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1. Introduction. A well-known class of Anosov diffeomorphisms arises as
follows. Let N be a simply connected nilpotent Lie group and let I' be a lattice in
N; namely I' is a discrete subgroup such that '\ N is compact. If 7 is a hyperbolic
automorphism (see §2 for the definition) of N such that ¢(I") = T', then we get a
diffeomorphism T of '\ N, defined by T(I'x) = I't(x), forall x € N, which is an Anosov
diffeomorphism of the compact nilmanifold '\ N. Anosov diffeomorphisms arising in
this way are called Anosov automorphisms of nilmanifolds. Let K be a finite group
of automorphisms of N and let I" be a torsion free discrete cocompact subgroup of
K x N.TheTI-actionon N is given by (7, x).y = xt(y), wheret € Kand x, y € N. Now
consider the quotient space '\ N under the action of I" on N. We call such a compact
manifold '\ N an infranilmanifold. If f is a hyperbolic automorphism of N such that f
normalises the subgroup K in the group of automorphisms of N and f(T") = I', then f
induces a diffeomorphism f of the infranilmanifold I'\NV; we call such a f an Anosov
automorphism of an infranilmanifold T\ N .

The only known examples of Anosov diffeomorphisms are on nilmanifolds and
infranilmanifolds. It is conjectured that any Anosov diffeomorphism is topologically
conjugate to an Anosov automorphism of an infranilmanifold. By a result of
A. Manning [8] all Anosov diffeomorphisms on nilmanifolds are topologically
conjugate to Anosov automorphisms. This highlights the question of classifying all
compact nilmanifolds which admit Anosov automorphisms. Indeed it is easy to see
that not all of them do. The first example (due to Borel) of a non-toral nilmanifold
admitting an Anosov automorphism was described by S. Smale [10]. Later L. Auslander
and J. Scheuneman [1] gave a class of nilmanifolds admitting Anosov automorphisms.

By a result of S. G. Dani [2] all nilmanifolds covered by free k-step nilpotent Lie
groups on n generators, with k < n, admit Anosov automorphisms. There have been
other recent constructions of compact nilmanifolds with Anosov automorphisms. (See
[3], [5], [6], [7] and other references therein.)

In this paper we associate a k-step nilmanifold (k > 3) with each graph, and give
a necessary and sufficient condition, in terms of the graph, for the nilmanifold to
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admit Anosov automorphisms. We also prove some results on nonexistence of Anosov
automorphisms on certain 2-step and 3-step nilmanifolds.

2. Preliminaries. In this section we recall some definitions and preliminaries
concerning nilpotent Lie groups and nilmanifolds. We also recall results concerning
automorphisms of a 2-step nilmanifold associated with a graph. (See [3] for details.)

Let N be a simply connected nilpotent Lie group and N the Lie algebra of N.
Note that NV is nilpotent. Let Aut(N) denote the group of Lie automorphisms of N.
Let Aut(V') denote the group of Lie algebra automorphisms of A". Now Aut(N) is
isomorphic to the group Aut(N), the isomorphism being given by t — dt, where dt
is the differential of 7. Let I" be a discrete subgroup of N such that I'\ N admits a finite
N-invariant Borel measure. We call such a subgroup a lattice in N. As N is a nilpotent
Lie group, a discrete subgroup I' is a lattice in NV if and only if '\ NV is compact. (See
Theorem 2.1 in [9].)

A nilmanifold is a quotient I'\ N, where N is a simply connected nilpotent Lie
group and T is lattice in N. An automorphism o € Aut(N) is said to be hyperbolic if
all of its eigenvalues are of modulus different from 1. An automorphism t € Aut(N)
is said to be hyperbolic if all eigenvalues of the differential dt are of modulus different
from 1.

Now we recall the construction of the 2-step nilmanifold associated with a given
graph and some results about its automorphism group. (See [3] for details.)

Let (S, E) be a finite simple graph, where S is the set of vertices and E is the set
of edges. Let V' be a real vector space with S as a basis. Let W be the subspace of
A2V spanned by {a A B :a, B € S,ap € E}, where A’V is the second exterior power
of V. Let N =V @ W. We define the Lie bracket operation [ , ] on N as follows.
[, 1: N xN — N is defined to be the unique bilinear map satisfying the following
conditions:

(i) fora, B €S, [a, Bl =a A Bifaf € E and 0 otherwise;

(i) [a, BAy]=0foralle, B,y € S;

(iii) [e A B,y Ad]=0foralla, B,y,58 € S.

