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Understanding the interplay between thermal, elastic and hydrodynamic effects is crucial
for a variety of applications, including the design of soft materials and microfluidic
systems. Motivated by these applications, we investigate the emergence of natural
convection in a fluid layer that is supported from below by a rigid surface, and covered
from above by a thin elastic sheet. The sheet is laterally compressed and is maintained at a
constant temperature lower than that of the rigid surface. We show that for very stiff sheets,
and below a certain magnitude of the lateral compression, the system behaves as if the
fluid were confined between two rigid walls, where the emergent flow exhibits a periodic
structure of vortices with a typical length scale proportional to the depth of the fluid,
similar to patterns observed in Rayleigh–Bénard convection. However, for more compliant
sheets, and above a certain threshold of the lateral compression, a new local minimum
appears in the stability diagram, with a corresponding wavenumber that depends solely
on the bending modulus of the sheet and the specific weight of the fluid, as in wrinkling
instability of thin sheets. The emergent flow field in this region synchronises with the
wrinkle pattern. We investigate the exchange of stabilities between these two solutions,
and construct a stability diagram of the system.

Key words: Bénard convection, pattern formation

1. Introduction
Understanding the onset of natural convection in systems where fluid layers interact with
elastic boundaries is a fundamental problem in fluid mechanics, with implications for
a wide range of industrial and natural processes. This phenomenon has been leveraged
for technological applications such as convection-driven snap actuators (Litvinov et al.
2024) and energy-harvesting devices that exploit the interaction between thermal gradients
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and elastic deformations (Zhao 2013; Han et al. 2016). In natural systems, the interplay
between natural convection and moving boundaries is observed in a variety contexts.
For instance, convection beneath tectonic plates influences the thermal and mechanical
dynamics of the Earth’s crust (Bercovici 2003); convection around biofilms facilitates the
transport of solutes into and out of the biofilms (Stewart 2012); and within the intracellular
environment, convection contributes to maintaining the spatial organisation of organelles
and facilitating the directed transport of molecules and nutrients (Howard et al. 2019).

One of the most fundamental examples of natural convection is the Rayleigh–Bénard
set-up (Chandrasekhar 1961; Drazin 2002; Goluskin 2016). In this system, a fluid layer is
confined between two horizontal surfaces, where the lower surface is kept at a higher
temperature than the upper one. When the temperature difference exceeds a critical
threshold, buoyancy forces drive the formation of convection currents: less dense, warmer
fluid rises, while denser, cooler fluid sinks. This process organises the flow into a periodic
structure of vortices, with a characteristic length scale that is determined by the depth
of the fluid layer. Over the years, this foundational set-up has been extensively studied
with various modifications, including the replacement of the upper rigid plate with free
boundary conditions, and the addition of temperature-dependent surface tension and
viscosity (Scriven & Sternling 1964; Smith 1966; Davis 1987). However, the scenario in
which the upper rigid plate is replaced by a thin sheet with a non-zero bending modulus
has remained unexplored.

Nonetheless, the mechanics of a sheet that is resting on a fluid substrate and is quasi-
statically compressed (without a temperature gradient) has been investigated extensively
(Cerda & Mahadevan 2003; Pocivavsek et al. 2008; Huang et al. 2010; Audoly 2011;
Diamant & Witten 2011; Brau et al. 2013; Oshri et al. 2015; Oshri & Diamant 2017).
Previous studies have shown that beyond a critical threshold of the lateral compression,
the flat configuration of the sheet becomes unstable, leading to the formation of a
periodic pattern known as ‘wrinkles’. The emergence of this pattern is driven by
the energetic competition between the sheet’s bending energy, which favours smaller
wavenumbers to minimise bending deformations, and the fluid’s energy, which favours
higher wavenumbers to reduce the fluid elevation. The balance of these two energies
produces a well-defined wavenumber that scales as (ρ�g/B)1/4, where B is the sheet’s
bending modulus, ρ� is the density of the fluid, and g is gravitational acceleration. Notably,
in contrast to Rayleigh–Bénard convection, the wrinkling phenomenon is independent
of the depth of the fluid. Beyond conceptual interest, wrinkle formation has practical
applications, including determining the elastic properties of thin materials (Chung,
Nolte & Stafford 2011; Knoche et al. 2013; Jahn et al. 2024). More recently, it has also
been proposed as a potential mechanism for anti-fouling in biofilms (Pocivavsek et al.
2018, 2019).

In this study, we combine the two phenomena of Rayleigh–Bénard convection and
wrinkle formation to investigate how the upper thin sheet with a non-zero bending modulus
and the lateral compression influence the onset of natural convection. In particular, we note
that placing a thin sheet on top of the fluid layer introduces an additional length scale to the
classical Rayleigh–Bénard system, namely, the wrinkling length. Our goal is to understand
how this additional length affects the critical conditions and the emergent patterns at
the onset of instability. To address this question, we developed an analytical model that
integrates the theory of thin elastic sheets into the classical model of the Rayleigh–Bénard
set-up. Our system consists of an infinite fluid layer of finite depth, whose lower surface is
rigid, and whose upper surface is covered by a thin sheet. The sheet is subjected to lateral
compression, and its surface is maintained at a constant temperature that is lower than
that of the rigid plate. Given the physical parameters of the sheet and the fluid, and fixing
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the lateral compression, we aim to determine the critical temperature difference at which
instability occurs.

Our analysis demonstrates that placing a thin elastic sheet on top of the fluid does indeed
significantly affect both the critical temperature difference for the onset of instability and
the emergent flow pattern. In particular, we show that if the lateral compression exceeds a
certain threshold, then the Rayleigh–Bénard pattern is pre-empted by a different solution
characterised by a wavenumber proportional to the wavenumber of the wrinkles. The flow
in this new solution still consists of a periodic structure of vortices, but these vortices are
now synchronised with the wrinkle pattern, such that the upward and downward streams
align with the hills and valleys of the wrinkles, respectively. Additionally, in contrast to the
Rayleigh–Bénard solution, in which the vortex cores are located at the midpoint of the fluid
depth, the positions of the vortex centres in this new solution depend on the wavelength of
the wrinkles. For example, when the wrinkle wavelength is smaller than the fluid depth,
the vortices form much closer to the sheet, and their strength decays exponentially away
from it. These characteristics allow us to derive an approximate solution for the model that
quantifies the critical compression and temperature difference at which instability occurs.
Notably, we show that the transition between the two solutions typically occurs at lateral
compressions that are very close to those in the static wrinkling instability. Moreover, as
the lateral compression approaches its critical value in the wrinkling threshold, instability
is triggered at smaller temperature differences.

