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POSITIVENESS OF THE REPRODUCING KERNEL

IN THE SPACE PD(R)

IVAN J. SINGER*

An important problem in the study of the Hubert space PD(R) of
Dirichlet finite solutions of Δu = Pu on a Riemann surface R is to know
the behavior of the reproducing kernel in PD(R). The main result of
this paper is that the reproducing kernel is strictly positive.

1. Let P{z)dxdy (z = x + iy) be a nonnegative not identically zero
^-Holder continuous (0 < a < 1) second order differential on a Riemann
surface R. We also assume that R & OPD, i.e. there exists a nontrivial
Dirichlet finite solution of

(1) Δu{z) = P(z)u(z)

on R. If we mean by the scalar product of u, v e PD(R) the Dirichlet

scalar product (u,v) = DE[u,v] = du Λ *dv then PD(R) is a Hubert
i B

space; and as shown by Nakai [2], PD{R) is then uniformly locally
bounded on R. Hence there exists a unique reproducing kernel in PD(R)
which is a symmetric function on R X R. Denote this kernel by K(z,ζ).

To show the positiveness of K(z, ζ) on R x R it will be enough to
examine the kernel at a point z0, i.e. the function K(Z,ZQ), where zoeR
is an arbitrary but fixed point. From now on, zQ will be fixed and

Let Ω always be a regular subregion of R such that zQe Ω and
P{z)dxdy ^ 0 on Ω. Then Ω & OPD and since P(z) Ξ£ 0 on Ω, the Neumann's
and Green's functions on Ω of (1) are well-defined; hence by Ozawa [6]
their difference is 2π -times the reproducing kernel in the space PE(Ω),
i.e. in the space of all energy finite solutions of (1) on Ω, while the
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68 IVAN J. SINGER

scalar product of u,v e PE(Ω) is the mixed energy integral EΩ(u,v) =

DΩ[u,v] + uPv. Denote this kernel by
JR

( 2) LΩ(z, ζ) = -±-(NΩ(z, ζ) - GQ{z, 0) ,

where N f l, resp. Gβ is Neumann's, resp. Green's function of (1) on Ω.

Making use of the joint finite continuity of NΩ,GΩ (cf. Nakai [1]) we

can prove the known fact that if a function f(z) e Lp(Ω) with the measure

P = P(z)dxdy, then LQ(z, ζ)P(Of(ζ)dξdη (ζ = ξ + iη) is a continuous
J Ω

function of z on Ώ. We will extensively use this and also an important

result of Nakai [3] that the vector space PBD(R) of bounded Dirichlet

finite solutions of (1) is dense in PD(R) with respect to the CD-topology

(for the notation cf. [7]).

2. For a regular subregion Ω9 obviously PE(Ω) c PD(Ω) but it may

not be without interest to observe that the elements from the larger set

PD are reproduced by the kernel LΩ(z,ζ). In particular, we have a

simple but important lemma for our further work:

LEMMA 1. If ue PD(Ω) then

(3) Φ) = Eo(v{ζ),LQ(z,O)

for all zeΩ.

Proof. By [2] PD(Ω) possesses a Riesz decomposition, thus u — u+

— u~ where u+,u~ are positive elements of PD. Assuming that, say

u+ ^ 0, we show (3) for u+. According to [4] there exists a nondecreas-

ing sequence {u+} of bounded PD-iunctions on Ω such that u+ — CD —

livcίul. Because u+ePE(Ω) for each n, we may write

ui(z) = EΩ(ui(Ω,LΩ(z,O)

( 4 } = DQ[ui(Q, LΩ(z, ζ)] + f ui(ζ)P(QLΩ(z, Qdξdη .
J 0

But since for a given zeΩ,LΩ(z,ζ)e PD{Ω) and K >0 on β, the

Lebesgue convergence theorem yields (3). The same can be proved for

u~> and hence (3) is valid for u.

COROLLARY 1. // K0(z) is a reproducing kernel in PD(Ω) at the

point zQ, then
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( 5) K0(z) = L0(z) + ί LΩ(z, ζ)P(ζ)Ka(Odξdv
J Ω

where LΩ{z) = LΩ(z,z0).

COROLLARY V. KΩ(z)eC(Ώ).

Proof. Since for any Riesz decomposition of KΩ, both K^,KΩ satisfy

(3) we have

KUz) = D0[Kϊ{.),L0(z, .)] + f Kl(.)P(.)LQ(z, 0 .
J Ω

For any z e β, inf Lfl(«, ζ) > 0 thus K^,KΩ are in LJ,(β) and consequently

KΩ e Lp(Ω). Then from (5) and by using Fubini's theorem we see that

KΩ e LP(Ω) therefore by Schwarz's inequality, directly from (5) we obtain

KΩ e Lp(Ω). Thus by the remark in section 1, K0(z) eC(Ώ). The corollary

is then proved.

We denote by P(Ω) the family of solutions of (1) on Ω. As far as

a solution of the integral equation (5) is concerned we may state

LEMMA 2. The integral equation

( 6 ) f(z) - f f(ζ)P(ζ)L0(z, Qdξdη - LΩ(z)
J Ω

has a unique solution in the class C(Ω) Π P(β).