We call N/ (defined as above) the 2-step nilpotent Lie algebra associated to the graph
(S, E). Let N be the simply connected Lie group with Lie algebra A. Let I’ be the
subgroup of N generated by exp(S), where exp denotes the exponential map. It can
be seen that I is a lattice in N. A nilmanifold '\ N is called the 2-step nilmanifold
associated with the graph (S, E).

For any o € S we define

Qo)={weS:owecE} and Q(o)=Q(0c)U{o}.

Let ~ be an equivalence relation on S defined as follows: for «, 8 € S, o ~ B if either
a = pBor Q) C QB)and Q'(B) C Q(«). (See [3] for details.) Let {S; }rca denote the
set of all equivalence classes in S with respect to the equivalence relation ~, where A
is an index set. Sy, (A € A), are called the coherent components of S. For each A € A,
let V; denote the subspace of V' spanned by S;.

We recall some results. See [3].

THEOREM 2.1. Let (S, E) be afinite graph andlet N = V @& W be the 2-step nilpotent
Lie algebra associated with (S, E) (notation as above). Let G denote the subgroup of
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GL(V) consisting of all restrictions, T|V, such that T € Aut(N) and t(V) = V. Then G
is a Lie subgroup of GL(V) and the following conditions are satisfied.

(i) The connected component of the identity in G that we denote by G° can be
expressedas ([ [,cn GL*(V3)) - M, where, for each . € A, GL* (V) denotes the subgroup
of GL(V,) consisting of all the elements with positive determinant and M is a closed
connected nilpotent normal subgroup of G.

(1) The elements of A can be arranged as Ay, ..., so that for all j=1,...,k,
@D.; Vi, is invariant under the action of G°.

LEMMA 2.2. Let Ay, ..., A, be an enumeration of A such that assertion (ii) of
Theorem 2.1 holds. For each j=1, ...,k let /\/j = (Bi<; V2,) ® W also let No=W.
Let t be a Lie automorphism of N contained in the connected component of the identity
in Aut(N'). Then each N is invariant under the action of t. Let ® be the (additive)
subgroup of N generated by S' U {%(oc AB:a,BeS, af € E}. If t(®) = © then, for all
j=1,..., k, the determinant of the action of T on Nj is £1.

3. k-step nilmanifold associated with the graph. In this section we associate a k-
step (k > 3) nilmanifold (i.e. covered by a k-step simply connected nilpotent Lie group)
with every graph and we give a necessary and sufficient condition for such nilmanifolds
to admit an Anosov automorphism.

Starting with a graph (S, E) we define a k-step (k > 3) nilpotent Lie algebra as
follows. Let (S, E) be a finite graph, where S is the set of vertices and E is the set of
edges. Suppose that A denotes the 2-step nilpotent Lie algebra associated with (S, E)
(see §2);i.e. N =V & W, where V is a vector space with S as a basis and W is the
subspace of A2V spanned by {¢ A B:a, B € S, ap € E}.

Let N (V) be a free k-step nilpotent Lie algebra on V. (See [1] for the definition.)
We denote by H; the k-step nilpotent Lie algebra N (V)/J, where J denotes an ideal
of Ni(V) generated by all elements [o, 8] such that «f is not an edge. Let Nx be the
simply connected nilpotent Lie group with Lie algebra H;. Suppose that ®; is the
(additive) subgroup of Hj generated by the elements of the type [«, [8, .. .]], where
a, B, ... € S. Then there exists a Z-subalgebra <I>2 of 'Hj, that is contained in ®; such
that I'y = exp(<D2) is a subgroup of Ny, and 7(®;) = &y if and only if r(CI>2) = CD,?, for
any automorphism 7 of Hy. (See §2 in [1].) We note that Iy is a lattice in Ny. We call
a nilmanifold Ty \ Ny a k-step nilmanifold associated with the graph (S, E).

4. Anosov automorphisms of I';\ Ny, (k > 3). We give a necessary and sufficient
condition for the nilmanifold I'y\ N to admit an Anosov automorphism.

NOTATION 4.1. Suppose that H is a k-step nilpotent Lie algebra. For any subset
M of ‘H we denote [M, M] by M', [M,[M, M]] by M?, and inductively we denote
[M, M"'] by M" for all nsuch that 3 <n < k — 1.