The paper is organised as follows. In § 2, we formulate the problem and present the
equations describing the coupled dynamics between the fluid and the elastic sheet. In § 3,
we develop the linear stability equations that govern the system at the onset of instability.
We also examine two limiting cases of these equations: the classical Rayleigh–Bénard
instability, where the thin sheet is replaced by a rigid surface, and the wrinkling instability,
where a thin sheet is placed on top of the fluid and is laterally compressed. In § 4, we
analyse solutions of the linear model and discuss the conditions for the emergence of a
new hydro-thermo-elastic instability. Finally, we summarise our results in § 5, and propose
possible extensions for future studies.

2. Formulation of the problem
An inextensible thin sheet of infinite length, thickness h, density ρsh, and bending
modulus B, lies on top of a Newtonian fluid layer of depth d and is subjected to uniaxial
compression by a lateral force per unit length Fx . The bottom of the fluid, assumed to
be a rigid surface, and the sheet are maintained at constant temperatures Th and Tc,
respectively, where Th > Tc. The fluid has kinematic viscosity ν, thermal diffusivity κ

and temperature-dependent density

ρ� = ρ0
� [1 − α(T − Tc)], (2.1)

where α is the coefficient of volume expansion, T is the temperature of the fluid,
and ρ0

� is the density of the fluid at temperature Tc. The system is subjected to gravitational
acceleration g in the negative y-direction, where we place a Cartesian coordinate system
at the undeformed configuration of the sheet, as in figure 1.

Initially, the fluid is at rest, and the sheet is flat but laterally compressed by the force Fx .
The temperature difference �T ≡ Th − Tc is then increased until instability occurs in the
form of natural convection. In this analysis, we examine the critical conditions at which
instability arises, and the characteristics of the fastest-growing unstable mode.

Hereafter, we use the standard normalisation of the Rayleigh–Bénard set-up: we
normalise all lengths to the depth of the fluid layer d, and time to the thermal diffusive time
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Fx Fx

y
xT = Tc

y = –d, T = Th

Figure 1. The system set-up consists of a fluid layer of depth d, covered by a thin elastic sheet that is subjected
to lateral compression. The bottom surface of the fluid and the sheet are maintained at constant temperatures
Th and Tc, respectively. The sheet remains flat, and the fluid is at rest before instability sets in (not shown in the
figure). However, after instability has set in, the fluid flow may induce buckling of the upper sheet.

scale d2/κ . In addition, we define the temperature relative to Tc, and normalise it by the
temperature difference �T , i.e. T → (T − Tc)/�T . Taking into consideration the physical
parameters of the system, this gives rise to four independent dimensionless numbers:

Pr = ν

κ
, Rg = gd3

κν
, Λ = B

κ2ρshh
, λ= ρshh

ρ0
� d

, (2.2)

where Pr is the Prandtl number, Rg represents the ratio between gravity and thermal and
viscous diffusivity (sometimes referred to as the Galilei number; Or & Kelly 2002), Λ

denotes the ratio of the thermal diffusivity time scale to the inertial time scale of the sheet,
and λ is the sheet-to-fluid mass ratio. In addition, there are two control parameters:

Ra = gd3α �T

κν
, fx = Fx d2

B
, (2.3)

where Ra is the Rayleigh number, which is proportional to the temperature difference �T ,
and fx is the normalised lateral force.

The state of the fluid is determined by four fields, two of which are the components of
the fluid’s velocity vector u(x, y, t) = (ux , uy); the other two are the pressure p(x, y, t)
and temperature T (x, y, t) fields. The temporal evolution of these fields is determined
by equations of motion that describe the balance of mass, momentum and energy. In the
Boussinesq approximation, these equations read (Chandrasekhar 1961)

∇ · u = 0, (2.4a)
1
Pr

Du
Dt

= ∇ · σ + (RaT − Rg) ŷ, (2.4b)

DT

Dt
= ∇2T, (2.4c)

where D/Dt = ∂/∂t + u · ∇ is the convective derivative, ∇ is the two-dimensional
gradient operator, and σi j = −pδi j + (∂ui/∂x j ) + (∂u j/∂xi ) is the stress tensor of the
fluid, where δi j is the isotropic tensor.

At y = −1, the fluid is at rest and is held at a constant temperature. This gives the
boundary conditions

ux (x, −1, t) = 0, uy(x, −1, t) = 0, T (x, −1, t) = 1. (2.5)

At the upper layer, the fluid is in contact with the sheet. To describe this contact, we first
define the function ysh(x, t), which represents the height of the sheet relative to the flat
configuration. Additionally, we restrict the formulation to shallow deflections of the sheet
(Landau & Lifshitz 1986) and neglect deformations in the x-direction. (For an inextensible
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sheet, deformations in the x-direction are proportional to y2
sh and are later negligible in

the linear stability analysis.) Since the sheet and the fluid have the same velocity at their
interface, and the sheet is maintained at a constant temperature, we prescribe the following
boundary conditions:

ux (x, ysh, t) = 0, uy(x, ysh, t) = ∂ysh

∂t
, T (x, ysh, t) = 0. (2.6)

To close the system of equations, we must also balance the sheet’s inertia in the
y-direction with the three distinct forces acting along this direction – namely, the bending
force, the lateral compression and the vertical component of the hydrodynamic force. After
normalisation, this equation takes the form (Brau et al. 2013; Diamant 2021; Goncharuk,
Feldman & Oshri 2023; Oshri, Goncharuk & Feldman 2024)

∂2 ysh

∂t2 + Λ
∂4 ysh

∂x4 + Λ fx
∂2ysh

∂x2 + Pr

λ
(σyy)y=ysh = 0. (2.7)

This completes the formulation of the problem. In summary, given the four
dimensionless parameters Pr , Rg , Λ and λ in (2.2), and setting values for the control
parameters, i.e. Ra and fx , we can, in principle, solve (2.4)–( 2.7) by assuming periodic
boundary conditions in the x-direction. However, the following analysis is focused not on
finding general solutions to these equations, but rather on obtaining the critical conditions
at which instability occurs. To determine these conditions, we need to add one more step
to this formulation, and linearise the equations around their static base solution. This
linearisation is described in the next section.

