure, p0 is the pressure at O and κ1 = dα/ds
and κ2 = sin α/y are the principal curvatures. Thus, the bubble shape solves the equation
(Longuet-Higgins et al. 1991)

dα

ds
+ sin α

y
+ x = 2

Rc
, (3.1)

where Rc is the radius of curvature at the apex. The numerical integration of (3.1)
supplemented with suitable boundary conditions determines the bubble shape. The
arclength at the point lying on the substrate, sm, is obtained as part of the solution by
imposing either y(sm) = R if the contact line is pinned, or α(sm) = π − θ when the
contact angle is prescribed. In the former case, the only parameter of the problem is the
dimensionless base radius R, where the contact angle is obtained as part of the solution.
However, if the contact angle θ is fixed, the value of R is a function of the volume. In both
cases, (3.1) was numerically solved using the highly efficient and freely available Matlab®

package Chebfun (Driscoll, Hale & Trefethen 2014).
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Figure 3. (a) Comparison of the calculated (lines) and the experimental (symbols) bubble height as a function
of its volume for the experimental cases 2 (black) and 5 (blue), where R is fixed (mode A). (b) The same
for the experimental case 9 (green), with θ = 175◦ (thick solid line), and 170◦ ≤ θ ≤ 180◦ (coloured band).
(c) Dependence of the contact angle on the bubble volume for the experimental case 2. (d) Dependence
of the bubble base radius on the bubble volume for experimental case 9. (e–g) Theoretical bubble profiles
represented on top of the experimental images for the experimental cases 2, 5 and 9, respectively, obtained at
the maximum static volume V = Vf , indicated with red circles in (a,b). There, the last experimental point for
each case corresponds to the bubble pinch-off. Scale bars correspond to 5 mm. Note that, for clarity, not all the
experimental points have been plotted.

4. Results

Figures 3(a) and 3(b) show the dimensionless bubble height, h = xm, as a function of
the dimensionless volume, Vm/π = ∫ xm

0 y2 dx given by the model described in § 3, as
well as that obtained experimentally. It should be recalled here that, with our choice of
characteristic scales, the dimensionless bubble volume V is equal to the dimensionless
time t, as explained in § 2. In particular, figure 3(a) compares the results obtained
from the hydrostatic model with the experimental ones for cases 2 and 5 reported in
table 1, corresponding to mode A. In these cases the bubble grows with a contact line
pinned at the coating radius Rs, and the bubble base radius, R = Rs, is prescribed while
the contact angle θ , varies during the bubbling process. Initially, the height increases
linearly with the volume as h ≈ (2V/πR2), up to a maximum value Vm

f that depends
on R, corresponding to the last stable equilibrium shape predicted by hydrostatics. For
V > Vm

f the static equilibrium is broken and the third dynamic stage takes over, with
a fast increase of the experimental height and almost negligible volume variations. The
model correctly reproduces the experimental evolution for V ≤ Vm

f (second stage), but
cannot predict the dynamic bubble shapes for V > Vm

f due to the fact that the dynamic
pressure of the liquid flow induced by bubble growth is no longer negligible. In the
second stage, the theoretical bubble profiles describe the experimental interface very
accurately, as evidenced by figures 3(e) and 3( f ), which correspond to the maximum stable
volume for the experimental cases 2 and 5, respectively (see supplementary movies 1
and 2 available at https://doi.org/10.1017/jfm.2020.1098). It is interesting to note that the
computed evolution of θ(V), shown in figure 3(c) for the experimental case 2, is also in
fair agreement with the experiments. These results are in line with previous works on
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bubble formation in hydrophobic substrates (Gerlach et al. 2005; Corchero et al. 2006;
Gharedaghi et al. 2017; Mirsandi et al. 2020).