Proof. Denote by Q: C(Ώ) -* C(Ώ) the operator defined by

( 7 ) Qf{z) - f f(ζ)P(ζ)L0(z, Qdξdη
J Ω

for every / e C(Ω). Q is well-defined and Q(C(Ώ)) c C(Ω) Π P(β). If we

define the norm | |/ | | = supβ | / | for f e C(Ω) then

||Q%|| = sup I f u(ζ)P(ΩL0(z, ζ)dξdv
/ g Λ 2Gfl I J Ω

for u e C(Ω) Π P(β), where

( 9 ) q(z) = ί eo(QP(QLΩ(z, ζ)dξdv
J Ω

and eΩ is the solution of (1) with constant boundary values 1. The func-

tion q(z) e C(β) (Ί P(β), and thus by the maximum principle supβ q(z) =
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q(z') = g, where zf e dΩ. From the construction of the Neumann's func-

tion No, using the double of Ω, we observe that

(10) ί(sθ = -±- ί NΩ(z\ OP(OeΩ(ζ)dξd7j,
2πJΩ

and

(ID 4 - ί Na(z,QP(ζ)dξdv = l

on 42. Because from the maximum principle eΩ < 1 on Ω and as assumed

P(ζ) ί 0 o n i 3 , (10) and (11) give q = g(z') < 1. Thus by (8)

ΣQnueC(Ώ);

and if u(z) = Lfl(«), by Harnack's principle

(12) Σ QwLfi e C(Ω) Π

since Lβ(2) > 0 on fi. Hence 2]<Γ Q7"-̂ /? is a solution of (6) and obviously

it is unique in the class C(Ω) Π P(Ω). This completes the proof.

By Corollaries 1, Y, and Lemma 2 we have the

LEMMA 3. // KΩ e PD(Ω) is the kernel at the point zQ e Ω, then

(13) KΩ(z) = Σ QnLΩ(z) ,
w=0

Λ(«) > 0 on Ω.

3. Finally we show that the kernel K(z) e PD(R) at the point z0 can

be obtained as lim KΩ(z) where Ω exhausts R. Then K > 0 on R.

Take a regular exhaustion {Ωn}? of β by regular subregions such

that zQ e Ωx and P φ. 0 on βx. By Lemma 3 for each PD(Ωn) there exists

a nonnegative reproducing kernel at z0, say ifβ7i. Since Ωn c βn + 1, we

have

(14) DΩn[KΩn+1,KΩn] = KΩn+1(Zo)

By Schwarz's inequality

(15) ΦΩn[κΩn+1, κΩjγ < κΩn+1(z0)κΩn(z0)

hence
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(16) KOtι+1(z0) < KΩn(z0)

and inductively

(17) DOu[KoJ < DΩn[KΩn]

for m> n. Since PD(Ωk) is a Hubert space for each k = 1,2, , it

follows from (16) and (17) that for any k there exists a subsequence

{KΩk.} c {KΩn}, kt > k, and a function Kk e PD(Ωk) such that

(18) DΩk[KΩkί,u]->DΩk[Kk9u]

for each u e PD(Ωk) and thus for each u e PD(R). Moreover {KΩkι} can

be chosen such that it converges to Kk uniformly on each compact subset

of Ωk. Using the diagonal process we obtain a subsequence {KΩnt} c

{KΩn}, converging to, say a function K, uniformly on any compact subset

of R.

We show that K is in fact the kernel K at the point zQ. From the

limiting process we know that K > 0 and K is a solution of (1) on R.

It remains to prove the finiteness of the Dirichlet integral and the re-

producing property at z0 of K.

On Ωe{ΩJ,K\ΩePD(Ω) and DΩ[KΩnt- K\ = D0[KΩni- K,K$*t] -

D[KΩni-K,K]. By (18)

(20) limDΩ[KΩni-K,K] = 0

and by (17)

(21) lim sup DB[KQni - K,KΰJ < Kai(z0) + WKUK^iz,))^ ,
Ίli

where || ||β means Dirichlet norm. Also

DΩ[K] < DΩ[KΩni -K] + DΩ[KΩJ + 2 \\KΩni - K\\Ω.\\K0JΩ .

Hence by (17), (20) and (21) we have for any Ω e {Ωni} the estimate

(22) \\K\\l <2a + b\\K\\a + cJa

where a, b and c are fixed positive constants. Therefore lim supn j DΩn([K]

< oo.

L e t uePDiR). F o r ε > 0 c h o o s e a n % s u c h t h a t \\u\\B_Ωnj<

ε/(KΩι(zaW. Then for nt > n,

\Danj[K,u] - u(zo)\ = \DΩnj[K,u] - DΩnμΩn.,u\\

< \DΩnμ - κΩni,u]\ + \DΩnμΩni - κOnj,u]\ •
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Using the reproducing properties of KΩnj and KOnt by (16) we obtain

\DΩnj[KΩni - KΩnj,u]\ < \DΩni_ΩnμΩniM\< β ,

By (18) and (23), \DΩnj[K,u] - u(zo)\ < ε, and since DR[K] < oo, DR[K,u]

= w(20) Thus we have proved the following

THEOREM. If R & OPD then there exists the reproducing kernel K(z,ζ)

in the Hilbert space PD(R) and it is a strictly positive symmetric func-

tion on R x R.

Unfortunately there is no such expression for K as (13), since by

Nakai [5], OPD < OPE, i.e. there exists a Riemann surface which does

not possess a nontrivial energy finite solution of (1); hence LR(z,ζ) = 0

there, although if R e OPE — OPDy the reproducing kernel K e PD(R) exists.

Still open questions remain as to whether or not the kernel K(z,ζ)

as a function of one variable is bounded and if there exist more explicit

expressions for KΩ as it was introduced in (13).
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