3. Linear stability analysis
Before the onset of instability, the sheet is flat and the fluid is at rest. To maintain this
stationary state, while satisfying the balance of momentum and energy (2.4b) and (2.4c),
a quadratic pressure field and a linear temperature field are held constant along the
y-direction. After the instability sets in, these static conditions are slightly perturbed.
Therefore, to describe the instability, we introduce a small perturbation of size ε � 1 that
grows exponentially over time with a growth rate σ , on top of the static solution:

u(x, y, t) = ε

∫ ∞

−∞
eσ t+ikx U(k, y) dk, (3.1a)

p(x, y, t) = −Rg y − Ra

2
y2 + ε

∫ ∞

−∞
eσ t+ikx P(k, y) dk, (3.1b)

T (x, y, t) = −y + ε

∫ ∞

−∞
eσ t+ikx Θ(k, y) dk, (3.1c)

ysh(x, t) = ε

∫ ∞

−∞
eσ t+ikx Ysh(k) dk, (3.1d)

where U(k, y), P(k, y) and Θ(k, y) represent, respectively, perturbations of the fluid’s
velocity, pressure and temperature fields with the Fourier transform applied in the
x-direction. Correspondingly, Ysh(k) is the perturbation of the sheet’s height function
with wavenumber k around the flat solution. Substituting the above perturbed fields in the
nonlinear equations, and expanding to linear order in ε, yields, after some simplifications,
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the following linear equations:(
d2

dy2 − k2

)(
d2

dy2 − σ

Pr
− k2

)
Uy = Rak2Θ, (3.2a)

(
d2

dy2 − k2 − σ

)
Θ = −Uy, (3.2b)

(
σ 2 + Λk4 − Λ fx k2 + Pr Rg

λ

)
Ysh = Pr

λk2

(
d3Uy

dy3

)
y=0

, (3.2c)

where we have eliminated P(k, y) and Ux (k, y) in favour of Uy(k, y); see Appendix A for
details. These equations are supplemented by the following boundary conditions:

Uy(−1) = 0,
dUy

dy
(−1) = 0, Θ(−1) = 0, (3.3a)

Uy(0) = σYsh,
dUy

dy
(0) = 0, Θ(0) = Ysh. (3.3b)

Note that the boundary condition Θ(0) = Ysh arises from the fact that the temperature is
held constant on the sheet’s surface, rather than at y = 0.

Equations (3.2) and (3.3) form a closed system of linear and homogeneous equations,
and thereby complete the linear stability formulation. For a given set of parameters (2.2),
these equations have a non-trivial solution if their corresponding determinant equals zero.
The critical conditions for the onset of instability are obtained, for example, by fixing fx ,
setting the real part of σ to zero, and then finding the smallest Ra at which the
determinant vanishes to zero. This typically results in two algebraic equations that must
be solved simultaneously for the wavenumber k and the imaginary part of the growth
rate. Nonetheless, in all cases considered below, we find – through the numerical solution
of (3.2) and (3.3) – that the imaginary part of σ equals zero when instability occurs (see
Appendix A.1 for details on the numerical method). This finding simplifies the analysis
considerably, and we use the simplified analysis in the analytical derivations that follow.

Before we continue to explore the solutions of (3.2) and (3.3), it is instructive to recap
two familiar cases of instability from this formulation: one driven purely by thermal
effects, as in the classical Rayleigh–Bénard set-up, and the other driven purely by elastic
effects. In the first case, the sheet is assumed to be very stiff, and the fluid is essentially
enclosed between two rigid plates that are held at different temperatures. In the second
case, the temperature difference is zero, and the sheet is laterally compressed until the
wrinkling instability occurs. We recap these two limiting scenarios in the next subsection.

3.1. Recap of previous studies
This subsection is divided into two parts. In the first part, we recap the Rayleigh–Bénard
instability that is driven by buoyancy and thermal effects, and in the second part, we recap
the wrinkling instability that emerges in a laterally compressed sheet lying on a fluid.

3.1.1. The thermal instability
To recap the scenario of thermal instability, we must first eliminate the elastic response
of the sheet from the model. To this end, we first set the lateral force fx to zero, and
increase the bending stiffness (Λk4 � 1), so as to inhibit elastic deformations. Under these
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conditions, it readily follows from (3.2c) that the height function falls to zero and can be
neglected from the formulation.

In this limit, the marginal stability problem (σ = 0) depends on a single parameter,
the Rayleigh number Ra , and recaps the Rayleigh–Bénard set-up of two rigid plates at
different temperatures that enclose a fluid layer. Although the solution to this problem is
provided in many textbooks (see e.g. Chandrasekhar 1961; Drazin 2002; Goluskin 2016),
it is instructive at this point to introduce an alternative approximated approach for the
solution, as we later use this approach in the analysis of the more general case. We start
the derivation by guessing the following function for the perturbed temperature:

Θ(k, y) = A sin(πy), (3.4)

where A is as yet an unknown constant. While (3.4) satisfies the boundary conditions
on the two rigid plates, it provides only an approximate solution to the governing
equations. It should be understood as the leading term in a Fourier sine expansion,
which, as we now show, captures the solution with sufficient accuracy. Next,
we substitute this expansion in (3.2a) and solve for Uy(k, y) with the boundary
conditions given in (3.3). (The solution for the vertical velocity is Uy(k, y) = ARak2

[(k + sinh k) sin(πy) − π(1 + y) sinh(ky) − πy sinh(k(1 + y))]/(k2 + π2)2(k + sinh k)).
Finally, we substitute Uy(k, y) and Θ(k, y) in (3.2b), multiply the equation by sin(πy),
and integrate over the domain, i.e. solve the weak form of (3.2b). This procedure yields a
linear and homogeneous equation for the amplitude A, which has a non-trivial solution
when its coefficient equals zero. This gives the following relation between Ra and k:

Ra = (k2 + π2)5 (k + sinh k)

−8π2k3 (1 + cosh k) + k2(k2 + π2)2 (k + sinh k)
. (3.5)

The instability occurs at the wavenumber at which Ra is minimised. This minimisation
gives

k ≡ kRB ≈ 3.114 and Ra ≡ RRB
a ≈ 1715, (3.6)

where we use subscript or superscript ‘RB’ to denote quantities related to the Rayleigh–
Bénard set-up. Notably, this approximated solution is very close to the numerical solution
of the equations, which yields k 	 3.117 and Ra 	 1707 (Chandrasekhar 1961).

In figure 2(a), we plot the marginal stability line on the (k, Ra) plane, obtained from
the numerical solution of (3.2) and (3.3), and compare it with the approximated analytical
prediction (3.5). As may be seen, the two solutions are in excellent agreement. To obtain
the marginal stability numerically, we first fix the wavenumber k, set the Rayleigh number
to zero, and calculate the growth rate σ . Then we increase the Rayleigh number by
some increment, and repeat the calculation until the real part of the growth rate becomes
positive. When this first occurs, we identify the corresponding value as the critical
Rayleigh number.

At the instability, the flow field exhibits a periodic pattern of vortices, where a unit cell
of this pattern consists of two counter-rotating vortices. The vertical length of the cell
coincides with the separation between the plates, and the horizontal length is given by
λRB = 2π/kRB 	 2.01; see figure 2(b). When dimensions are restored in this analysis, it
becomes clear that the emerging pattern at the instability depends solely on the distance
d between the two rigid plates. However, this length scale does not play any role in the
elastic instability, as demonstrated in the next section.
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Figure 2. Solution of the linear stability analysis in the Rayleigh–Bénard set-up. (a) The marginal stability
diagram on the (k, Ra) plane. The solid black line corresponds to (3.5), and the open blue circles correspond
to the numerical solution of (3.2) and (3.3). Instability first occurs when the Rayleigh number reaches RRB

a .
At this value, the emerging pattern has a wavenumber kRB. (b) The flow field in the marginal stability solution
(kRB, RRB

a ) consists of a periodic structure of vortices, whose typical length scales with the separation between
the plates d. Arrows represent the streamlines, and colours represent the magnitude of the perturbed velocity.
(c) The perturbed temperature at the instability Θ(kRB, y). The solid line corresponds to the profile given
by (3.4) with the normalisation A = 1, and the open circles correspond to the numerical data.