Let (S, E) be a graph and I';\N; a k-step nilmanifold (k > 2) associated with
(S, E). We refer to § 2 and § 3 for the notation.

REMARK 4.2. We note that any automorphism of A can be extended to an
automorphism of H;. The automorphism group Aut(Hy) is the semidirect product
of Aut(N) and a connected group. This can be seen by observing that Aut(H) is a
semidirect product of Aut(Hy/ H:fl) and Hom(V’, Hfl); also Aut(Hy/ H,zc) is the same
as Aut(N).
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THEOREM 4.3. T\ Ny admits an Anosov automorphism if and only if the following
conditions hold.

(1) For every A, |S,| > 2;

() If S, =1L, with2 <1 <k, and a, B € S,, then af is not an edge.

Proof. Suppose that, for each A € A, (i) and (ii) hold. We shall prove that there
exists a hyperbolic automorphism t € Aut(Hy) such that 7(®d;) = &y.

We have V' = @jcp V.. (See §2 for the notation.) For each A € A, let @, be
the subgroup of V), generated by S;. There exists g; € GL(V;) such that g;(®;) =
®, if and only if the matrix representing g, with respect to the basis S, belongs
to GL(dy, Z), where d;, = |S,|. For each A € A there exists a matrix 4, € GL(d,, Z)
with the eigenvalues cy, ¢2, ... ¢4 such that |cjc;,---¢; | # 1, for all r with 1 <r <
min (k, d,, — 1), and for all i, i, ..., i, € {1, 2, ..., dy}. The existence of such elements
can be proved by using a result of S. G. Dani. (See Corollary 4.7 in [4].) Let g;
denote the transformation from GL(V;) whose matrix with respect to the basis S
is A;. By the above observation g; (®;) = ®;. We choose natural numbers j;, A € A,
such that | [], co(cii Copy - - - cM”k)/‘A| # 1, for all subsets Q2 of A such that |2 > 2 and
2 <) ,com <k, where ¢;;’s are eigenvalues of g;. Let g € GL(V)) be the element

whose restriction to V; is g’;, foreach A € A.

There exists T € Aut(N) such that g is the restriction of T to V. (See Theorem 2.1.)
We know that T, constructed as above, is a hyperbolic automorphism of N. This can
be seen from the proof of Theorem 1.1 in [3] and the hypothesis of the theorem. Let
7 be an automorphism of H; obtained by extending T. We note that 7(®;) = Py, by
construction. We shall prove that 7 is hyperbolic as a linear transformation. Suppose
that if possible T has an eigenvalue, say ¢, of absolute value 1. Then ¢ must be an
eigenvalue of the restriction of 7 to V", where 3 < n < k (see Notation 4.1), since 7 is
hyperbolic on V.

Now using the fact that ©(V;) = V,, forall A € A and recalling the construction of
g, wesee that thereexists A € A suchthat|S;| = nand V] isnonzero. (See Notation 4.1.)
But by the condition in the hypothesis @8 is not an edge, for all «, 8 € S;. Hence
[, B] =0, for all «, B € Sy. This contradiction shows that t is hyperbolic. Hence
'+ \ N admits an Anosov automorphism.

