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A NONLINEAR ERGODIC THEOREM FOR ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS

K O K - K E O N G TAN AND H O N G - K U N X U

Let X be a real uniformly convex Banach space satisfying the Opial's condition,
C a bounded closed convex subset of X, and T: C —* C an asymptotically non-
expansive mapping. Then we show that for each i in C, the sequence {Tnx}
almost converges weakly to a fixed point y of T, that is,

1 "~1

weak- lim - S^T'+kx = y uniformly in Jfe ̂  0.
n—»oo n ^—'

t=0

This implies that {T"z} converges weakly to y if and only if T is weakly asymp-
totically regular at x, that is, weak- lim (Tn+1x - Tnx) = 0. We also present a

weak convergence theorem for asymptotically nonexpansive semigroups.

1. INTRODUCTION

Let C be a closed convex subset of a Banach space X and T be a mapping from
C into itself. Then T is said to be a Lipschitzian mapping if there exists, for each
integer n ^ 1, a corresponding real number An > 0 such that

for all x, y £ C. A Lipschitzian mapping T is called nonexpansive if An = 1 for all
n ^ 1 and asymptotically nonexpansive if lim An = 1, respectively. We denote by

n—>oo

F(T) the set of fixed points of T. The first nonlinear ergodic theorem for nonexpansive
mappings was proved in 1975 by Baillon [1]: Let C be a bounded closed convex subset
of a Hilbert space H and T be a nonexpansive mapping from C into itself. Then for
each x £ C, the Cesaro means

i = 0

converge weakly to some y £ F(T). In 1979, Reich [13] and Bruck [2] independently
generalised Baillon's theorem to a setting of a uniformly convex Banach space with a
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Frechet differentiable norm. (See Hirano [7] for another proof.) In 1982, Hirano [8]
proved that the conclusion of Baillon's theorem is valid in a uniformly convex Banach
space satisfying the Opial's condition. On the other hand, Hirano and Takahashi [9]
proved that in a Hilbert space setting, Baillon's theorem holds true for asymptotically
nonexpansive mappings. (This is in fact true [16] even for a wider class of mappings of
asymptotically nonexpansive type [10].) However, whether Baillon's theorem is valid
for asymptotically nonexpansive mappings in a Banach space setting remained open
for a few years. Recently, the authors [14] have provided an affirmative answer to this
question in a uniformly convex Banach space which has a Frechet differentiable norm.
The purpose of this paper is to prove a counterpart to the result in [14]. That is, we
show that if X is a uniformly convex Banach space satisfying the Opial's condition, C
a bounded closed convex subset of X, and T: C —> C an asymptotically nonexpansive
mapping, then for each x £ C, the sequence {Tnx} almost converges weakly to a fixed
point of T, that is, there i s a i / G F(T) such that

weak- lim — \^ Tt+ x = y uniformly in k ^ 0.
n—»oo n _

t=0

This not only gives the above question another positive answer, but also implies that
{Tnx} converges weakly to y if and only if T is weakly asymptotically regular at x,

that is, weak- lim (Tn+1x — Tnx) — 0. We also present a weak convergence theroem
n—>oo

for asymptotically nonexpansive semigroups. Our results generalise those of Hirano [8]
and our proofs employ ideas of Hirano [8], Tan and Xu [14], and a technique of Bruck
[2, 3].

2. PRELIMINARIES AND LEMMAS

Recall that a Banach space X is said to satisfy the Opial's condition ([2]) if
for any sequence {xn} in X, the condition xn —* xo £ X weakly implies that
liminf ||xn — zo|| < liminf \\xn — x\\, or equivalently lim sup ||zn — *o|| < lim sup ||xn — x\\

n—>oo n—>oo n—ao n-»oo

for all x ^ x0. It is known [12] that all Hilbert spaces and tp(l < p < oo) satisfy the

Opial's condition. However, the Lp(l <p < oo) spaces do not unless p = 2. A deeper

result, shown by van Dulst [4], is that every separable Banach space can be equivalently

renormed so that it possesses the Opial's condition.