3.1.2. The wrinkling instability
To derive the wrinkling instability from our model, we must first eliminate all thermal
effects. Since early in this formulation we normalised the temperature by �T , we now
reintroduce the temperature dimensions into the model and set �T = 0. This procedure
removes Θ(k, y) from the formulation, and leaves us to solve (3.2a) and (3.2c), along
with the boundary conditions in (3.3).

When σ = 0, these equations allow a non-trivial solution when the velocity field
vanishes, and fx = k2 + (Pr Rg/Λλk2). The instability occurs at the wavenumber at which
fx is minimised, giving

k ≡ ksh =
(

Pr Rg

Λλ

)1/4

and f sh
x = 2k2

sh, (3.7)
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where we use subscript or superscript ‘sh’ to denote quantities related to the elastic
instability.

Equation (3.7) may initially appear to be counterintuitive, because the elastic instability
depends neither on thermal effects nor on fluid dynamics. However, thermal conductivity
and viscosity appear in the emergent wavelength. This outcome is simply a result of our
choice of normalisation. When reintroducing the dimensions into the model, we find that
the wavenumber k̃sh = (ρ0

� g/B)1/4 and the force F sh
x = 2(ρ0

� gB)1/2 depend only on the
sheet’s elasticity (B) and the specific weight of the fluid (ρ0

� g). (Here, we use a tilde
to distinguish the dimensional wavenumber from its dimensionless counterpart.)

When fx < f sh
x , the sheet remains flat, and the system is stable against out-of-plane

deformations. However, at f sh
x , the flat solution becomes unstable, and buckling occurs.

Since this analysis is concerned with the instability of the system around the flat
configuration, we must limit the lateral force to the range 0 � fx < f sh

x .
In contrast to the thermal instability, the dominant length scale in the elastic scenario is

entirely independent of the depth of the fluid. Both length scales, (B/ρ0
� g)1/4 and d, can

influence the emergent pattern only when the instability is driven by thermal and elastic
effects. Exploring these effects is the main focus of this work, as discussed further in the
next section.

4. Investigation of the thermoelastic instability
We now address the general scenario, in which convection is driven by both thermal and
elastic effects. Given the relatively large number of parameters defining this problem, it
would be useful, at this point, to focus on a specific range of parameters that are more
experimentally accessible. For typical properties of the sheet, we refer, for example, to the
experiments in Pocivavsek et al. (2008), and assume that the sheet is made of a polyester-
like material, with Young’s modulus of the order of ∼1 GPa, density ρsh ∼ 103 kg m−3,
Poisson’s ratio ∼ 0.3, and thickness in the range h ∈ [0.1, 10] μm. Additionally, we
take the fluid substrate to be water, with density ρ0

� ∼ 103 kg m−3, thermal diffusivity
κ ∼ 10−7 m2 s−1 and kinematic viscosity ν ∼ 10−6 m2 s−1. The distance between the
bottom of the fluid and the sheet is assumed to range from the sub-millimetre to the
centimetre scale, d ∈ [0.5, 100] mm (Bodenschatz, Pesch & Ahlers 2000; Schatz & Neitzel
2001). From these considerations, we can fix the Prandtl number at Pr ∼ 7, as is typical
for water, and treat the mass ratio λ as a small number, λ ∈ [10−5, 10−2]. Additionally,
Rg ∈ [103, 107] and Λ ∈ [105, 108] are typically large but can vary significantly due to
changes in the depth d and the thickness of the sheet. This gives an elastic wavelength that
ranges from approximately a millimetre to a centimetre, and can be either much larger or
even smaller than the thermal wavelength.

Consider, for example, the marginal stability diagram in figure 3, where the parameters
are chosen such that ksh 	 15.4 > kRB 	 3.11. When fx/ f sh

x � 1, the system exhibits
behaviour very similar to that of two rigid plates, i.e. the instability occurs only slightly
below RRB

a , and the wavenumber is kRB. However, if the lateral force is further increased,
then a new minimum appears in the diagram ( fx/ f sh

x = 0.82 in figure 3), with a
wavenumber that coincides approximately with that of the sheet. Initially, this minimum
has a larger Rayleigh number than RRB

a , therefore the system is still governed by thermal
instability. But as the lateral force increases further, this minimum pre-empts the Rayleigh–
Bénard solution, and the instability first appears at the elastic wavelength ( fx/ f sh

x = 0.995
in figure 3). This example essentially demonstrates that adding an elastic sheet on top
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fx/fxsh = 0.82

f x/
f x
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Figure 3. Marginal stability diagram for a fluid-supported sheet. Solid lines correspond to the analytical
approach, while open blue circles represent the numerical solution of (3.2) and (3.3). The following parameters
are assumed: Rg = 4500, λ= 5 × 10−5, Pr = 7 and Λ = 11 × 103. From (3.7), the elastic wavenumber is
ksh 	 15.46. For very small values of the lateral force, instability occurs slightly below RRB

a at the wavenumber
kRB 	 3.11. However, as the lateral force increases, a new minimum appears with wavenumber ksh, which
eventually pre-empts the Rayleigh–Bénard solution. In this example, the exchange of stabilities occurs just
before fx/ f sh

x = 0.995. The dashed grey lines correspond to the analytical approximation in the case ksh �
kRB, (4.3).

of the fluid layer can, under some conditions, have a dramatic effect in the pattern that
emerges at the onset of instability.

When elastic effects dominate the instability, the flow pattern still consists of a periodic
structure of vortices (figure 4a), but their typical length no longer scales with the
distance d; instead, it scales with the wavelength associated with the sheet. At the onset of
instability, wrinkles with wavelength approximately 2π/ksh appear on the surface of the
sheet. Below each wrinkle, two counter-rotating vortices emerge in the flow, with a hill or
a valley synchronised with the upstream or downstream flow of the vortices, respectively.
The strength of these vortices decays to zero away from the sheet over length scale 1/ksh.
This is evident from the centre of the vortices, which are much closer to the surface of the
sheet than to the bottom wall. Another indication of this localisation may be seen in
the eigenfunction Θ(ksh, y) plotted in figure 4(b). Clearly, the perturbed temperature is
maximised close to the sheet, and decays to zero over a length proportional to the elastic
length scale.

