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ON THE EXPECTED TIME TO RUIN
AND THE EXPECTED DIVIDENDS
WHEN DIVIDENDS ARE PAID
WHILE THE SURPLUS IS ABOVE
A CONSTANT BARRIER
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Abstract

We study the expected time to ruin in a risk process in which dividends are paid when the
surplus is above the barrier. We consider the case in which the dividend rate is smaller
than the premium rate. We obtain results for the classical compound Poisson risk process
with phase-type claim size. When the ruin probability is 1, we derive the expected time
to ruin and the expected dividends paid. When the ruin probability is less than 1, these
quantities are derived conditioning on the event that ruin occurs.
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1. Introduction

Consider a risk process with initial reserve u. Claims arrive according to a Poisson process
at rate λ, premium is paid at constant rate c, and the claim sizes are independent, identically
distributed (i.i.d.) random variables {Xi}∞i=1, with phase-type distribution with representation
(α,T ). The surplus process R(t) is defined as R(t) = u− S(t), where S(t) = ∑N(t)

i=1 Xi − ct ,
with S(0) = 0, andN(t) is the number of arrivals up to time t . Let b be a constant greater than
u. When the surplus reaches the level b, dividends are paid at a constant rate d, where d < c.
Let c1 = c − d .

Assume that c1 < λE[X], that is, the ruin probability is 1. Under this condition, we will
derive the expected time to ruin and the expected dividends paid until that time. Under the
assumption that c1 > λE[X], that is, the ruin probability is less than 1, we derive the ruin
probability, the expected time to ruin, and the expected dividends paid until that time, given
that ruin occurs.

Most of the papers that analyze risk processes with dividends assume that, when the surplus
process reaches the barrier b, all the premium is paid as dividend, i.e. d = c. De Finetti (1957)
was the first to suggest the use of the risk surplus process under the assumption that dividends
are paid when the surplus process reaches a given barrier b. Bühlmann (1970) discussed
various dividend policies for the surplus process in discrete time. In the case of continuous
time, he presented an integrodifferential equation for the expected discounted dividends paid
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until ruin for the fixed barrier strategy. He arrived at an explicit solution to this equation in
the case in which the claim size is exponentially distributed. Gerber (1979) discussed another
integrodifferential equation for the cumulative expected discounted dividends pay-out. By
considering a certain martingale, he arrived at an expression for the Laplace transform of the
time to ruin. Explicit results were presented only for the exponentially distributed claim size.
Segerdahl (1970) discussed the ruin probability in the case of a fixed absorbing barrier, i.e. where
the risk process is stopped once the barrier is reached. He found an explicit solution in the
case of exponentially distributed claim size. Dickson and Gray (1984a) extended Segerdahl’s
(1970) results to the cases of gamma and hyperexponential claim size distributions. In another
paper, Dickson and Gray (1984b) developed an alternative method of approximating the ruin
probability in the Segerdahl (1970) model.

In recent years, some research has been done on analyzing probabilistic properties and
deriving various quantities, such as the time to ruin and the deficit at the time to ruin, for
various barrier models. Wang and Politis (2002) studied some properties of the classical risk
model with a constant barrier. Having assumed that the risk process is a general random
walk Sn, they found the expected time until Sn crosses the level b. By applying a zero-mean
martingale, they arrived at an approximation and an upper bound for the expected time at which
the surplus process reaches level 0 or level b, and for the expected time at which the process
reaches the level b, given that level b is reached before level 0. However, these results were
obtained under the assumption that the surplus can be negative, i.e. that the risk process is not
stopped when ruin occurs. Irbäck (2003) discussed the time to ruin in the classical model,
assuming that the barrier b is asymptotically infinite. When u is close to the barrier, he proved
that the time to ruin is asymptotically exponentially distributed. He also obtained the Laplace
transform of the time of the first visit to the dividend barrier, given that the process reaches
the barrier, and the Laplace transform of the time between two visits to the barrier. When the
initial reserve u is very small compared to the barrier, he found the asymptotic distribution of
the time to ruin, an approximation to the probability of ruin before reaching the barrier, and the
conditional probability of ruin before reaching the barrier. He also obtained an upper bound
for the expected time to reach the barrier before ruin, given that this event occurs.