Bubble formation under mode B is different, in that the bubble base does not reach
the edge of the coated surface, and thus R varies during the bubbling process, while
the contact angle remains constant. The results corresponding to experimental case 9
are plotted in figure 3(b). In this case, although the contact angle could not be measured
accurately, our observations suggest that a film of air, or plastron, filled the microscopic
cavities generated by the surface roughness, and θ must then approach the limiting value
of an ideal superhydrophobic surface, i.e. θ ≈ 180◦ (Huynh et al. 2015). To check this
hypothesis, we imposed a prescribed contact angle as boundary condition to solve (3.1),
as done e.g. in Gerlach et al. (2005). In particular, the experimental results are correctly
reproduced imposing contact angles in the range 170◦ ≤ θ ≤ 180◦, as evidenced by the
coloured band in figure 3(b), corroborating that in mode B the surface behaves as an almost
ideal non-wetting surface. It is also noticeable that the computed evolution of R(V), shown
in figure 3(d) agrees with the experimental results. Moreover, the bubble shape in the
second stage is almost perfectly reproduced using θ = 175◦, as revealed by figure 3(g) and
by supplementary movie 3. It is significant that the retraction of the contact line towards the
end of the second stage is also well captured. In addition, the hydrostatic model accurately
describes the experiments reported by Ling et al. (2011), contrary to their claim that the
static theory is unable to account for their observations.

Our experiments revealed that mode A takes place for coated surfaces whose radii Rs �
3.21 (experimental cases 1–6), while mode B is observed for Rs � 3.33 (experimental
cases 7–10). Thus, the transition between both modes occurs for 3.21 � R � 3.33. The
most plausible mechanism to explain this transition is related to the ability of the bubble
base to reach the edge of the coating while it expands. If the coated surface area is
sufficiently large, the contact line does not reach the coating radius, and the bubble growth
takes place at constant contact angle and varying base radius. In contrast, for small enough
coating radii, the bubble base reaches the rim, growing with a fixed base radius and varying
contact angle. Hence, for a given macroscopic contact angle of the plastron created on
the submerged superhydrophobic surface, it is possible to deduce a limiting radius above
which the maximum bubble base radius is smaller than the coating radius. Indeed, simple
computations performed with the hydrostatic model (not shown here for conciseness)
reveal that the maximum radius reached by the bubble during its growth, 3.21 � R � 3.33,
corresponds to contact angles 171 � θ � 174◦, in good agreement with our estimation of
θ = 175◦ for bubble formation in mode B.

Following the stability argument by Longuet-Higgins et al. (1991), the hydrostatic model
can also be used to obtain the maximum stable bubble volumes for different values of the
coating radius. In their own words, ‘when the bubble contains the maximum amount of
air for the nozzle diameter, and further air is forced or allowed to enter, then it has no
choice but to break off’. Thus, the onset of the dynamic bubble collapse stage coincides
with the point of maximum volume, i.e. the turning point in the h − V curves shown in
figure 3. Figure 4 shows the dependence of the maximum stable volume on the coating
radius extracted from the model, Vm

f (solid line), together with the volumes of the released
bubbles obtained experimentally, Ve

f (symbols), for the experimental cases corresponding
to mode A, where R = Rs. Note that the model prediction is in fair agreement with
the experiments (also given in table 1), with a maximum relative deviation of 6.6 %. In
principle, one might expect that the model should underestimate the experimental results
due to the volume added from the destabilisation point to the pinch-off instant, which is, for
instance, approximately 4.5 % for the experimental case 5. However, it can be observed in
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Experiments (Vf
e/π)

Model (Vf
m/π)

Neutral  stability (m = 1)

Stable static shapes

Vcr = 6.04π

Rmax

Rcr = 3.22Rn

Vf /π

0
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R
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Figure 4. Bubble volume as a function of coating radius. The solid line represents the maximum static
bubble volume obtained theoretically, Vm

f , while the symbols are the final volume measured experimentally,
Ve

f . Static menisci with volumes above the dashed line are unstable under the asymmetric azimuthal mode
m = 1. The vertical dashed lines represent the critical radius for the onset of the Rayleigh–Taylor instability
associated with a conventional nozzle, Rn = 1.84, the calculated critical bubble base radius, Rcr = 3.22, and
the global maximum base radius Rmax = 3.83, which corresponds to a flat interface. Inside the shaded region,
the equilibrium shapes are stable under axisymmetric disturbances, but unstable under non-axisymmetric ones.
Note that the shaded region cannot be reached in our experiments, since it corresponds to contact angles
θ > 180◦.

figure 4 that the experimental values of Ve
f are not systematically larger than those deduced

from hydrostatics, Vm
f , indicating that there must be other effects, probably associated with

experimental errors, that justify these small deviations. The different sources of errors
could include uncertainties in the image analysis, deviations from ideally axisymmetric
shapes or imperfections of the coated surface, among others. Nevertheless, it can be
concluded from figure 4 that Vm

f represents a good prediction of Ve
f .