In contrast, when thermal effects dominate the system, i.e. when the global minimiser of
the stability line corresponds to the Rayleigh–Bénard length scale kRB, the flow resembles
that shown in figure 2(b). The only difference is that the upper plate forms small periodic
undulations with wavelength 2π/kRB (see figure 4c). This additional flexibility of the
system slightly reduces the critical Rayleigh number below RRB

a , but does not have any
other prominent effect. In this case, the eigenfunction Θ(kRB, y) exhibits a pattern similar
to that seen in the Rayleigh–Bénard instability (compare figures 4(d) and 2(c)), with some
discrepancies near y = 0 due to the different boundary conditions in the two problems.

These results suggest that the perturbed temperature profile can be estimated by

thermo-elastic instability Θ(k, y) = A sin(πy) + Ysh

sinh k
sinh[k(y + 1)], (4.1)

where A is as yet an unknown amplitude. As one can easily verify, this profile satisfies
the boundary conditions at the bottom surface and on the sheet (3.3). Additionally, when
the amplitude A approaches zero, the temperature exhibits a localised pattern, as expected
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Figure 4. Eigenfunctions of the emerging pattern at the onset of instability. The parameters used are the
same as those in figure 3. All eigenfunctions are obtained from the numerical solution of (3.2) and (3.3),
and for visualisation they are normalised such that Ysh = 0.02. (a) The flow field at the critical Rayleigh
number (Ra 	 965) for fx/ f sh

x = 0.995 (see figure 3). Here and in (c), arrows represent the streamlines, and
colours represent the magnitude of the perturbed velocity. The flow forms a periodic structure of vortices,
with two counter-rotating vortices making up each unit cell. The upward and downward streams of the vortices
are synchronised with the maxima and minima points of the sheet’s wrinkle pattern. The magnitude of the
fluid velocity gradually falls to zero away from the sheet. (b) The perturbed temperature under the conditions
considered in (a) exhibits a localised profile that decays to zero away from the sheet. (c) The flow pattern at
the critical Rayleigh number (Ra 	 1655) when fx/ f sh

x = 0. The length scale of the emergent flow and wrinkle
pattern scale with the distance d. (d) The perturbed temperature under the same conditions exhibits a profile
similar to that of the Rayleigh–Bénard set-up (see figure 4c). In (b) and (d), solid lines correspond to (4.1), and
open blue circles correspond to the numerical solution.
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Figure 5. The amplitude A/Ysh as a function of the wavenumber k. When k � 1, the amplitude decays to
zero, and the temperature profile (4.1) exhibits a localised profile. However, close to the Rayleigh–Bénard
wavenumber, A/Ysh is minimised, and the temperature restores the solution given by figure 2(c).

when elastic effects dominate. However, if the first term in (4.1) is relatively larger than the
second, then the temperature profile resembles the Rayleigh–Bénard solution (3.4), with
small corrections due to the different boundary conditions. Therefore, in contrast to the
thermal instability analysis (3.4), where the amplitude A is, to leading order, independent
of k, here the leading-order approximation must depend on the wavenumber.

To obtain an analytic approximation of the solution, we follow the procedure described
in § 3.1.1. First, we substitute the temperature profile (4.1) into (3.2a), and solve for the
vertical velocity Uy(k, y), assuming σ = 0. (We use Mathematica for the symbolic anal-
ysis; see Wolfram-Research (2024).) Then we substitute this solution along with Θ(k, y)

into (3.2b), and satisfy the weak form of the equation by projecting it onto sin(πy). This
yields the amplitude A as a function of the wavenumber k and the Rayleigh number,
as shown in figure 5. Indeed, when k � kRB, the amplitude A approaches zero, and the
temperature becomes localised. However, near kRB, the amplitude is minimised, and
the temperature profile closely resembles the Rayleigh–Bénard solution. Finally, we
solve (3.2c) using Uy(k, y) and A, which we have determined immediately above. This
equation provides a relationship between the Rayleigh number and the system’s
parameters.

The solid lines in the marginal stability diagram, figure 3, and the temperature profiles,
figures 4(b) and 4(d), are based on this analytic approach. While the former marginal
stability diagram shows very good agreement with the numerical data, some quantitative
discrepancies appear in the temperature profile, primarily visible in figure 4(d). We
attribute these differences to the limitations of the ansatz approach.

Since the analytical expressions for the Rayleigh number and the amplitude A are
cumbersome, we do not present them explicitly here. However, this analytic approach
yields tractable predictions within certain limits, such as when the elastic wavenumber
is much larger than or comparable to the thermal wavenumber. We explore these limits in
the following subsections.

4.1. The limit ksh � kRB

When ksh/kRB � 1, i.e. (ρ0
� gd4/B)1/4 � 1, the perturbed temperature is localised and

differs from zero only close to the region of the sheet (figure 4b). We can therefore neglect
the amplitude A in (4.1), and estimate the temperature solely by

Θ(k, y) = Ysh
sinh[k(y + 1)]

sinh k
. (4.2)
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The marginal stability curve is derived from this approximated profile by substituting (4.2)
into (3.2a) and solving for the perturbed velocity Uy(k, y) using the boundary conditions
given in (3.3). Then the solution of (3.2c) yields Ra . In the limit k � 1, this solution reads

Ra 	 4Rgk

3

(
1 − 2

k2

k2
sh

fx

f sh
x

+ k4

k4
sh

)
. (4.3)

In figure 3, we plot this approximation (dashed grey line) alongside the numerical solution,
and show that the approximation and the numerical solution agree well near the minimum
arising from the elastic instability.

Therefore, we can exploit the above approximation to estimate the wavenumber and the
critical Rayleigh number at which this minimum appears. To this end, we minimise (4.3)
with respect to k and obtain

elastic minima k±
min/ksh =

⎡
⎣ 3 fx

5 f sh
x

± 3
5

((
fx

f sh
x

)2

− 5
9

)1/2
⎤
⎦

1/2

. (4.4)

Below fx/ f sh
x <

√
5/3 	 0.74, the minimum does not exist, and the marginal stability line

is minimised only at kRB. However, above this critical value, two wavenumbers emerge:
one increases (+) as fx/ f sh

x increases, while the other decreases (−) as fx/ f sh
x increases;

see figure 6(a). Upon substitution of k±
min back into (4.3), it can be verified that the positive

solution (+) corresponds to a value of Ra that is lower than the solution with the minus
sign. Therefore, we continue the analysis with the solution corresponding to the plus sign.

Note that this approximated approach predicts a critical value of fx/ f sh
x that is

slightly lower compared to the numerical solution in our example; see figure 3, where
a minimum point appears when fx/ f sh

x � 0.8. This discrepancy arises because ksh is not
significantly larger than kRB in this example. Nonetheless, even in this case, the critical
value fx/ f sh

x 	 0.74 provides a lower bound of the lateral compression, only above which
another minimum appears in the marginal stability curve.

This new minimum becomes the global minimiser only when fx/ f sh
x gets closer to 1.

In this region, we can estimate the wavenumber and the Rayleigh number at the minimum
point by expanding (4.3) and (4.4) around 1 − fx/ f sh

x � 1. This gives

elastic minima ( fx/ f sh
x → 1) k+

min/ksh 	 1 − 3
4

(
1− fx

f sh
x

)
, Ra 	 8

3
Rgksh

(
1− fx

f sh
x

)
.

