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POSITIVENESS OF THE REPRODUCING KERNEL
IN THE SPACE PD(R)

IVAN J. SINGER*

An important problem in the study of the Hilbert space PD(R) of
Dirichlet finite solutions of du = Pux on a Riemann surface R is to know
the behavior of the reproducing kernel in PD(R). The main result of
this paper is that the reproducing kernel is strictly positive.

1. Let P(®)daxdy (2 = « + iy) be a nonnegative not identically zero
a-Holder continuous (0 < & < 1) second order differential on a Riemann
surface R. We also assume that R ¢ Opp, i.e. there exists a nontrivial
Dirichlet finite solution of

(1) du(z) = P(2)u(z)

on R. If we mean by the scalar product of u,v e PD(R) the Dirichlet
scalar product (u,v) = Dgzlu, v] —_—j du N\ xdv then PD(R) is a Hilbert
R

space; and as shown by Nakai [2], PD(R) is then uniformly locally
bounded on RE. Hence there exists a unique reproducing kernel in PD(R)
which is a symmetric function on R X E. Denote this kernel by K(z,{).

To show the positiveness of K(z,{) on R X R it will be enough to
examine the kernel at a point z, i.e. the function K(z,%,), where z,¢ R
is an arbitrary but fixed point. From now on, z, will be fixed and
K(z) = K(z, 2y).

Let 2 always be a regular subregion of R such that z,¢£2 and
P)dxdy = 0 on 2. Then 2¢ O, and since P(z) = 0 on £, the Neumann’s
and Green’s functions on £ of (1) are well-defined ; hence by Ozawa [6]
their difference is 2z-times the reproducing kernel in the space PE(R),
i.e. in the space of all energy finite solutions of (1) on £, while the
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scalar product of u,ve PE(Q) is the mixed energy integral E,(u,v) =

Dglu,v] + I uPv. Denote this kernel by
(2) L@ 0 = o Wo@,0) = Go@,0) ,

where N,, resp. G, is Neumann’s, resp. Green’s function of (1) on £.
Making use of the joint finite continuity of N,, G, (cf. Nakai [1]) we
can prove the known fact that if a function f(z) e L3(2) with the measure

P = P()dzdy, then j Lo(z, OPQ) f©dedy (€ =& + i) is a continuous
2

function of z on 2. We will extensively use this and also an important
result of Nakai [3] that the vector space PBD(R) of bounded Dirichlet
finite solutions of (1) is dense in PD(R) with respect to the CD-topology
(for the notation ef. [7]).

2. For a regular subregion 2, obviously PE(2) < PD(2) but it may
not be without interest to observe that the elements from the larger set
PD are reproduced by the kernel L,(z,{). In particular, we have a
simple but important lemma for our further work:

LeEMMA 1. If ue PD(Q) then

(3) wz) = Eou(C), Ly(2,0))
for all ze Q.

Proof. By [2] PD(2) possesses a Riesz decomposition, thus u = u*
— u~ where u*,u” are positive elements of PD. Assuming that, say
u* %= 0, we show (8) for u*. According to [4] there exists a nondecreas-
ing sequence {u;} of bounded PD-functions on 2 such that u* = CD —

limu;. Because u} ¢ PE(Q) for each n, we may write
up(2) = B} (0), Lo(2,0))
4
D = Dylu;(©), Lo(z, )] + I Ou:(C)P(C)Lg(z, Q)dédy .

But since for a given 2¢ 02, L,(2, ) e PD(2) and u; >0 on 2, the
Lebesgue convergence theorem yields (8). The same can be proved for
%~, and hence (3) is valid for u.

COROLLARY 1. If K, (2) is a reproducing kernel in PD(Q) at the
point 2, then
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(5) Ko@) = Ly() + j Ly(e, OPQK ((©)dédy

where L,(z) = L,(z, z,).
COROLLARY 1’. K,(2) € C(2).

Proof. Since for any Riesz decomposition of K,, both K}, K; satisfy
(3) we have

K3(2) = D,IK3(-), Lo(z, )] + jﬂK;(-)P(-)L,,(z, .

For any ze 2, inf L,(2,0) > 0; thus K}, K; are in L%(2) and consequently
ten

K,cLL(2). Then from (5) and by using Fubini’s theorem we see that
K, ¢ L3(2); therefore by Schwarz’s inequality, directly from (5) we obtain
K, c L3(2). Thus by the remark in section 1, K,(2) € C(2). The corollary
is then proved.