Furthermore, figure 4 reveals that the final bubble volume increases with R until
reaching a maximum value of Vcr = 6.04 π at the critical base radius Rcr = 3.22, in
agreement with previous results. In particular, Michael & Williams (1976) performed a
theoretical study of the equilibrium and stability of axisymmetric pendent drops, showing
the existence of a bifurcation of the equilibrium state due to an asymmetric mode.
Specifically, these authors demonstrated that for R > 3.22 this asymmetric instability,
which has an associated azimuthal wavenumber m = 1, is triggered when the profile of
the drop flattens at the injector edge. Indeed, it should be noted that the pendant drop
and the sessile bubble are equivalent configurations, since they are described by the
same equations under purely hydrostatic conditions. Therefore, as in Michael & Williams
(1976), the limiting volumes for R > Rcr correspond to bubble profiles whose contact
angle at the rim is θ = 180◦, and are thus expected to lose their stability through an
asymmetric perturbation with azimuthal mode m = 1. Consequently, the neutral curve
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presented in figure 4 was built based on two stability criteria: (i) the turning point in
the h − V curves for R < Rcr (Longuet-Higgins et al. 1991), and (ii) the condition that
the contact angle is θ = 180◦ at the rim for R > Rcr (Michael & Williams 1976). Thus,
the solid line in figure 4 represents the maximum stable bubble volume according to
the criterion established by Longuet-Higgins et al. (1991), which has been extended to
R > Rcr, and the dashed line indicates the volume at which the interface becomes flat at
the rim, θ = 180◦. According to Michael & Williams (1976), this is also the critical bubble
volume for the onset of asymmetric instabilities. It can be observed in figure 4 that the
asymmetric instability occurs for smaller volumes than the axisymmetric one for R > Rcr
(shaded region of figure 4). When R = Rcr both criteria are simultaneously met, and
the corresponding volume is Vcr, which represents the absolute or global maximum of a
bubble generated quasi-statically. Furthermore, notice that experimental case 6 (R = 3.21)
lies almost on top of the neutral stability line for m = 1, with a bubble volume that fairly
agrees with the maximum value obtained from the model, Vcr. Note that, in figure 4, there
are no experimental results for bubble base radii larger than the critical one because, in our
particular configuration, the bubble base radius becomes variable and mode B takes place
instead of mode A. For vales of R > Rcr, the maximum stable volume decreases, reaching
the flat interface limit, Vm

f = 0, for R = Rmax = 3.83. This maximum radius coincides
with the value predicted by Plateau and Maxwell for the onset of the Rayleigh–Taylor
instability for a planar interface pinned to the rim of a circular surface (Plateau 1873;
Maxwell 1876). It should be noticed that the maximum contact angle in our configuration
is indeed θ = 180◦, since the bubble surface cannot penetrate the substrate. It is also
noteworthy that the bubble detachment process was precisely observed to lose the axial
symmetry when R > Rcr, as evidenced in supplementary movie 4, which was obtained
using a very large superhydrophobic coating radius of Rs � 12. The movie shows that
the air plastron is not inflated symmetrically with respect to the axis of the orifice, i.e.
the centre of the surface, but from apparently random locations along the surface. This
behaviour illustrates our conjecture about the existence of non-axisymmetric instability
modes, plausibly including the first azimuthal one, m = 1.

It is important to emphasise that in continuous bubble formation processes, like those
studied herein, the maximum stable radius of circular orifices or nozzles is in fact
substantially smaller than Rmax. Indeed, after a bubble pinches off, the contact line
typically recedes along the inner injector wall, leading to a configuration analogous
to an interface confined by a vertical cylinder. Under these conditions, a planar
interface becomes unstable for R = Rn = 1.84 (Plateau 1873), which is the practical limit
when using a conventional nozzle to continuously generate bubbles under quasi-static
conditions. Interestingly, the configuration studied in the present work allows us to
overcome such a limitation. Indeed, it is clear that the use of the superhydrophobic coatings
allows us to continuously generate bubbles of volumes significantly larger than those
produced from ordinary injectors under quasi-static conditions. Moreover, in contrast
with Ling et al. (2011), where it is claimed that hydrostatics cannot properly describe
the bubble profiles, here, we have clearly demonstrated that the profiles can indeed be
calculated, up to their destabilisation, as equilibrium shapes attached to a virtual nozzle of
radius R = Rs.