(4.5)
This approximation for the wavenumber is plotted in figure 6(a), and is shown to fit well
with the more general solution when fx/ f sh

x � 0.9, which is sufficient for our current
exchange of stability analysis. When fx/ f sh

x approaches 1, the wavenumber converges
to ksh, and Ra approaches zero. Thus we recover the wrinkling instability. However, for
any fx/ f sh

x slightly less than 1, the Rayleigh number takes on a finite value, which can
be quite large, because Rg and ksh are considered as large numbers. The instability first
occurs with ksh when this finite Ra becomes smaller than the Rayleigh–Bénard minimum.

The Rayleigh–Bénard minimum occurs very close to kRB, with Ra 	 RRB
a . Deviations

from these values are primarily attributed to variations in the parameter Rg . This is
because in the marginal stability state (σ = 0) and under the limit k � ksh, (3.2c) simplifies
to Rgk2Ysh 	 (d3Uy/dy3)y=0, and all parameters associated with the sheet vanish from the
formulation. Within the range of our parameter space where Rg � 1, it can be shown that
deviations from the Rayleigh–Bénard values scale as 1/Rg and have only minor effects on
the following analysis. Consequently, we choose to neglect them.
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Figure 6. The wavenumber at the elastic minimum and an example of the stability diagram. (a) The
wavenumbers k±

min for the elastic minimum as a function of fx/ f sh
x , as given by (4.4). No solution exists

for fx/ f sh
x <

√
5/3. Above this value, two wavenumbers emerge: k+

min (solid line) and k−
min (dashed line).

The former solution with the plus sign corresponds to a smaller value of Ra . The dotted line represents the
approximation given by (4.5). (b) The state diagram on the ( fx/ f sh

x , Ra) plane, where the same parameters as
those in figure 3 are used. The light blue region corresponds to stable states, where the fluid remains at rest and
the sheet remains flat. The light yellow region indicates instability. For fx < f cr

x , where f cr
x / f sh

x 	 0.99 from
(4.6), the transition between these regions is given approximately by RRB

a . When the temperature difference
increases, the system progresses along a vertical line in this region, and the instability emerges with the
wavenumber kRB. For fx > f cr

x , the critical Rayleigh number is given by (4.5) and depends on fx . In this
region, when the temperature difference exceeds the critical value of Ra , the instability emerges with the
wavenumber ksh.

In summary, to approximate the critical force at which the elastic minimum becomes
smaller than the Rayleigh–Bénard value, we equate (4.5) to RRB

a , and obtain

f cr
x

f sh
x

	 1 − 3RRB
a

8Rgksh
. (4.6)

Since both Rg and ksh are assumed to be large in this analysis, the elastic minimum
becomes the global minimiser only when the lateral force approaches very close to its
value in the static wrinkling instability.

Figure 6(b) illustrates the stability regions on the ( fx/ f sh
x , Ra) plane, according to the

parameters used in the example of figure 3. For fx < f cr
x , the marginal stability line

is independent of the lateral force and occurs approximately when Ra exceeds RRB
a . In

this region, the emergent wavenumber in the vicinity of the instability is kRB. However,
for f cr

x < fx < f sh
x , the transition occurs at an Ra value that is given by (4.5), with the

wavenumber ksh.
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Figure 7. Investigation of marginal stability when ksh 	 kRB. (a) The marginal stability curves on the (k, Ra)

plane for three different values of the lateral compression. A logarithmic scale is used on the vertical axis.
The parameters Rg = 4500, λ= 5 × 10−3, Pr = 7 and Λ = 60 × 103, chosen are such that ksh 	 3.2. Open blue
circles represent the numerical solution of (3.2) and (3.3) with σ = 0, and the corresponding lines (solid, dotted
and dashed) show the analytical approximations. The triangles indicate the approximated minima of each curve,
as given by (4.8). The insets show the perturbed temperature profiles at two different minima, where the open
blue circles correspond to the numerical solution, and the solid lines represent (4.7). (b) Regions of stability
on the ( fx/ f sh

x , Ra) plane, where the light blue region corresponds to stable states, and the light yellow region
corresponds to unstable states. The marginal stability line is given by (4.8), with the same parameters as those
used in (a).

4.2. The limit ksh 	 kRB

By modifying the system’s parameters, for example, by using softer and thicker sheets,
we can reduce the elastic wavenumber to the order of kRB, i.e. (ρ0

� gd4/B)1/4 	 3.11.
An example is shown in figure 7(a), where the sheet’s parameters are selected such
that ksh 	 3.2, which is very close to the Rayleigh–Bénard wavenumber kRB 	 3.114.
Marginal stability curves for several values of the lateral compression are plotted in the
figure. When the lateral force approaches zero, the solution converges approximately to
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the Rayleigh–Bénard stability line. However, as compression increases, instability occurs
at smaller values of Ra . In the limit fx/ f sh

x → 1, the minimum value of Ra falls to zero,
and the elastic instability is recovered.

Despite this significant change in the minimum of the Rayleigh number, the critical
wavenumber remains nearly unchanged during the gradual variation in fx . This invariance
of kmin 	 kRB at the onset of instability allows us to derive some approximate analytical
predictions, as we now show.

When the elastic and thermal wavenumbers coincide, it is no longer possible to estimate
the perturbed temperature using only one term in (4.1). This is because the perturbed
temperature is expected to recover the Rayleigh–Bénard solution when fx/ f sh

x 	 0, and
to converge to the localised solution when fx/ f sh

x 	 1. Therefore, both terms must be
included to describe the solution accurately. Keeping these two terms, and substituting
k = kRB in the perturbed temperature profile, we obtain

Θ(kRB, y)/Ysh 	 ÃRa

Ra − RRB
a

sin(πy) + sinh[kRB(y + 1)]
sinh kRB

, (4.7)

where Ã 	 0.29 is a numerical factor obtained from the substitution of kRB in the
expression for A. In addition, Ra corresponds to the Rayleigh number at kRB, which
is yet to be determined as a function of the system’s parameters. When fx/ f sh

x → 0,
the Rayleigh number at the minimum point approaches RRB

a , and the first term in (4.7)
dominates the second. Conversely, when fx/ f sh

x → 1, the Rayleigh number approaches
zero, and the second term becomes dominant. The insets in figure 7(a) depict these two
scenarios at the minima associated with the two extreme values of the lateral force. The
numerical eigenfunctions shown in these insets agree relatively well with the prediction
given by (4.7).