Lin et al. (2003), applied the well-known discounted penalty function defined by Gerber
and Shiu (1998). They obtained an integral equation for the expected penalty function. The
moments of the time to ruin are given by mathematical expression that are functions of the
ruin probabilities in the case without barriers. Simplified expressions were given for the cases
in which the claim size is either exponentially distributed or is a mixture of two exponentials.
In a recent paper, Frostig (2005) derived an algorithm calculating the expected time to ruin
and the expected dividends that are paid until ruin for the classical risk process with constant
barrier. The author considered two models. In the first model, the claim size has a phase-type
distribution. In the second model, the claim size is exponentially distributed, and the arrival rate
and the mean claim size depend on a random environment. In this paper, we consider the first
model, but for the case in which not all premium is paid as dividends. Another paper related
to this research is the paper by Ross and Seshadri (1999), who studied the expected time until
the work in an M/G/1 queueing system reaches a given level.

In Section 2, we describe the surplus process. In Section 3, we derive the expected time
to ruin and the expected dividends paid until ruin occurs in the case that the ruin probability
is 1. In Section 4, we derive these quantities given that ruin occurs in the case in which the ruin
probability is less than 1.
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The expected time to ruin 597

2. The surplus process

In this article, we assume that the claims are i.i.d. and distributed as is a random variable
X, where X has a phase-type distribution. Thus, Xj is distributed in the same way as the
time to absorption in a Markov process with n transient states and one absorbing state, where
absorption has strictly positive probability from any transient state. The distribution G of X is
of the form

G(x) = P(Xj ≤ x) = 1 − αeT x1

for x ≥ 0. Denote by g the density function of G, i.e. g(x) = αeT x t . Here, α is an
n-dimensional row probability vector, T is an n × n transition rate matrix of the transient
states, and 1 is an n-dimensional column vector of ones. By t = −T 1 we denote the vector
of transition rates to the absorbing state. Unless stated otherwise, we assume that c > λE[X],
that is, the probability of ruin in the absence of a barrier is less than 1. Assume that the initial
reserve is a random variable R(0). Let T R(0)(0, b) be the first time that the surplus process
reaches level 0 or level b. Let AR(0) be the event that level b is reached before level 0 and
let AR(0) be the event that ruin occurs before reaching level b. Let pR(0)0 = P(AR(0)) and let
pR(0) = 1 − p

R(0)
0 be the probability of ruin before hitting the barrier, given an initial reserve

R(0). In the risk process without barrier, the ruin probability when the initial reserve is u,ψ(u),
is less than 1. By Corollary 3.1, p. 227, of Asmussen (2000), we have

ψ(u) = α+e(T +tα+)u1, (2.1)

where α+ = −(λ/c)αT −1.
It was shown in Irbäck (2003) and Dickson and Gray (1984a) that, when R(0) = u,

pu0 = 1 − ψ(u)

1 − ψ(b)

and, thus,

pu = ψ(u)− ψ(b)

1 − ψ(b)
. (2.2)