One of our major findings here is the experimental proof of the existence of an absolute
global maximum in the volume of bubbles generated quasi-statically, which can never be
exceeded irrespective of the coating surface radius due to stability reasons. To provide
further confirmation of this fact, the value of Vm

f was computed for a prescribed value
of the contact angle, as similarly done by Lee & Yang (2009). In this case, unlike in the
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Figure 5. Evolution of the maximum bubble volume with the contact angle obtained from the hydrostatic
model. The figure also displays the final bubble volume, Ve

f /π (bullets), obtained experimentally with different
values of Rs (experimental cases 7–10 from table 1) and the bubble volumes reported by Lin et al. (1994),
Gnyloskurenko et al. (2003) and Corchero et al. (2006) for comparison.

results displayed in figure 4, θ is fixed and R is an outcome of the model. As shown
in figure 5, the model predicts a monotonic increase of Vm

f with θ . Note, in particular,
that a superhydrophobic substrate allows us to generate bubbles with volumes up to
three times larger than those reported in previous studies (see for example Lin et al.
1994; Gnyloskurenko et al. 2003; Corchero et al. 2006). In addition, it is clear that the
maximum volume of a static bubble with prescribed contact angle corresponds to an
ideally non-wetting surface, i.e. θ = 180◦. This maximum volume, namely V = 6.04π,
coincides with the maximum one shown in figure 4, Vcr, and is consistent with the theory
of Michael & Williams (1976), in that the radius of the bubble base at detachment is
the critical value R = Rcr. Indeed, in this case, the conditions R = Rcr and θ = 180◦
are simultaneously accomplished at the point of maximum volume. Note that Vcr is in
close agreement with the experimental volume of the bubbles released under mode B, Ve

f ,
obtained from the experimental cases 7–10. As can be observed in figure 5, Ve

f has nearly
the same value for all the experiments in mode B, being very close to the maximum value
obtained within mode A (experimental case 6). This fact is in agreement with the absolute
maximum of the bubble volume predicted by the model. The large vertical error bars in our
experiments within mode B are due to deviations from axisymmetry during the formation
of these bubbles that were visually confirmed. In contrast, the significant deviations from
the theoretical prediction of several experimental data extracted from previous studies
that used hydrophobic surfaces can be attributed to the effect of contact angle hysteresis.
Indeed, such hysteresis effects are generally non-negligible for contact angles smaller than
those of the present study, as suggested by Gerlach et al. (2005). However, providing a
general theoretical picture of the bubble formation process that includes the effect of
contact angle hysteresis would require performing numerical simulations of the bubble
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growth and collapse coupled with a proper model of contact angle hysteresis, which is
outside the scope of the present work.

5. Concluding remarks

The use of a superhydrophobic coating allowed us to study the continuous quasi-static
generation of bubbles for contact angles approaching the limit of an ideally non-wetting
surface, θ � 180◦. We have shown that the detached bubble volume can be increased
in a controlled way, simply by applying the coating to a circular region of a given
radius. Interestingly, the technique presented herein makes it possible to avoid the
Rayleigh–Taylor stability limit associated with conventional nozzles. With this method,
the contact line can slip over the surface, but not in the vertical direction, as typically
occurs in conventional injectors. In that case, after the detachment of the previous bubble,
the contact line retracts and penetrates inside the nozzle, so that the interface shape is
close to a circle. This configuration becomes unstable for R = Rn = 1.84, which is the
Rayleigh–Taylor stability limit associated with conventional injectors. This is precisely
the limit avoided in the configuration described herein, which makes it possible to reach
the global maximum of the bubble volume for a bubble base radius Rcr = 3.22.

Our experimental results have been rationalised using a simple hydrostatic model
which assumes static equilibrium shapes during most of the bubble growth process.
The good agreement of the model with the experiments confirms that bubble formation
can be described as a sequence of equilibrium states where the bubble is attached to a
virtual nozzle of radius Rs. A maximum bubble volume of Vcr = 6.04π has been found,
corresponding to a critical bubble base Rcr = 3.22. For R > Rcr, the growing bubble has
been observed to become unstable to asymmetric disturbances, what constitutes the first
experimental proof of the prediction made by Michael & Williams (1976).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1098.
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