Conversely suppose that I'y\ Ny admits an Anosov automorphism. Hence there
exists T € Aut(Hy) such that t(®;) = &, and 7 is a hyperbolic linear transformation.
Let T € Aut(N) denote an automorphism of A induced by t. We can assume that
T(®) = @, where @ is the subgroup of A (with respect to addition) generated by the
subset S U { %(a AB):a, B €S,aB € E}. As T is a hyperbolic linear transformation,
|S,| > 2forevery A, and if |S; | = 2 then of isnot an edge for oS € S;.(See Theorem 1.1
in [3].) We may assume that T is contained in the connected component of the identity
in Aut(N). (See Remark 4.2). Let G denote the subgroup of GL(V) consisting of all
restrictions 7|V such that T € Aut(N) and (V) = V. We write the elements of A as
AL, A2, ..., A such that, forallj =1, ..., m, EBI.SJ. V,, is invariant under the action of
G°, where G is the connected component of the identity in G. (See Theorem 2.1.) Now
suppose that there exists A € A such that |Sy| =/, where 3 </ < kand o € E, for all
o, B € S,. Letj, with 1 <j < m, be such that A = A;. Consider the induced action of
T on N;/N_i, where N; = (®i; V,) ® W. We note that each N, is invariant under
the action of 7. (See Lemma 2.2.) As the determinant of the induced action of T on
Nj/N -y is £1, the product of the eigenvalues 6y, 65, . . ., 6; of the induced action is £1.
Since the action is hyperbolic, at least two eigenvalues, say 6; and 6,, are distinct. Hence
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there exist vy, vy, ..., v € fo (the complexification of V; ) such that T(v;) = 6;v; + x;,
where x; € N}C_l, for all 1 <i < /. We note that v; and v, are linearly independent,
since 6) and 6, are distinct. We write v; = ), .¢ al,«, where ¢}, € Cforalla € S;, and
1 <i < /. Asv; and v, are linearly independent and ap € E, foralla, B € S, we have
[vi, v2] # 0in A'C. Hence [vi, [+, [va, v1]-- -]l # 0in Hy. Let x = [v;, [- - -, [v2, v1] - - *]).
By considering the complexification of T and T we have t&(x) = (]_[f:1 0:)x + y, where
» belongs to the complexification of [N, [N, -+ [Nj, Nji]- - Jlu—1)times, Which we
denote by W’. We note that 1‘[521 6; = &1 and x ¢ W’. Hence we have an eigenvalue +1
for the induced action of T on (N ]1»)CD / W’ which is a contradiction, since by assumption
7 is hyperbolic. This shows that o8 is not an edge for all «, 8 € Sy, where |S,| =1/, 1 <
! < k. This completes the proof of the theorem. O

EXAMPLES 4. (i) Let (S, E) be a complete graph; that is a8 € E, for all o, 8 € S.
Then the corresponding k-step nilmanifold admits an Anosov automorphism if and
only if |S| > k.

(i1) Let (S, E) be a cycle on 4 vertices. The corresponding k-step nilmanifold
admits an Anosov automorphism for all k£ > 2. In particular, we get an example of
20-dimensional 3-step nilmanifold admitting an Anosov automorphism.

(ii1) A complete bipartite graph (S, E) is a graph in which S'is a disjoint union of two
subsets S and S,, each containing at least two elements,and £ = {¢ : @ € S|, 8 € S»}.
In this case S} and S, are the coherent components. Hence the k-step nilmanifold
associated with a complete bipartite graph admits an Anosov automorphism for all
k > 2. In particular, if we choose S; and S, such that |S;| = m and |S,| = n we get an
example of an /-dimensional 3-step nilmanifold admitting an Anosov automorphism,
where

n—2)(n—1)m (m—2)(m—1n
— -

(iv) Let (S, E) be a “magnet” graph with core C;i.e. C is a subset of S such that its
complement in S contains at least two elements and £ = {af :ax € C, 8 € S, o # B}.
The k-step nilmanifold associated with (S, £) admits an Anosov automorphism if and
only if k < |C].

I=mmn-1)> - +n(m — 1) + 2mn

5. Nonexistence of Anosov automorphisms on certain 2-step nilmanifolds. In this
section we prove some results on nonexistence of Anosov automorphisms on certain
nilmanifolds. Let Mg be the 2-step nilpotent Lie algebra over Q, associated to the
graph (S, E). Let X = [«a, B8]+ [y, 8], where «, B, y, § are distinct vertices in S such
that af, y§8, ay, ad € E. Let Hg denote the quotient Ng/(X), where (X) is the one-
dimensional subspace spanned by X. Let H = N /(X). It was proved in [5] that if the
graph (S, E) is a complete graph (i.e. o8 € E for all o, 8 € S), then Hg does not admit
a hyperbolic automorphism whose characteristic polynomial has integer coefficients
and unit constant term. (See Theorem 3.2 of [5].) We prove a similar result for an
arbitrary graph.

THEOREM 5.1. The 2-step nilpotent Lie algebra Hq, defined as above, does not admit
a hyperbolic automorphism whose characteristic polynomial has integer coefficients and
unit constant term.