Assume that the process hits b at time T R(0)(0, b). Then the surplus process will be above
the level b for a random period U1 and under the level b for a random time D1, and so on.
Throughout the paper, we define the period during which the surplus process is above the level b
to be the period U , and the period during which the surplus process is below level b to be the
periodD. Define a cycle as starting at the time that the surplus process crosses the level b from
below and ending at the first time it subsequently crosses the level b from below. Denote by
Cj the (duration of the) j th cycle: Cj = Uj +Dj, j = 1, 2, . . . . Thus, Dj is the time during
the j th cycle that the surplus is below the level b and Uj is the time during the j th cycle that
the surplus is above the level b. Note that Dj, j ≥ 1, are i.i.d. random variables distributed
like D, and that Uj , j ≥ 1, are i.i.d. random variables distributed like U . Let 1j , j ≥ 1, be
indicator random variables such that 1j = 1 if ruin occurs during the j th cycle and 1j = 0
otherwise. Note that the bivariate random vectors (Cj , 1j ), j ≥ 1, are i.i.d. Let N be the first
cycle in which ruin occurs, meaning that ruin occurs during DN . Clearly N is a stopping time
for the sequence ((Cj , 1j ), j ≥ 1). Let 1A be the indicator of an event A. Denote by B the
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time elapsed from the moment of ruin until the surplus process first reaches level b again, let T
be the time at which ruin occurs, and let D be the total dividends paid until ruin occurs. Then

T = T u(0, b)+ 1Au

( N∑
j=1

Cj − B

)
, (2.3)

D = d1Au

N∑
j=1

Uj . (2.4)

Similar ideas were applied in Theorem 2.2 of Ross and Seshadri (1999).

3. The expected time to ruin and the expected dividends paid until ruin, with
c1 < λ E[X]

Assume that
c1 < λE[X]. (3.1)

Under this assumption, ruin occurs with probability 1. Assume that the process hits b at time
T u(0, b). Let p be the probability that ruin occurs during Dj , for some j ≥ 1. Clearly, the
stopping time N is geometrically distributed with parameter p; thus, E[N ] = 1/p. Taking
expectations in (2.3) and (2.4), and applying the Wald identity, yields

E[T ] = E[T u(0, b)] + pu0

[
E[U ] + E[D]

p
− E[B]

]

and

E[D] = dpu0
E[U ]
p

.

In this section, we derive E[T u(0, b)], pR(0)0 , E[U ], E[D], p, E[B], and, thus, E[T ] and
E[D]. Assume that we have an initial surplus u. First consider the period U . The random
variable U is distributed in the same way as the time to ruin in a risk process in which claims
arrive according to a Poisson process of rate λ, the premium rate is c1, the claim size is phase-
type distributed with representation (α,T ), and the initial reserve is 0. Denote this risk process
by R1. Under condition (3.1), E[U ] < ∞.

Lemma 3.1. The period c1U is distributed in the same way as the busy period in a PH/M/1
queueing system, where the interarrival times are phase-type distributed with representation
(α,T ) and the service times are exponentially distributed with rate λ/c1.

Proof. Let Ñ be the number of claims that arrive until ruin occurs in the risk process
R1 described above. Let Aj , j ≥ 1, be the interarrival times. Then the Aj are indepen-
dent and identically distributed as a random variable A, exponentially with rate λ. Thus,
Ñ = infn(

∑n
j=1(c1Aj −Xj) < 0) and the time to ruin is τ1 = ∑Ñ

j=1Aj . Note that Ñ is
the number of customers that are served in a busy period B1, where the interarrival times are
distributed in the same way as X and the service times are distributed in the same way as c1A.
Thus, B1 = ∑Ñ

j=1 c1Aj (see Frostig (2004)).

Remark 3.1. An expression for the expected busy period in a PH/M/1 queue (or E[U ]), is
given on p. 111 of Neuts (1981). Let G be a matrix satisfying the equation

tαG2 +
(

T − λ

c1
I

)
G + λ

c1
I = 0, (3.2)
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where I is the n × n identity matrix and tα is an n × n matrix whose (i, j)th element equals
tiαj . Let g be the invariant vector of G; that is, g is an n-dimensional row vector such that
gG = g and g1 = 1. Let � ′ be the mean of the phase-type distribution with representation
(g,T ), i.e. � ′ = −gT −11. Then

E[U ] =
(

1

1 − c1/λE[X]
E[X2]
2 E[X] −� ′

)
1

c1
.