Let F be a closed convex subset of a Banach space X and {a;n} be a bounded

sequence in X. Then we let

r(ixn}, V) = Hm sup ||xn - y||,
and «-»«>

r(M, F) = min{r({zn}, y):ye F}.
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We note here that, in Edelstein's terminology [5], the number r({xn}, F) is called the
asymptotic radius of the sequence {xn} with respect to the set F. We now establish
some lemmas for later use. The following two lemmas are easy to prove (see Hirano

[»])•
LEMMA 2 . 1 . Let F be a. closed convex subset of a reflexive Banach space X

and {*„} be a bounded sequence in X such that for each y G F, lim ||xn — y|| exists.
n

Then there is a yo G F such that

l i m | | z n - yo || = m i n { l i m | | x n -y\\:yE F } .
n n

LEMMA 2 . 2 . Let F be a closed convex subset of a uniformly convex Banach
space X and A be a set of bounded sequences in X which satisfies the following
conditions:

(i) if {xn} G A, then for each y G F, lim ||xn — y\\ exists;
n

(ii) if {xn}, {yn} G A, then there exists {zn} G A such that r({zn}, y) ^
r{{xn}, y) and r({zn}, y) ^ r({yn}, y) for every y G F.

Let r = inf{r({xn}, F) : {xn} G A} and {{ij,1'}: i ^ 1} be a sequence in A such that

limrf {xL0}, F) = r. Then there exists a sequence {z,} C F such that r ({x^}, F\ =

r | { i n } , zA for all i ^ 1 and {z<} converges strongly to a point in F.

LEMMA 2 . 3 . Let X be a uniformly convex Banach space satisfying the Opial's
condition, C a bounded closed convex subset of X, and {xn} a sequence in C such that

lim sup (lim sup ||Tmxn - xn|| ) = 0 and lim ||xn - y|| exists for each y £ F(T). Then
m-*oo \ n—»oo / n—»cx>

{xn} converges weakly to a point z in F(T) such that r({xn}, z) = r({xn}, F(T)).

PROOF: We first note that by Geobel and Kirk [6], F(T) is closed convex and
nonempty. By Lemma 2.3 of [14], every weak limit point of the sequence {xn} is a
fixed point of T. Suppose now xn< —> u and xm. —* v weakly; then u, v G F(T). If
u ^ v, then the Opial's condition of X implies that

lim ||xn — u|| — lim ||xni. — u||

< lim | | z n . — v|| = lim - v

xroy - u|| = lim ||zn - tt||.

This is a contradition, proving that {xn} converges weakly to some z G F(T). The
equality r({xn}, z) = r({xn}, F(T)) now follows directly from the Opial's condition of
X. The proof is complete. D
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LEMMA 2 . 4 . ([14]). Let C be a bounded closed convex subset of a. uniformly
convex Banach space X, and T: C —• C an asymptotically nonexpansive mapping.
Then for each x € C, each integer n ^ 1, and arbitrary e > 0, there exist integers in

and ke depending only on n and e, respectively, such that

(2.1) \\ThSnT*x - SnT
krx\\ < (1 + e)*/-1 Q +

for all k^ ke and i^in, where Sn = ( l / n ) ( / + T+ ... + Tn~x) with I the identity
operator of X, M = diam(Tnx), and g: [0, oo) —> [0, oo) is a strictly increasing
convex continuous function such g(0) = 0.

COROLLARY 2 . 1 . Let C, T,andin be as in Lemma 2.4. Then for all sequences
{jn}> {kn} of integers such that j n ^ in for all n ^ 1 and limfcn = oo, we have

n

(2.2) Um | | r t n SnT
inx - 5nr*"+J'"a;|| = 0.

n

In the sequel, we always assume that the integers {tn} in Lemma 2.4 are chosen
so that ii < 12 < . . . < t n < . . .—» oo.

LEMMA 2 . 5 . Let C be a bounded closed convex subset of a uniformly convex
Banach space X with the Opial's condition, T: C —• C an asymptotically nonexpansive
mapping, and x an element of C. Suppose {kn} is a sequence of integers such that
kn > *2n and kn+i > kn + t2n for all n ^ 1 (where i2» is as selected in Lemma 2.4.)
Then for each y e F(T), lim ||S2»T*n:c - y\\ exists and {52»T*"z} converges weakly
to some z G F(T).

PROOF: For a fixed y £ F(T), let r := liminf ||S2nT*"s; - y\\. It follows from

(2.1) that

||T*5a»r*»* - 52nT*r*-x|| ^ (1 + e)*,"1 (±

for each n > 1 and all k ^ ke. Since T is asymptotically nonexpansive, we have an
integer k > ke such that

(2.3) Xk < 1 + e for k^k.

We then have an integer n large enough so that

(2.4) | |Sa«T*"*-y| | < r + e, kn+1-kn>k, and 2~n < e.
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It follows from (2.1), (2.3) and (2.4) that

- yj

- y \
I

< (1 + e)./-1 (2"n + eM) + (1+ e)(r + e)

< (1 + e^-^etl + M)) + (1 + e)(r + e).