NOTATION 5.2. We recall that /\/’:_Vea W. (See §3.) We decompose H as
H=Ve& W, where W = W/(X). Let G be the subgroup of GL(}V') consisting of
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all restrictions 7|V such that T € Aut(H) and (V)= V. Let G be the subgroup
of GL(V) consisting of all restrictions |V such that T € Aut(N) and (V) =
It can be seen that subgroups G and G of GL( V) are Lie subgroups. Let G (resp
G) be the Lie algebra of G (resp. G). Let G° (resp. G ) be the connected component
of the identity in G (resp. in G). Let D (resp. D) be the Lie subalgebra of G (resp. of
G) consisting of all endomorphisms in G (resp. in G) that are represented by diagonal
matrices with respect to the basis S. Note that D consists of all the endomorphisms
in D that are contained in G. For , ¢ € S, let E,; be the element of End(}’) such that

E,(¢)=nand E,(§)=0forallé € S, & #¢.

NotATION 5.3. Recall that X = [, 8] + [y, 8], where «, B, y, § are distinct vertices

in S such that o8, ¥, ay,ad € E. Let S’ = {«, B, y, 8}. Let Wif denote the subspace
of End(V') spanned by Eyy and Eyy, where {¢, ¥, ¢', ¥} = §

PR(lPOSITION _5.4. The l;ie algebra G, defined as above, is spanned by D, WD’; f ng,
ng', ng, Wgﬁ ng, ng N G, and the elements of G of the following type: (i) E,;, where
n#¢,n¢ ¢S, (i) E,, where ne€ S and ¢ ¢ ', (iil) E,;, where n ¢ S" and ¢ € S,
(IV) Eotﬂ’ EV5’ Eﬁar ES},.

Proof- Let Y € G. Then Y can be expressed as ¥ = Y, + > nces.nc Ane Ene, where
Yy € D (see Notation 5.2) and a,; € R. By using the fact that £, € Gforall{ ¢ ', we
observe that a,, E, is contained in Gforalln, ¢ ¢ S'. (See the proof of Proposition 3.1
in [3].) We note that Eyy + E,, , Egg + Ess , Egg + E,, are contained in G. Since
[E¢eo [Eaw + Eyy, Y] and [Epq, [Eqe, [Eva + Eyy, Y]] are in G for ¢ ¢ S, acoEro +
ey Egy and do; Eop + ayg Ey¢ are contained in G. Now as E,, + Es; € G, we have
droErq and dgc Ey, are in G. Similarly we can see that a,; E,; € G, for all n € S’ and
¢ ¢S also ayEy €G, forall n¢ S and ¢ € S'. We also have [Egs + E,, [Egp +
Ess, [Eqo + E,, Y1I] € G. This shows that Z = a,sE,s + dge Ega — asyEsy — aapEap €
G. Also [Egs + E,,, Z] € G. Therefore we get a,5E,s + apy Epy + as, Esy + s Eqp €
G. Hence aysEys + agaEgy and asy, Esy, + aupEqp are contained in G. Since [Eyq +
E,y, aysEys + aguEpq] € G, we have a,5E,s — agaEgo € G and so a,;E,; € G. Hence
we have proved that if a,s # 0 then E,s € G. Similarly it can be proved that Egy € G
if apy # 0, Eop € G if dop # 0, and Es, € G if a5, # 0. Now Z' = [Egq + Ey,, [Epp +
Ess,[Eea + E,py, Y]l € G, and hence

[Eﬂ/g + E55a [Eola + Eyy, Y]] + Z/ [S G

As augE.p and a, s E, s are contained in G, we have ausEys + aygE,p € G. Similarly we
can prove that ag, Eg, + asaEsq € G.As Y e, by the observations above we have
Z" = Yo+ ayy Eyy + ayo Eyo + apsEgs + aspEsp € G. Considering the element [E,q +
Ess, Z"] we prove that aq, Ey, + aspEsp € G and ayoEyo + apsEgs are in G. Hence we
have now Yy € G. As Y is in D, Y, € D. Hence we have proved our claim that G is
spanned by D, W), f ng, Wg;‘j NG, ng; ng, ng NG, and the elements of G of the
type (1)-(iv) as stated. O

PROPOSITION 5. 5 Any automorphism T in G is induced by an automorphism T in
0 with T(X)) = (X).

Proof. We shall prove the following results. If the element from the type (i)-(iv)
in the statement of Proposition 5.4, considered as an element of End(V), is in the
Lie algebra G, then that element is in G. (See Notation 5.2.) We shall also prove that
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wng, Wi NG, Wi nG,and WE N Garecontained in G. Let I denote the identity
transformation in GL(V).