We denote by P(2) the family of solutions of (1) on 2. As far as
a solution of the integral equation (5) is concerned we may state

LEMMA 2. The integral equation
(6) f@) — Iaf(C)P(C)Ln(z, Odédy = Ly(2)

has a unique solution in the class C(2) N P(Q).
Proof. Denote by Q: C(2) — C(2) the operator defined by

(7) Q) = j TOPOLy(z, 0dédy

for every feC(2). Q is well-defined and Q(C(2)) C C(?) N P(Q). If we
define the norm || f|| = sup, |f| for fe C(2) then

1Qull = sup Ugu(@)P@La(z, 0)dedy

< lull sup q(2)

(8)

for we C(2) N P(R), where
(9) 92) = Leg(C)P(C)La(z, 0)dedy

and e, is the solution of (1) with constant boundary values 1. The funec-
tion q(z) e C(2) N P(N), and thus by the maximum principle sup, ¢(z) =

https://doi.org/10.1017/5S0027763000015087 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015087

70 IVAN J. SINGER

q(7) = q, where 2’ 9. From the construction of the Neumann’s func-
tion N,, using the double of 2, we observe that

(10) 0z) = L j No(@, OP©eq©)ddy ,
2r J o
and
1
(11) —f No(z, OP(Qdedy = 1
27 Ja

on 2. Because from the maximum principle e, < 1 on 2 and as assumed
P =0 on 2, (10) and (11) give ¢ = ¢(z)) < 1. Thus by (8)

> QUue C@);
n=1
and if u(z) = L,(2), by Harnack’s principle
(12) S1Q*L, e C@) N P,
n=1

since Ly(2) > 0 on Q. Hence Y7 Q"L, is a solution of (6) and obviously
it is unique in the class C(2) N P(2). This completes the proof.
By Corollaries 1, 1/, and Lemma 2 we have the

LeMMA 3. If K,e PD(RQ) is the kernel at the point z,¢ 2, then
(13) Ko@) = 3 @"Lo(@) ,

and K,(z) >0 on Q.

3. Finally we show that the kernel K(z) ¢ PD(R) at the point z, can
be obtained as lim K,(z) where 2 exhausts R. Then K > 0 on R.
Q2-R

Take a regular exhaustion {2,}7 of R by regular subregions such
that z,e 2, and P # 0 on 2,. By Lemma 3 for each PD(f2,) there exists
a nonnegative reproducing kernel at 2z, say K, . Since 2, C 2,,,, we
have

14) Dan[Kg,.H, Ka,,] = Kn,,+1(zo) .
By Schwarz’s inequality
15) Dy [Ky,., Ko, D! < Kg,.“(zo)Kn,.(zo) ’

hence

https://doi.org/10.1017/50027763000015087 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015087

REPRODUCING KERNEL 71

(16) K,,.(2) < K, (2)
and inductively
amn D, K, 1< D,IK,]

for m > n. Since PD(R,) is a Hilbert space for each k=1,2,..., it
follows from (16) and (17) that for any k there exists a subsequence
{Kg,} € {Kgo,}, ks > k, and a function K, ¢ PD(2,) such that

(18) Do lKg,,ul — DoIKy, ul

for each u e PD(2,) and thus for each ue PD(R). Moreover {K, } can
be chosen such that it converges to K, uniformly on each compact subset
of 2,. Using the diagonal process we obtain a subsequence {K,,} C
{K,,}, converging to, say a function K, uniformly on any compact subset
of R.

We show that K is in fact the kernel K at the point z,. From the
limiting process we know that K > 0 and K is a solution of (1) on R.
It remains to prove the finiteness of the Dirichlet integral and the re-
producing property at z, of K.

On Qe{Q,},Kl,e PD(Q) and D,lK,, — K]l = D,K,, —K,K%?] —
DIK,, — K,K]. By (18)

(20) lim D,[K,, — K,K] =0
and by (17)
(21 lim sup D,[K,,, — K, Ky, ] < Ko,(20) + | K|[o(Kg,(2))""

where ||-||, means Dirichlet norm. Also
D,lK] < DolK,,, — K1 + D,lK,, 1 + 2:|K,,, — Kllp+[| Ky, llo -

Hence by (17), (20) and (21) we have for any Q¢ {2, } the estimate
(22) 1Kl < 2a + b||K|ly + eva + DK],
where a,b and c are fixed positive constants. Therefore lim sup,, D, [K]
< co.

Let wePD(R). For ¢>0 choose an n; such that [ulz_,,, <
e/(Kg,(2))%. Then for n;, > n,
|D,, K, ul — u(zy)| = |D,, [K,u] — D

<I|D

an,[K:z,.j’ ul|

(23)
[K - Kﬂni’ u]l + |Danj[K-Qni - Kﬂnj’ u:“ .

2nj
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Using the reproducing properties of K,, and K,, by (16) we obtain
|D (Ko, ull <e,

By (18) and (23), |D,, [K,u]l — u(z)| <e, and since Dgp[K] < oo, DK, u]
= u(z,). Thus we have proved the following

[Kﬂnt - Kﬂnj’ u]I S IDQng

an ‘-g‘nj

THEOREM. If R & Opp then there exists the reproducing kernel K(z,§)
in the Hilbert space PD(R) and it is a strictly positive symmetric func-
tion on R X R.

Unfortunately there is no such expression for K as (13), since by
Nakai [5], Opp < Opg, i.e. there exists a Riemann surface which does
not possess a nontrivial energy finite solution of (1); hence Ly(z,8) =0
there, although if R € Opz — Opp, the reproducing kernel K ¢ PD(R) exists.

Still open questions remain as to whether or not the kernel K(z,¢)
as a function of one variable is bounded and if there exist more explicit
expressions for K, as it was introduced in (13).
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