Furthermore, the value of Ra at the minimum point of the stability line can be estimated
by substituting k = kRB into the approximated analytical analysis. This gives

for k = kRB 	 ksh, Ra = g1

(
1 −

√
1 − g2/g2

1

)
, (4.8a)

g1 = c1 + c2

(
1 − fx

f sh
x

)
Rg, g2 = c3

(
1 − fx

f sh
x

)
Rg, (4.8b)

where c1 	 1362.7, c2 	 7.2 and c3 	 24 643.5 are numerical factors derived by
substituting k = kRB into the general solution. The triangles plotted near the minima of
the stability curves in figure 7(a) are based on (4.8) and illustrate the agreement between
this approximated solution and the numerical values.

Finally, figure 7(b) summarises the system’s stability regions on the ( fx/ f sh
x , Ra) plane

for the case ksh 	 kRB. For a given lateral compression, the system is stable below (4.8) and
unstable above it. As fx/ f sh

x → 0, the critical Rayleigh number converges approximately
to the value predicted by the Rayleigh–Bénard solution. However, instability occurs at
significantly smaller Rayleigh numbers in the opposite limit, fx/ f sh

x → 1. In all cases, the
emergent wavenumber at the onset of instability is approximately kRB, and the flow pattern
is similar in shape to that shown in figure 4(c).

4.3. The limit ksh � kRB

Since the wavenumber ksh is inversely proportional to the thickness of the sheet,
thicker sheets may, in principle, exhibit a much smaller wavenumber than kRB,
i.e. (ρ0

� gd4/B)1/4 � 1. One such example is shown in figure 8(a), where the system
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parameters are chosen such that ksh 	 0.28. As in previous cases, the marginal stability line
always exhibits a local minimum at approximately kRB. Instability occurs at this minimum
only if the lateral force decreases below a certain threshold. Above this threshold,
instability develops with a wavenumber ksh.

The elastic minimum can be further quantified using our analytical approach. Away
from the Rayleigh–Bénard minimum, the perturbed temperature is primarily described by
the second term in (4.1). In this region, where k � 1, the perturbed temperature can be
estimated solely by

Θ(k, y)/Ysh = sinh[k(y + 1)]
sinh k

	 y + 1. (4.9)

The inset in figure 8(b) shows that this approximated profile matches well with the
numerical solution at the elastic minimum. To obtain the marginal stability line, we
substitute (4.9) in (3.2a), and solve for the perturbed velocity Uy(k, y). Then we substitute
this solution in (3.2c), and solve for Ra . To fourth order in k we obtain

Ra = 20Rg

7

(
1 − 2

k2

k2
sh

fx

f sh
x

+ k4

k4
sh

)
. (4.10)

This profile is plotted in figure 8(b) (dashed grey lines) and shows good agreement with
the numerical solution near the elastic minimum. Equation (4.10) implies that in addition
to the Rayleigh–Bénard minimum, the marginal stability line is also minimised at

kmin =
(

fx

f sh
x

)1/2

ksh, Ra = 20Rg

7

[
1 −

(
fx

f sh
x

)2
]
. (4.11)

When fx/ f sh
x → 0, the wavenumber kmin falls to zero, and the minimum occurs at

Ra 	 20Rg/7. Although this solution arises from our analysis of the elastic minimum, it
is not caused by bending effects, since Λk4 → 0 when the wavenumber is zero. Instead,
it results solely from gravitational waves that modify the surface of the sheet. Similar
phenomena, although in systems involving Marangoni effects, are discussed by Scriven
& Sternling (1964), Smith 1966 and Davis (1987). While this additional extremum of the
stability curve can become the global minimum if Rg is made sufficiently small, we do
not explore the details of this transition here, for two reasons: first, our primary focus
is on the interplay between elasticity and thermal effects; and second, this exchange of
stabilities occurs at Rg values that are relatively small and thus lie outside the parameter
range considered in this study.

As fx/ f sh
x increases, the wavenumber at the minimum point also increases, while the

corresponding Ra decreases. This minimum becomes smaller than the RRB
a solution when

f cr
x

f sh
x

=
√

1 − 7RRB
a

20Rg
. (4.12)

If Rg/RRB
a � 1, then instability emerges only when the lateral compression approaches

close to the wrinkling instability value. However, when Rg is of the same order as RRB
a ,

the instability occurs at a lower compression.
The stability diagram in the ( fx/ f sh

x , Ra) plane, resulting from our example (ksh 	
0.28), is plotted in figure 8(c) and shows the transition between thermal and elastic
instabilities. Below fx/ f sh

x 	 0.93 from (4.12), instability occurs at Ra 	 RRB
a with

wavenumber kRB. However, above this value, instability occurs according to (4.11).
As fx/ f sh

x → 1, the instability emerges at vanishingly small Rayleigh numbers.
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Figure 8. Analysis of the system’s stability when ksh � kRB. In all plots, the parameters Rg = 4500, λ= 0.05,
Pr = 7 and Λ = 108 are used such that ksh 	 0.28. Additionally, open blue circles represent the numerical
solution of (3.2) and (3.3) with σ = 0. (a) The marginal stability curve on the (k, Ra) plane for three different
values of the lateral compression. When fx/ f sh

x � 0.93, the global minimum is close to kRB; however, above
this critical value, the global minimum occurs at ksh. (b) A zoomed-in view of the region near ksh, indicated by
the grey ellipse in (a). The inset presents the perturbed temperature at the minimum wavenumber, where the
solid line corresponds to (4.9), and open blue circles correspond to the numerical data. (c) Stability diagram on
the ( fx/ f sh

x , Ra) plane, where stable and unstable regions are denoted by light blue and light yellow regions,
respectively.

5. Summary and conclusions
We investigated the effect of the interplay between thermal gradients, elastic deformations
and fluid dynamics on the onset of natural convection in a system that couples a
pre-compressed sheet and a fluid layer. By adding elastic effects to the classical Rayleigh–
Bénard convection, we obtained new stability thresholds and emergent patterns that
depend on both the system’s mechanical and thermal parameters.
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Given the range of parameters investigated in this paper, we conclude that the strength
of the lateral compression essentially determines the emergent pattern at the onset of
instability. When the lateral compression diminishes to zero, the sheet has only a minor
effect on the instability, i.e. the wavenumber of the emergent pattern is very close
to kRB, and the critical Rayleigh number reduces to a value only slightly below RRB

a .
However, when the lateral force exceeds a certain threshold, the stability diagram
changes considerably as a new local minimum appears in the (k, Ra) diagram, with
a corresponding wavenumber that scales as ksh. This minimum becomes the global
minimiser when the lateral force surpasses a second threshold, typically only slightly
below f sh

x . The emergent pattern in this new minimum exhibits a flow field that is
synchronised with the wrinkles, and its wavelength scales with that of the wrinkles. In
contrast to the Rayleigh–Bénard solution, the pattern emerging from this new minimum is
almost independent of the fluid depth.