O IfE, € G,wheren#¢,n,¢ ¢S, thent =1+ E, € G. We shall prove that
Q'(n) C (). (See §4.) Suppose that &€ ¢ Q(¢). Then we have [£, £] = 0. Ast € G, itis
the restriction of a Lie automorphisms of H, and hence we get that [t(§), t(¢)] = 0 in
‘H. Therefore we have [£, ¢ + n] = c([«, B] + [v, 8]), where ¢ € R. As[&, ¢] = 0, we have
[, n] = c(a, B] + [y, §]) and so ¢ = 0. Hence & ¢ /(n). This shows that Q'(n) C Q(¢),
and so E,; € G, where n # ¢, n,¢ ¢ S'. (See Proposition 4.1 in [3].)

(ii) Consider the element E,,, where n ¢ S’. Suppose that E,, € Glett=1+
En. 1If¢ ¢ Q(a), then [¢,a] =0. As T € G, we have [¢, @ 4+ 5] = 0 in H. By the same
argument as above we have [¢, n] = 0. Hence Q'(n) C Q(«), so that E,, € G.

By similar arguments we can prove our claim for the elements of the type (ii), (iii)
and (iv).

We shall prove that any element of W, f N G, considered as an element of End(}),
is contained in G. Suppose now that the linear combination of Es and E, g, say aFys +
bE,s, is in G. Then © = I + t(Eys + bE,5) € G, t # 0. We show that the subspace of
A2V, W' say, spanned by the set of all ¢ A 5 such that ¢ is not an edge, is A -invariant.
Let ¢, n € Ssuch that ¢ # n and ¢n is not an edge. If neither of ¢ and 5 is contained in
{8, B}, then A’t(¢ An)=¢ An.If¢ =8and n # B, thenas t € G, we have t[¢, 7] = 0
in H, and hence [tac + 8, n] = ([, B] + [y, 8]) in NV, where ¢ € R. Therefore either
a =0 or an is not an edge. In both the cases we have A>t(¢ A n) € W’. Similarly if
¢ =B and n # § we are through. Now if ¢ =68 and n = 8, we have 7[5, 8] =0 in
H. Hence [tax + 8, thy + B] = c([o, B] + [y, 8]) in NV, where ¢ € R. As §8 is not an
edge and ay is an edge, we have abla, y] + tala, B] + th[8, y] = c(la, B] + [y, 8]) in
N, and hence ab = 0 and a = —b. Therefore t = I. Thus we have proved that W’ is
A2r-invariant. Therefore t € G, and hence aE,5 + bE,s €G.

Similarly we see that our claim holds for the elements of Wg;‘j ng, Wo‘fﬁ NG, and
wkng.

By using the argument above, Proposition 5.4 and Theorem 2.10.1 in [11], we see
that there exists an open neighbourhood U of [ in G’ such that any automorphism
contained in U can be lifted to an automorphlsm of AV that keeps an ideal (X) invariant.
Hence any automorphlsm Tin G can be lifted to an automorphism 7 in G° such that

T(X)) = ). (Use Proposition 3.18 in [12].) O

Proof of Theorem 5.1. Suppose 6 € Aut(Hg) is a hyperbolic automorphism such
that its characteristic polynomial has integer coefficients and unit constant term. Since
Aut(H) has finitely many connected components, by replacing 6 by its suitable power we
may assume that 6 is contained in the connected component of the identity in Aut(H).
By Proposition 5.5, we see that there exists an automorphism 6 contained in the
connected component of the identity of Aut(/\) such that its characteristic polynomial
has integer coefficients and unit constant, 6(X) = X, and 6 has an eigenvalue 1 of
multiplicity 1. We can assume that the matrix of 6 with respect to the basis S U E is an
integer matrix.

We have 0(N;) =N, for each j=1,... .k, where N; = (®i<; V3,) ® W and
Al, ..., Ak 1s an enumeration of A such that forallj =1,...,m, @isi V,, 1s invariant
under the action of G. (See §2.) Let 7; : N} — V3, denote the canonical projection
foreachj=1,...,k. Let6,, : V;, — Vj, be given by 0, = 7; 0 6.

Wehave W =3,  c\[Vi, V] Allthe eigenvalues of 6 on W are pairwise products
of the eigenvalues on V,’s. Also a,a, occurs as an eigenvalue of | W if and only if
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there exists ¢ € S, and n € S, (notation is as before) such that ¢7 is an edge, where a,
is an eigenvalue of 6, and a, is an eigenvalue of 6, As 1 is an eigenvalue of 6, there
exist A and p in A such that ¢nisanedgefor¢ € S, andn € S, and aya, =1, a; and
a,, being eigenvalues of 6, and 6,, respectively.