The overshoot below level b at the end of a U period is a random variable, which we
denote by Z. Clearly, Z is distributed in the same way as the deficit at ruin in the case
of Poisson claims arrivals at rate λ, premium rate c1, and phase-type distributed claim sizes
with representation (α,T ), and has a phase-type distribution with representation (α1+,T ) (see
Proposition 4.1, p. 229, of Asmussen (2000), and see below for the definition of α1+). Note that
Z = ∑Ñ

j=1(Xj − c1Aj). This is exactly the expression for the idle period in a G/M/1 queueing
system, as described in Remark 3.1 (see Frostig (2004)). Let θ be the least positive root of the
equation

r = E[e−(λ/c1)(1−r)X].
It can be shown that θ < 1 if and only if (λ/c1)E[X] > 1, and that θ = 1 otherwise. The idle
period has a density given by (see Section 8.1, p. 35, of Prabhu (1997b))

fZ(x) = λ

c1

∫ ∞

x

exp

(
− λ

c1
(1 − θ)(y − x)

)
g(y) dy

= λ

c1

∫ ∞

x

exp

(
− λ

c1
(1 − θ)(y − x)

)
αeT y t dy

= − λ

c1
α

(
T − λ

c1
(1 − θ)I

)−1

eT x t .

That is, Z has a phase-type distribution with representation (α1+,T ), where

α1+ = − λ

c1
α

(
T − λ

c1
(1 − θ)I

)−1

.

Remark 3.2. Note that if (λ/c1)E[X] < 1, then θ = 1. In this case, α1+ = −(λ/c1)αT −1 and
α+

1j is the probability that ruin occurs and the claim hits level 0 during phase j . This result is
derived in Section 3a, p. 227, of Asmussen (2000) by applying different arguments.

Thus,

fZ(z) = α1+eT zt,

P(Z > z) = α1+eT z1,

E[Z] = −α1+T −11. (3.3)

Lemma 3.2. The mean of a D period is given by

E[D] = α1+T −11

c − λE[X] . (3.4)
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Figure 1: The process R(t) and its fluid representation R′(t).

Proof. The D period is distributed in the same way as the busy period of an M/G/1 queue
with Poisson arrivals at rate λ, where the service time of the first customer in the busy period
is distributed in the same way as Z, the service time of a customer that arrives during the busy
period is distributed in the same way asX, and the service rate is equal to c. Thus, (3.4) follows
from a known result for M/G/1 queues (see p. 138 of Prabhu (1997a)) and (3.3).

Next, we derive the probability p of ruin during aD period. If Z > b then ruin occurs at the
end of the U period. Given that Z = z < b, the probability that ruin occurs before reaching
level b again is

pb−z = ψ(b − z)− ψ(b)

1 − ψ(b)

(see (2.2)). Thus,

p = P(Z > b)+
∫ b

0

ψ(b − x)− ψ(b)

1 − ψ(b)
fZ(x) dx,

where ψ(u) is as given in (2.1).
Consider the surplus process R(t) and assume that 0 < R(0) < b. Note that R(t) increases

at rate c and has phase-type-distributed downwards jumps. When a downwards jump crosses
the level 0 (ruin occurs) it can be in one of the phases 1, . . . , n. In Figure 1(a), we illustrate
the process R(t), where the claims are phase-type distributed with two phases denoted by 1
and 2. Let pR(0)j , j = 1, . . . , n, be the probability that ruin occurs before reaching level b and
during claim phase j , let pR(0)0 be the probability of reaching b before ruin, and let pR(0) be
the (n+ 1)-dimensional probability vector pR(0) = (p

R(0)
0 , . . . , p

R(0)
n ).

To find pR(0), we apply the theory of Markov additive processes. In order to do so, we
first present the fluid description of the surplus process, denoted by R′(t). The process R′(t)
increases at rate c until a claim arrives. If the claim is of size v then the process starts to
decrease at rate 1 for v time units and then increases again at rate c; that is, in the fluid
model, the downwards jumps are (pictorially speaking) replaced by segments with slope −1.
This description was also used by Asmussen and Kella (2000) and Kella et al. (2003). In
Figure 1(b), we illustrate the fluid representation of R(t).

