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Introduction. The independence of postulates for well-known systems is a 
question of general interest. A closely related question is whether or not, by 
altering one or more of the postulates in an independent set, the set remains 
independent. From this standpoint the best sets of postulates are those which 
involve, first, the fewest postulates and, next, the least number of variables. 
As a rule progress is made in this direction at the sacrifice of simplicity of 
postulates. In this paper, in counting postulates, we ignore properties such as 
closure under the operations and count only identities or those stating that one 
equation implies another. 

For Boolean algebras, sets of three postulates in three variables are common. 
We mention here only three particularly simple sets. The author's set [11] is of 
interest because two of the three postulates describe distributive lattices. 
Byrne [5] has an elegant set which consists of only two postulates if the postulate 
in the form of a double implication is not counted twice. A very simple set may 
be derived from Set IV of Huntington [10] by replacing commutativity and 
associativity by cyclic associativity (compare [5]). 

Sets of two postulates are less common. Croisot [7] has one in five variables 
based on the ternary median operation and complements. Bernstein [2] has one 
in four variables based on the operation of implication. Bernstein [1] has a set 
in only three variables based on the stroke operation of Sheffer. Sets of two 
postulates based on ring operations have been given by Bernstein [3] and Byrne 
[6] but these involve seven and nine variables. In §§1 and 2 below we show that 
the number of variables may be reduced to four. This is made possible by the 
introduction of a single postulate for Boolean groups. 

The only single postulate system for Boolean algebras that has been given is 
that of Hoberman and McKinsey [9]. It is hard to classify since it involves a 
single variable and a variable function. It may be regarded as an infinite set of 
postulates, all having the same form. In §3 below a single postulate system is 
given which involves five variables. 

As an indication that near maximum condensation is being reached in these 
sets, we have the result of Diamond and McKinsey [8] showing that the use of 
at least three variables is necessary in describing Boolean algebras. 

1. Boolean groups. In this and the next section we consider a set © closed 
under addition. The following notation proves convenient. Let a + b = (a, 6), 
a + (6, c) = (a, 6, c) and, in general, a + (bh b2, . . . , bn) = (a, b\, b2, . . . , bn). 
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We assume the following identity holds in ©: 

P (a, b, c, b, c, b, a) = b. 

It follows at once that 

1.1 (a, b, a, b, a, b, a) — b. 

1.2 (a + b) + a = b. 

Proof. By P, notation, and 1.1, 

b = (a + b, b, a, b, a,b, a + 6) 
= (a + b) + (6, a, &, a, 6, a, 6) 

= (a + 6) + a. 

1.3 a + (b + a) = b. 

Proof. By applying 1.2 twice 

a + (6 + a) = [(6 + a) + 6] + (6 + a) = &. 

1.4 c + (b + a) = (a + c) + b. 

Proof. Starting with P and using 1.2, 

(b, c, by c,b, a) = b + #, 
(c, 5, c, b, a) = (b -\- a) + b = a, 

(&, c,b, a) = a + c, 
and (c, 5, a) = (a + c) + &. 

From 1.4, 1.2, and 1.3, we have 

1.5 b = b + (a + a) = (a + a) + b. 

1.6 a + a = 6 + b. 

Proof. By 1.2 and 1.5, both sums equal [b + (a + a)] + £. 

Denoting a + a by 0, we have a + 0 = 0 + a = a. Setting c — 0 in 1.4, 
we obtain 

1.7 a + b = b + a. 

This, with 1.4, implies 

1.8 a + (b + c) = (a + &) + c. 

The proof that © is a Boolean group is now complete. 

2. Boolean rings. We now assume © is closed under multiplication and 
satisfies, in addition to P, the identity Q given below. The symbol / found in 
postulate Q represents a fixed element of ©. 
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Q (a, (cc)a, a(b + c), b(cd)) = (ba, (II)a, d(b + b), c(bd)). 

We use freely the results of the previous section. In particular we note that 
equal terms may be cancelled if they occur on the same side or opposite sides of 
an equation. 