We shall prove that A = p. Suppose that A # u. Let @) be a conjugate of a, over Q,
d, # a;. Then a, = a; ' and a;,' are conjugates over Q. The minimal polynomial of a,,
over @ divides the characteristic polynomial of 6,,. Hence a;,' occurs as an eigenvalue
of 6,,. As, by our assumption, ¢n is an edge for all ¢ € S, and n € S, aNa;,l occurs
as an eigenvalue of 6, where a, # a;, and hence we arrive at a contradiction, as the
multiplicity of the eigenvalue 1 is 1. Therefore A = . Hence there exists A € A such
that the restriction of a graph (S, E) on S, is complete and a,a, = 1 for the same
eigenvalues a, and g} of 6,, and X € [V}, V], which is not possible (by Theorem 3.2
of [4]). This completes the proof of the theorem. a

REMARK 5.6. Let H be the simply connected nilpotent Lie group corresponding
to the Lie algebra H. Let I be a lattice in H corresponding to Hg. (See [4].)
Then Theorem 5.1 shows that the nilmanifold I'\H does not admit an Anosov
automorphism.

6. Nonexistence of Anosov automorphisms on 3-step nilmanifolds. In this section
we study quotients of certain 3-step nilpotent Lie algebras. Let (S, E) be a graph. Let
V be a vector space over Q with a basis as S. Let F3(V) denote the free 3-step nilpotent
Lie algebra over the rationals on V. Let Q = F3(V)/Z. Here Z is an ideal of F3(V)
generated by the elements [, 8], where «, 8 € S and «f is not an edge. We decompose
Qas Q=V @ We Vi, where V3 is the space spanned by all [, [8, ¥]] such that
a, B,y €8, and By is an edge. Let X be a nonzero vector in V3. Let M = Q/(X),
where (X) denotes the ideal generated by X in Q which is a one-dimensional subspace
spanned by X in Q.

PROPOSITION 6.1. Let 6 be an automorphism of M. Then there exists 6, an
automorphism of Q such that 6(X) = cX, where ¢ is a nonzero rational. Furthermore
6 induces an automorphism 6’ of M such that both 6 and 6" have the same eigenvalues;
also we have O(V) = V,0(W) = W and 6(V3) = V3.

Proof. Consider the linear endomorphism T of V defined by T(«) = 7(6(a)) for all
a € S, where 7 is a natural projection of M onto V with respect to the decomposition
of MasM =V @ W & V3/(X), and o denotes the coset in M represented by «. Note
that T is an automorphism of V. For, if T(v) = 0, v € V, then 6(v) € [M, M]. But as
6 is an automorphism of M, we must have v = 0.

We then have a Lie algebra automorphism 7 of F3(V) such that T|y = T.
We prove that T(Z) = Z. Suppose a, B are in S such that af is not an edge. By
definition, T[a, B] = [7(6(@)), 7 (8(B))]. Now as af is not an edge, we have [, B] = 0.
Hence [6(), #(B)] = 0 in M. This implies that [z (9(@)), 7(6(B))] € V3. Hence we have
[ (@(a)), 7(A(B))] = 0 in Q. Hence in F3(V), we have [7(A(@)), m(6(B))] € Z. Thus we
have proved that 7(Z) = Z and hence T factors through an automorphism of Q. Let
6 denote the automorphism of Q induced by 7.

We claim that 6(X) € (X). We note that 6(Y) = 6(Y) in M, for all Y € V3, where
bar is taken to denote the elements in M represented by elements in Q. Now 6(X) = 0
in M, as @ is an automorphism of M. This implies that (X) € (X) in Q. Hence we have
0(X) = ¢X, where ¢ is a nonzero rational. By definition of 6, (V) =V, 0(W) = W,
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and 6(V3) = V3. Let 0’ be the automorphism of M induced by 6. Then both 6 and
6’ induce the same linear endomorphism on M /[M, M]. Hence 6 and 6’ have same
eigenvalues. O

NOTATION 6.2. Let {S)},ca denote the family of coherent components (see §2)
of the graph (S, E). Let £ be the set of all unordered pairs An with A, u € A, such
that af € E, for « € S, and B € S,,. We recall that V, denotes the subspace of
spanned by Sy (A € A). Let Ay, ..., A4 be an enumeration of A such that assertion (ii)
of Theorem 2.1 holds. Let N; = (@;<; V3,) ® Wforj=1,... k.