The fluid representation enables us to apply the multidimensional martingale for Markov
additive process introduced in Asmussen and Kella (2000). The process R′(t) is a Markov
additive process in which the modulating states are 0, 1, . . . , n. When in state 0, the process
increases at rate c and, when in states 1, . . . , n, the process decreases at rate 1.

Let Jt be the modulating state of R′(t) at time t . Note that the probability that R′(t) hits
level b before level 0, starting with initial surplus R(0), is pR(0)0 , and the probability that it hits
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level 0 when the modulating state is j is pR(0)j , j = 1, . . . , n. The process {Jt , t ≥ 0} is a
Markov process with a generator Q, where

Q =
(−λ λα

t T

)
.

Let Ft (γ ) be a matrix with (i, j)th element Ei[eγR′(t); Jt = j ] (where, for a random variable
X and an event A, E[X; A] := P(A)E[X | A]). Then Ft (γ ) = etK(γ ), where

K(γ ) = Q +
(
cγ 0
0 −γ I

)

(see Proposition 2.2, p. 311, of Asmussen (2003)). The matrix K(γ ) has a real eigenvalue
κ(γ ) with maximal real part (see p. 312 of Asmussen (2003)). Let hγ = (h

γ
0 , . . . , h

γ
n )

�
be its corresponding right eigenvector. By Proposition 2.3, p. 312, of Asmussen (2003),
eR

′(t)−tκ(γ )hγJt is a martingale. Assume that the equation det K(γ ) = 0 has n + 1 roots,
γ0, . . . , γn. Let hj , j = 0, . . . , n be the eigenvector corresponding to γj . Note that one of the
roots is 0 and that the components of the corresponding eigenvector are all equal to 1. Thus (see
Proposition 2.4, p. 312, of Asmussen (2003) and Lemma 2.1 of Asmussen and Kella (2000)),
eγjR

′(t)hjJt is a martingale. Let T ′R(0)(0, b) be the first time that R′(t) exits [0, b], starting at
R(0). Note that J

T ′R(0)(0,b) = 0 if R′(T ′R(0)(0, b)) = b, and that J0 = 0. Thus, an application
of the optional sampling theorem yields

E[eγjR(0)hj0] = ebpR(0)0 h
j
0 +

n∑
k=1

p
R(0)
k h

j
k . (3.5)

Thus, we obtain n+ 1 equations for pR(0)0 , . . . , p
R(0)
n .

Remark 3.3. (i) Note that the probability of ruin before reaching the barrier b is

pR(0) =
n∑
k=1

p
R(0)
k .

(ii) Given that ruin occurs before the surplus reaches level b, the deficit at ruin has a phase-type
distribution with representation (p̃R(0),T ), where p̃R(0) = (p

R(0)
1 /pR(0), . . . , p

R(0)
n /pR(0)).

Lemma 3.3. The mean of T u(0, b) is given by

E[T u(0, b)] = bpu0 + pup̃uT −11
c − λE[X] .

Proof. Given that ruin occurs, the deficit at ruin has a phase-type distribution with represen-
tation (p̃R(0),T ) and mean −p̃R(0)T −11. The process R(t) − (c − λE[X])t is a zero-mean
martingale. An application of the optional sampling theorem yields

E[R(T u(0, b))] − (c − λE[X])E[T u(0, b)] = 0.

Thus,
bpu0 + pup̃uT −11 − (c − λE[X])E[T u(0, b)] = 0

and the result follows.
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We now derive E[B], the time elapsed between the moment that the surplus downcrosses
level 0 and the moment that it reaches level b.

Proposition 3.1. Let 	 be the deficit at ruin when ruin occurs during a D period. Then

E[B] = b + E[	]
c − λE[X] .