In the same way, we can prove

\\S2n+iT
k»+*x - y\\ < (1+ e)g-1(e(l + M)) + (1 + e)(r + e)

for all t ^ 1, from which it follows that

Urn sup ||S2iT*'z - y|| = Hmsup l^jn+iT^+'x - y\\
t—»oo i—»oo

< (1 + e f c - ^ l + M)) + (1 + e)(r + e).

Since e > 0 is arbitrary, we get

limsup \\S2nTknx - y\\ < liminf ||52nT*nz - yll,

showing lim ||52nT*nz — y\\ exists. Noticing for each u 6 C and each fixed integer
TO ^ 1,

\\Sn(T
mu) - Sn(u)\\ 4 —diam(C) -^0 as n -+ oo,

n
we get by Lemma 2.4 that

limsup (limsup | |rm52nT*nz - 52nr*"x|| )
m—»oo \ n—»oo /

^ limsup (limsup{||Tm52«r*niB - S2"TmTkn\\
m—>oo \ n—>oo

+ \\S2nT
m+knx-S2nTknx\\})

^(l + e)g-1(eM)-^0 as e -» 0.

Now applying Lemma 2.3, we complete the proof of the lemma. D
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3. T H E NONLINEAR ERGODIC THEOREM

In this section, we prove the main result of the paper. We begin by recalling the
notion of almost convergence due to Lorentz [11].

DEFINITION: Let X be a Banach space. A sequence {sn}iJLo in X is said to be
weakly almost convergent to an element y of X if

weak- lim — y •c<+it = y uniformly in k ^ 0.
t=0

THEOREM 3 . 1 . Let X be a uniformly convex Banach space satisfying the Opial's

condition, C a bounded closed convex subset of X, and T: C —> C an asymptotically

nonexpansive mapping. Then for each x G C, the sequence {Tnx} is weakly almost

convergent to a fixed point of T. That is, there is a z G F(T) such that

weak- lim — }^ Tt+kx = z uniformly in k ^ 0.
n—»oo n

«=0

PROOF: We first observe that T has a fixed point by Goebel and Kirk [6]. For a

fixed x e C, let

A = {{S2iT
hnx} : hn > i2n and hn+1 > hn +12» for all n ^ 1},

where i2n is chosen as in Lemma 2.4. Then each {S2nThnx} in A is bounded since
C is bounded and by Lemma 2.5, lim ||S2nTfcnx — y|| exists for every y € F(T) and

{S2iT
hnx} converges weakly to a fixed point of T. Now let {S2^Tllnx} and {S2»Trnx}

be in A and let pn = max(/«.„, r n ) + n. Then it is readily seen that pn > i2n and
pn+i > pn + *2n for all n and hence {S2»TPnx} G A. Moreover, in view of Lemma 2.5
and Corollary 2.1, we derive for each y € F(T) that

| | y | |
n

< Urn (\\S2nT
Pnx - rJ"l-h"52nT''»x|| + \\TPn-hnS2r.Th"x - y\\)

^ Urn (\\S2nTp"-h»Thnx - Tp"-k"S2nTh"x\\ + XPn-hn \\S2nTh"x - y\\

= lim\\S2nThnx-y\\,

that is,
(3.1) lim ||52»Tp"x - y\\ ^ Urn \\S2*Thnx - y\\.

Similarly, we have

Urn \\S2~TPnx - y\\ ^ lim | |S2»rr"z - y||.
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It then follows that A satisfies the hypotheses of Lemma 2.2 with F = F(T). Set

r = inf{r({5a»r*"sB}, F{T)) : {S2*Thn} £ A}

and choose a sequence {{S^T^ x}} j^i in A such that l imr({S2.>T' l» )z}, F(T)\ =

r. Then by Lemma 2.2, there exists a sequence {yj} in F(T) which satisfies the equality

r({S2nTh" x}, F(T)j = r({S2nTh" x}, yj) for all j ^ 1, and converges strongly to

some y £ F(T). Define hn = max (hz' : 1 ̂  j ^ nj + n for all n ^ 1. Then it is

easily seen that {52i»Thnx} £ A. Similarly to (3.1), we can prove that

Thnx},y) =lir

It thus follows that

(3.2) r({S2«rA»z}, F(T)) = r({52nTh»x}, y) - r

and {S2nThnx} converges weakly to y by the Opial's condition and Lemma 2.5. We
now prove the following

CLAIM: Each {S2nTtnx} 6 A, with tn ^ hn + n for all n, must converge weakly
to y.