Based on these observations, we derived an approximate solution for the problem using
an ansatz approach for the perturbed temperature (see (4.1)). This solution allows us to
investigate more quantitatively the critical threshold at which the new solution sets in.
For instance, we showed that when ksh � kRB, the instability occurs when f cr

x / f sh
x is very

close to unity (see (4.6)), with deviations from this value scaling as RRB
a /ksh Rg . Therefore,

if the wrinkling wavelength is much smaller than the fluid depth, the new minimum pre-
empts the Rayleigh–Bénard solution only very close to the static instability threshold.
Conversely, when ksh � kRB, the critical force f cr

x / f sh
x can significantly deviate from unity

(see (4.12)).
We emphasise that our analysis is limited to determining the stability of the base

solution, where the sheet remains flat and the fluid is at rest. However, it does not
address the question of whether the wrinkle pattern emerging after the onset of instability
stabilises. Recent studies on wrinkle formation in a static set-up, i.e. without considering
the sheet’s inertia, have shown that wrinkles become unstable against a localised pattern
known as a fold, soon after forming. More precisely, beyond the wrinkling instability, the
lateral force decreases as the wrinkle amplitude increases. The wrinkles-to-fold transition
occurs at f sh

x − fx ∼ 1/L , where L is the total length of the sheet (Diamant & Witten 2011;
Oshri et al. 2015; Oshri & Diamant 2017). Consequently, the stability region for static
wrinkles diminishes to zero as the system size increases. Nonetheless, it is also known
that inertial effects can aid in stabilising patterns that are statically unstable, as shown,
for example, in cases of a collapsed ring, sheets on viscoelastic substrates, and snapping
beams (Box et al. 2020; Guan et al. 2023; Oshri et al. 2024). Whether wrinkles stabilise in
our system due to thermal and dynamic effects remains an open question. Analysing this
stabilisation requires nonlinear extensions of the linear stability theory discussed here.

The mechanical properties, such as Young’s modulus, of very thin materials at
micrometric or even nanometric scales are typically not measured directly. Instead, in some
cases, they are inferred indirectly through wrinkle experiments. In these experiments,
a thin sheet is placed on a solid or even fluid substrate, and compressive forces are
applied, causing wrinkles to form on the sheet’s surface. Theoretical models that relate the
wrinkles’ wavelength to a material’s elastic properties are used to deduce these properties
(Cerda & Mahadevan 2003; Paulsen et al. 2016). In this context, our analysis offers
an alternative method for inferring the material stiffness of thin sheets by inducing a
temperature difference on the underlying substrate. Nonetheless, it is important to note
that this analysis is limited to the Boussinesq approximation, and in practical set-ups, non-
Boussinesq effects may significantly impact the results even at relatively small temperature
differences (Valori et al. 2017; Demou & Grigoriadis 2019).
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From a broader perspective, the analysis of our relatively simple set-up can provide
valuable insights into the analytical understanding of more complex systems that require
precise control over convection-driven fluid–structure interactions, such as valves, energy-
harvesting devices and fluid mixers.

Funding. This research was partially supported by the Israel Science Foundation (grant no. 950/22)
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Appendix A. Derivation of (3.2) and the numerical scheme
In this appendix, we elaborate on the derivation of the linear system of equations (3.2),
and explain our direction for their numerical solution. By substituting (3.1) into (2.4)
and expanding to linear order in ε, we obtain the following equations after the Fourier
transform:

ikUx + dUy

dy
= 0, (A1a)

d2Ux

dy2 −
(

k2 + σ

Pr

)
Ux − ik P = 0, (A1b)

d2Uy

dy2 −
(

k2 + σ

Pr

)
Uy − dP

dy
+ RaΘ = 0, (A1c)(

d2

dy2 − k2 − σ

)
Θ + Uy = 0. (A1d)

Equation (A1d) readily coincides with (3.2b) in the main text. To derive the other two
equations, we first solve (A1b) for the pressure, and eliminate Ux (k, y) in favour of
Uy(k, y) using the continuity equation (A1a). This gives

P(k, y) = 1
k2

d3Uy

dy3 −
(

1 + σ

Pr k2

)
dUy

dy
. (A2)

Equation (3.2a) is obtained by substituting (A2) into (A1c).
Finally, to derive the linear force balance equation on the sheet (3.2c), we first obtain the

vertical component of the stress σyy = −p + 2 ∂uy/∂y that the fluid exerts on the sheet.
To linear order in ε, and after taking the Fourier transform in the x-direction, this stress
reads

σyy(x, ysh, t) 	 ε

∫ ∞

−∞

⎡
⎣RgYsh − 1

k2

(
d3Uy

dy3

)
y=0

⎤
⎦ eσ t+ikx dk, (A3)

where we used (dUy/dy)y=0 = 0 in accordance with (A1a) and the boundary condition
on the sheet (3.3). Substituting (3.1d) and (A3) into (2.7) yields (3.2c) to linear order in ε.

A.1. Numerical scheme
In this subsection, we outline our direction for the numerical solution of the growth rate
and its corresponding eigenmode. To do that, we first discretise the vertical dimension of
the system into N equally spaced grid points �y = 1/(N − 1), i.e. y j = −1 + ( j − 1)�y
for j = 1, . . . , N . In each point, we define the discrete components of the velocity vector
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and the perturbed temperature {U j
x , U j

y , Θ j }. In addition, we define the discrete value of
the pressure {Pj } at the midpoint of each line element.

With these definitions, the discrete form of (A1) reads

ik
U j+1

x + U j
x

2
+ U j+1

y − U j
y

�y
= 0, (A4a)

U j+1
x − 2U j

x + U j−1
x

�y2 −
(

k2 + σ

Pr

)
U j

x − ik
Pj + Pj−1

2
= 0, (A4b)

U j+1
y − 2U j

y + U j−1
y

�y2 −
(

k2 + σ

Pr

)
U j

y − Pj − Pj−1

�y
+ RaΘ j = 0, (A4c)

Θ j+1 − 2Θ j + Θ j−1

�y2 − (
k2 + σ

)
Θ j + U j

y = 0, (A4d)

where in the first equation j = 1, . . . , N − 1, and in (A4b)–(A4d) j = 2, . . . , N − 1. To
close the system of equations, we first account for the force balance equation on the sheet:

σ Vsh +
(

Λk4 − Λ fx k2 + Pr Rg

λ

)
Ysh − Pr

λ
PN−1 = 0, Vsh = σYsh. (A5)

Then we write the discrete forms of the boundary conditions (3.3):

U 1
y = U 1

x = Θ1 = U N
x = 0, U N

y = σYsh, ΘN = Ysh. (A6)

With this, the discretisation is complete. Equations (A4)–(A6) form a system of 4N + 1
linear equations for the same number of unknowns {U j

x , U j
y , Pj , Θ j , Ysh, Vsh}. These

equations have a non-trivial solution given that their corresponding determinant equals
zero. This eigenvalue problem is solved using the Eigensystem function in Mathematica
(Wolfram-Research 2024). We use N = 200 in the numerical analysis, as increasing the
resolution beyond this value leads to negligible changes in the plotted data.
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