Proof. The time elapsed before the surplus process reaches the barrier b is distributed in the
same way as a busy period in an M/G/1 queueing system with Poisson arrivals at rate λ, where
the service time of a customer that arrives during the busy period is distributed in the same way
as X, the service time of the first customer in the busy period is distributed in the same way as
b +	, and the service rate is c. Thus, the result follows (see p. 138 of Prabhu (1997a)).

To find E[	], we consider two cases: Z > b and Z ≤ b. First let Z > b. Then (3.3)
implies that the overshoot, or the deficit at ruin,	, is phase-type distributed with representation
(α1+eT b,T ). Thus,

E[	; Z > b] = −α1+eT bT −11.

Now let Z ≤ b. Then, given that ruin occurs, 	 is phase-type distributed with representation
(p̃b−Zb ,T ), where Zb is distributed in the same way as the conditional distribution of Z given
that Z ≤ b. We derive p̃b−Zb from (3.5) and Remark 3.3(ii) by substituting for the distribution
of R(0) with the distribution of b − Zb. Thus, the conditional distribution of 	 given that
Z ≤ b is

E[	 | Z ≤ b] = −pb−Zb p̃b−ZbT −11.

Corollary 3.1. The mean of B is given by

E[B] = b

c − λE[X] − α1+eT bT −11 + P(Z ≤ b)pb−Zb p̃b−ZbT −11

c − λE[X] .

4. The expected time to ruin and the expected dividends paid until ruin, with
c1 > λ E[X]

In the case in which c1 > λE[X], the probability of ruin is less than 1. In this case, we
will first find the ruin probability and then the expected time to ruin and the expected dividends
paid, given that ruin occurs.

4.1. The ruin probability

Starting with initial surplus u, ruin occurs before reaching level b with probability pu, as in
(2.2). With probability pu0 , the surplus reaches level b before ruin. Given that Au occurs, ruin
occurs if and only if N < ∞. In other words, ruin occurs if there exists an n < ∞ such that
each period Uj is finite for j = 1, . . . , n, and occurs during Dn. In this case, N = n. Let CU
be the event of ruin for a risk process with Poisson arrivals at rate λ, claim size distributed in
the same way as X, premium rate c1, and initial reserve 0. The probability that a U period is
finite is the same as the probability of CU :

P(CU) =: ψ1 = λE[X]
c1

. (4.1)
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Let Z̃ be the deficit at the end of the U period, i.e. the deficit when ruin occurs. Given that U is
finite (ruin occurs), Z̃ has the following density function and expectation (see Theorem 12.2,
p. 103, of Bowers et al. (1986)):

f
Z̃
(z) = 1 −G(z)

E[X] ,

E[Z̃] = E[X2]
2 E[X] . (4.2)

Remark 4.1. Let ν = α+
1 c/λE[X], where α+

1 is as defined in Remark 3.2. Then, given
that the U period is finite, Z̃ has a phase-type distribution with representation (ν,T ), where
ν = −αT −1/E[X] (see Corollary 2.3, p. 224, of Asmussen (2000)).

Let CD be the event of ruin occurring during a D period. Given CU , the probability p of
ruin during a D period is

p = P(Z̃ > b)+
∫ b

0

ψ(b − x)− ψ(b)

1 − ψ(b)
f
Z̃
(x) dx

= νeT b1 +
∫ b

0

ψ(b − x)− ψ(b)

1 − ψ(b)
νeT x t dx,

where ψ(u) is as in (2.1). Thus, the ruin probability is

P(T < ∞) = pu + pu0�,

where

� = ψ1p

∞∑
j=0

(ψ1(1 − p))j = ψ1p

1 − ψ1(1 − p)
.