If a — d and b = c we have from Q that 

2.1 a + (bb)a = ba + (II)a. 

Setting b = I in 2.1 we obtain 

2.2 a = la. 

Hence (II)a = la = a and from 2.1 we have 

2.3 (bb)a = ba. 

The previous results may be used to give Q the form 

2.4 (ca, a(b + c), b{cd)) = (ba, dO, c(bd)). 

Setting a = b = I in 2.4 we have 

2.5 ci + c = dO. 

Setting d = I, we obtain 

2.6 c = ci. 

Equations 2.5 and 2.6 imply that 

2.7 dO = 0. 

Equations 2.3 and 2.6 imply that 

2.8 bb = b 

Equation 2.7 may be used to give 2.4 the form 

2.9 ca + a(b + c) + b(cd) = ba + c(bd). 

Setting d — 0, we have 

2.10 a(b + c) = ba + ca. 

This and 2.9 imply 

2.11 b(cd) = c(bd). 

Setting d = I in 2.11 we find 
2.12 be = cb. 

The last two identities show that multiplication is associative and commuta­
tive. Idempotence, the distributive law, and the role of 7 as a unit are given in 
2.8, 2.10, and 2.2. Thus [4, p. 154], © is a Boolean ring with unit or a Boolean 
algebra. 

3. A single postulate. We consider a set © closed under an operation 
denoted by a vertical bar. It is convenient to introduce primes to denote 
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"squares." Thus a' = a\a, a" = (a')' and so on. It is assumed © satisfies the 
following postulate: 

R (x\ty\y))" = (a\{V\c))" implies that x = (b\a)\ (c'\a). 

If we set a = x, b = c = y, we obtain 

3.1 x = (;y|x)| (y|x). 

Setting 3/ = x we have 

o . ^ X ^— X \X \Xj. 

3.3 (o\(b'\c))' = (&|a)|(c'|a) 

Proo/. Set x = a \ (V \c). By 3.2, (x' | (x' \ x))" = (a \ {V \ c))". By R, 
x' = (i|a)|(c'|a). 

From 3.1 and 3.3 we have 

3.4 x = (x\(yf\y))f. 

3.5 x' — y' implies x = y. 

Proof. If x' = / we have from 3.4 that (x| {x'\x))n = (y\ {y'\y))". By R and 
3.2, * = (ybOltvly) = y . 

3.6 ^Kyb) = Ho*'!*) 

Proof. By 3.4, since both terms equal x, (x\(y'\y))' = (x| (JS'|Z))'. We now 
apply 3.5. 

3.7 (x|x")' = X ,|(X , ,|JC). 

Proof. Since x" = x'|x' this is a consequence of 3.3. 

O.O X X — X . 

Proof. By 3.7 and 3.3, (x|x")" = (s'|(x"|x))' = (x'|x')|(x'|x') = x'". We 
now apply 3.5. 

3.9 x"|x = x' 

Proof. By 3.3 and 3.7, (x"|x)" = ((x"|x)| (s"|x))' = (x'|(x"|x))' = (x|x")". 

We now apply 3.5 and 3.8. 

3.10 x\x' = x'|x. 

Proof. By 3.9 and 3.3, (x|x')' = (x|(x"|x))' = (x'|x)'. We now apply 3.5. 

3.11 x" = x. 

Proof. By 3.4, 3.3, 3.8, 3.10, 3.6, and 3.2, x" = (x"|(x'|x))' = (x|x")|(x'|x") 
= x'|(x'|x") = x'|(x"|x') = x'|(x'|x) = x. 
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3.12 x\y = y\x. 

Proof. x\y = (x\{y'\y'))" = {{y\x)\ {y"\x))' = {y\x)" = y\x. 

Identities 3.11, 3.4, and 3.3 are clearly equivalent to Sheffer's three postulates 
and these together with 3.12 to Bernstein's two postulates [1]. Thus © is a 
Boolean algebra under the operations defined by x + y = {x\y)f and xy = x'\y'. 
It is not unlikely that a variation of R would give a single Boolean algebra 
postulate expressed in terms of complements and either meets or joins. 
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