THEOREM 6.3. The Lie algebra M does not admit a hyperbolic automorphism whose
characteristic polynomial has integer coefficients and unit constant term.

Proof. Let 6 be a hyperbolic automorphism of M such that the characteristic
polynomial of 6 has integer coefficients and unit constant term. Let # be an
automorphism of Q as obtained in the previous proposition. Let T be an automorphism
of N induced by 6. As @ is a hyperbolic automorphism, and (X) = X, 1isan eigenvalue
of 6 of multiplicity 1. Since the characteristic polynomial of 6 has integer coefficients
and unit constant term, we may assume that the matrix of 6 has all integer entries (by
replacing 6 by some power of 8 if necessary.) As Aut(N\) has finitely many components,
we may assume that 6 lies in the connected component of the identity of Aut(Q) and
7 lies in the connected component of the identity of Aut(N). Hence 6(N;) = N;. (See
Lemma 2.2.)

Let 7y, : N;— ¥, denote the canonical projection. Let 6;, be an endomorphism
of V;, defined by 0, (v) = 7;,(6(v)), forallv € V;,. We note that 6;, is an automorphism
of V)L,,.

All the eigenvalues of @ restricted on V3 are of the following type:

(i) 8,6,.8,, where 6, 8,,, and 8, are the eigenvalues of 6,, ,,, and 6, respectively and
uv € &; see Notation 6.2.

(i) 8,858, where 8y, 8}, 8 are the eigenvalues of 6, and the restriction of (S, E) to
S, is a complete graph.

As 0]y, has an eigenvalue 1, we have the following two cases.

Case (i). Suppose 8,8,8, = 1, where §,, 8, and 8, are the eigenvalues of 6y, 6,,
and 6, respectively, and uv € £. Now as uv € £, §,,8, occurs as an eigenvalue of 6|y .
Thus we have an invertible matrix, say 4, with integer entries such that §,4, is an
eigenvalue of 4. Also we have an invertible matrix, say B, with integer entries having
8, = (8,8,)" as an eigenvalue. Hence there exists an eigenvalue of the type 8,8, of

A and 8 = (8,,8,)"" of B such that §,, 5, and §, are the eigenvalues of 6,6, and
0, respectively, and 4,6, # 8,8,. This contradicts the fact that the multiplicity of the

eigenvalue 1 is 1.

Case (ii). Suppose §,8;8; = 1 for some A € A such that the restriction of (S, E)
on S, is complete and §;, 8}, §; are the eigenvalues of 6,. If §, = §; = 8/, then (Si’ =1,
which is a contradiction, since 6 is hyperbolic. Hence we may assume that §; # 8. Let
Vi: denote the complexification of V. Suppose that Y, Y', Y € Vi: are eigenvectors
corresponding to the eigenvalues §,, §;, 8;. We consider the complexification of Q
and 6 also. As &, # 6], Y' and Y” are linearly independent. Hence [Y, [Y’, Y"]] # 0
in Q and also we have O[[Y, [Y’, Y"]] = [Y,[Y’, Y"]]. If all the §,, &}, 8} are distinct,
then consider [Y’, [Y, Y]], which is an eigenvector corresponding to the eigenvalue 1.
Also [Y',[Y, Y"]] and [Y,[Y’, Y]] are linearly independent. This is not possible as
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the eigenvalue 1 has multiplicity 1. If 8, =8} and Z € WT is an eigenvector of 0
corresponding to the eigenvalue 82, then consider [Y’, Z], which is an eigenvector
of 6 corresponding to the eigenvalue 1. Also [Y’, Z] and [Y,[Y’, Y"] are linearly
independent. This is a contradiction. Similarly we get a contradiction if §, = §;. This
proves the theorem. O

REMARK 6.4. Theorem 6.3 shows that the nilmanifold '\ M, where M is the
simply connected nilpotent Lie group corresponding to the Lie algebra M ® R and I'
is a lattice in M corresponding to M, does not admit an Anosov automorphism. In
particular, a nilmanifold '\ M, where I" corresponds to the rational Lie algebra given
by a quotient of free 3-step nilpotent Lie algebra by a one-dimensional ideal, does not
admit an Anosov automorphism.
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