4.2. The expected time to ruin and the expected dividends paid given that ruin occurs

First we assume that the initial reserve is b; that is, dividends are paid from time 0 until
the surplus process downcrosses the barrier b. Let the time to ruin be Tb, and let Db be
the total dividends paid until ruin. The event (Tb < ∞) occurs if and only if the event
(N < ∞) ∩ (Uj < ∞, Dj < ∞, j = 1, . . . , N) occurs. Thus,

E[Tb; Tb < ∞] = E

[ N∑
j=1

(Uj +Dj)1(N < ∞, Uj < ∞, Dj < ∞, j = 1, . . . , N)

]

− E[B; Tb < ∞].
Proposition 4.1. When the time to ruin is finite, its expectation is

E[Tb; Tb < ∞] = E

[ N∑
j=1

(Uj +Dj)1(N < ∞, Uj < ∞, Dj < ∞, j = 1, . . . , N)

]

− E[B; Tb < ∞]
= E[U +D; U < ∞, D < ∞] E[N; N < ∞]

− E[B | Tb < ∞] P(Tb < ∞).

https://doi.org/10.1239/jap/1127322014 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1127322014


604 E. FROSTIG

Proof. The proof is the same as the proof of the Wald identity (see, e.g. Theorem 3.3.3,
p. 59, of Ross (1983)).

To find E[U ; U < ∞], we apply the change-of-measure theorem. Let MX(r) = E[erX] be
the moment-generating function of X at r . Let γ be the Lundberg coefficient, i.e. the positive
solution to the equation λMX(r)− c1r − λ = 0, let

S1(t) =
N(t)∑
j=1

Xj − c1t,

let τ1 = inf{t : S1(t) > 0}, and let {Ft }t≥0 be the natural filtration adapted to S1(t). With
respect to {Ft }t≥0, the process Lγ (t) = eγ S1(t) is a martingale with mean 1. For A ∈ Ft , let

Pγ (A) = E[Lγ (t); A].
By Proposition 2.2, p. 27, of Asmussen (2000), or Proposition 3.1, p. 359, of Asmussen (2003),
Pγ is a well-defined probability measure.

The probability measure Pγ defines a risk process Rγ (t) = −Sγ (t) with the following
parameters: claims arrive according to a Poisson process at rate λγ = λMX(γ ), the premium
rate is c1, and the claim sizes are distributed in the same way as a random variable Xγ , with
density function

gγ (x) = eγ xg(x)

MX(γ )
.

Let h = (−γ I − T )−1t , and let � be a diagonal matrix with the elements of h on the
diagonal. Then Xγ has a phase-type distribution with representation (αγ ,Tγ ), where

Tγ = �−1T � + γ I ,

αγ = α�

MX(γ )
.

The corresponding exit rate vector is tγ = �−1t (see, e.g. Asmussen (1989), (1992)).
In the risk process Rγ , ruin occurs with probability 1 (see p. 362 of Asmussen (2003)).

Thus, under the measure Pγ , U is distributed in the same way as the busy period in a PH/M/1
queueing system in which the interarrival times are phase-type distributed with representation
(αγ ,Tγ ) and the service times are exponentially distributed with rate λγ . Denote by Eγ the
expectation operator with respect to Pγ . As in (3.2), let Gγ be a matrix satisfying the equation

tγαγG2
γ +

(
Tγ − λγ

c1
I

)
Gγ + λ

c1
I = 0.

Let Bγ be an n× n matrix solving the equation

Bγ = −(Tγ − λγ I )−1Gγ − (Tγ − λγ I )−1tγαγ (GγBγ + BγGγ ).

The (i, j)th component of Bγ is the expected busy period of a PH/M/1 queue starting at arrival
phase i and terminating at arrival phase j . Thus, the j th component of the vector αγBγ equals
the busy period starting at phase i with probability αγ,i , i = 1, . . . , n, and ending at arrival
phase j (see Equation (3.3.20), p. 101, of Neuts (1981)).
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Proposition 4.2. When a U period is finite, its expectation is

E[U ; U < ∞] = αγBγ (γ I − Tγ )
−1tγ .

Proof. We have
E[U ; U < ∞] = Eγ [e−γ S1(U)U ],

by Theorem 2.3, p. 27, of Asmussen (2000) or Theorem 3.3, p. 359, of Asmussen (2003). Note
that S1(U) is the deficit when ruin occurs, and that, under the probability measure Pγ , it has a
phase-type distribution with representation (β,Tγ ), where β is the vector of probabilities that
the surplus process hits level 0 at phase j, j = 1, . . . , n. The Laplace transform of S1(U) is
β(sI − Tγ )

−1tγ . According to the discussion just before Proposition 4.2, the j th component
of αγBγ is the expected value of the U period starting at phase i with probability αγ,i and
terminating at phase j . Given that the U period ends at phase j , j = 1, . . . , n, the deficit
S1(U) is independent of the length of the U period. Thus, the result follows.

We now derive E[D; D < ∞]. Given that U < ∞, D is distributed in the same way as
the busy period in an M/G/1 queueing system in which the service time of the first customer
is distributed as in (4.2), the service times of all the other customers arriving during the busy
period are distributed in the same way as X, and the service rate is c. The expectation of such
a busy period is

E[D | U < ∞] = E[X2]
2 E[X](c − λE[X]) .

Thus,

E[D; U < ∞] = ψ1
E[X2]

2 E[X](c − λE[X]) ,
where ψ1 is as given in (4.1). Let	 be the deficit at ruin, given that ruin occurs. To find E[	]
we consider two cases: Z̃ > b and Z̃ ≤ b. First let Z̃ > b. In this case, by Remark 4.1, 	 has
a phase-type distribution with representation (νeT b,T ) and, thus,

E[	; Z̃ > b] = −νeT bT −11.

Now let Z̃ ≤ b. Let Z̃b be a random variable distributed in the same way as (Z̃ | Z̃ ≤ b).
Given that Z̃ ≤ b, 	 has a phase-type distribution with representation

(pb−Z̃b p̃b−Z̃b ,T ),

where p̃b−Z̃b can be derived from Remark 3.3 and (3.5).

Proposition 4.3. Given that ruin occurs, the expected time E[B | Tb < ∞] from that point
until level b is reached again is

E[B | Tb < ∞] = b

c − λE[X] − νeT bT −11 + P(Z̃ ≤ b)pb−Z̃b p̃b−Z̃bT −11
c − λE[X] .

Proof. The time elapsed between the moment that ruin occurs and the moment that the
surplus again reaches the level b is distributed in the same way as the busy period in an M/G/1
queueing system that has a Poisson arrival process of rate λ, a service time distribution G, a
service rate c1, and which is such that the service time of the first customer in the busy period
is distributed in the same way as b +	. Thus, the result follows.
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The following proposition is now straightforward.

Proposition 4.4. The mean values of Tb and Db, given that Tb is finite, are

E[Tb | Tb < ∞] = 1

�
(E[U ; U < ∞] + E[D; D < ∞]) ψ1p

(1 − ψ1(1 − p))2

− E[B | Tb < ∞],

E[Db | Tb < ∞] = E[U ; U < ∞]
�

ψ1p

(1 − ψ1(1 − p))2
.

Next, assume that the initial reserve is u, 0 < u < b. Then

E[T ; T < ∞] = pu E[T u(0, b) | R(T u(0, b)) < 0]
+ pu0 (E[T u(0, b) | R(T u(0, b)) = b]1(Tb < ∞)+ E[Tb; Tb < ∞])

≤ pu E[T u(0, b) | R(T u(0, b)) < 0]
+ pu0 (E[T u(0, b) | R(T u(0, b)) = b] + E[Tb; Tb < ∞])

= E[T u(0, b)] + pu0 E[Tb; Tb < ∞]
and, thus,

E[T | T < ∞] ≤ E[T u(0, b)] + pu0 E[Tb; Tb < ∞]
P(T < ∞)

,

E[D | T < ∞] = pu0 E[Db | Tb < ∞]�
P(T < ∞)

.
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