In fact, by Lemma 2.5, {S2nTtnx} converges weakly to a point, say z, in F(T).
If z 7̂  y, then it follows from (3.1) and the Opial's condition of X that

r < lim ||S2»rlnx - z\\ < lim ||52»Ttnx - y\\
n " " n " "

< lim \\S2nThnx - y\\ = r.

This contradiction proves the claim. Since r({S2nThn+kn2n+in(x)}, yJ = r for any se-
quences {&„} and {jn}, by the same way as above, we can prove that
{S2nThn+k2 +J(x)} converges weakly to y as n —> oo uniformly in k, j ^ 0. We
are now in a position to complete the proof of the theorem. For any integers n and m
with m > hn, we have

m —1

t=0 / k=hn+j2n
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where m = j2n + hn+r, 0 < r < 2 n . Since {S2»TKn+k2n+ix} converges weakly to y
as n —> oo uniformly in k, i ^ 0, we conclude that {SmT1!} converges weakly to y as
m - » o o uniformly in i ^ 0. This completes the proof. D

Recall that T is said to be weakly asymptotically regular at x € C if
weak-lim ( T n + 1 x - Tnx) = 0.

THEOREM 3 . 2 . Let C,X and T be as in Theorem 3.1. Then for each x G C,

the sequence {Tnx} converges weakly to a fixed point of T if and only if T is weakly

asymptotically regular at x.

PROOF: Necessity is trivial. Sufficiency follows from Theorem 3.1 and the fact
that the weak asymptotic regularity of T at x is a Tauberian condition for weak almost
convergence of {T n x} (see Lorentz [11]). D

4. NONLINEAR SEMIGROUPS

Let C be a closed convex subset of a Banach space X. A one parameter family
T = {T(t): t ^ 0} of mappings from C into itself is said to be a Lipschitzian semigroup
on C if the following conditions are satisfied:

(1) T{0)x = x for x £ C;
(2) T(t + s)x = T(t)T(s)x for x e C and t, s ^ 0;
(3) for each x G C, the mapping T(t)x is continuous for t £ [0, oo);
(4) for each t > 0, there exists a real number At > 0 such that

| |T(0x - T(t)y\\ ^ Xt \\x - y\\ for x, y € C.

A Lipschitzian semigroup T is said to be nonexpansive if At = 1 for all t > 0 and
asymptotically nonexpansive if lim At = 1, respectively. We denote by F(F) the set

t

of common fixed points of the semigroup !F, that is, F(!F) — f] F(T(t)). If C is
t>o

assumed to be a bounded closed convex subset of a uniformly convex Banach space and
if T = {T(t): t ^ 0} is an asymptotically nonexpansive semigroup on C, then it has
been shown (see [15]) that F{T) is closed, convex and nonempty. In this case, the
metric projection P from X onto F(T) is well-defined. If we assume, in addition, that
T = {T(t): t ^ 0} is nonexpansive and the space X either has a Frechet differentiate
norm or satisfies the Opial's condition, then it has also been shown (see [2], [3], [8]) that
for each x G C, {T(t)x} converges weakly to a common fixed point of T if and only
if T is weakly asymptotically regular at x, that is, weak- lim (T(t + h)x — T(t)x) = 0

4™*oo

for all ft. > 0. The same conclusion was recently shown true by the authors [15] for
an asymptotically nonexpansive semigroup T on C in the case when X has a Frechet
differentiate norm. The object of this section is to show a counterpart in the case,
when X satisfies the Opial's condition.
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THEOREM 4 . 1 . Let X bea uniformly convex Banach space satisfying the Opial's

condition, C a bounded closed convex subset of X, and T = \T(i): t ^ 0} an asymp-

totically nonexpansive semigroup on C. Then for each x £ C, {T(t)x} converges

weakly to a member of F(P) if and only if T is weakly asymptotically regular at x,

that b, weak- lim (T(t + h)x - T(t)x) = 0forallh>0.

PROOF: It suffices to show the sufficiency part. We first show that if u =

weak-lim T(<j.)x for some sequence {$*} of real numbers such that limtfc = oo, then

u € F(F) • Under this assumption, since J- is weakly asymptotically regular at x, we
see that weak- lim T(tk + s)x — u for all s ̂  0. Let

r, = limsup||T(ifc + s)x — u\\.
k->oo

Using the Opial's condition, we get for all s, t ^ 0,

r,+t = lim sup ||T(i* + a + t)x — u\\
k—oo

^ lim sup \\T(t)T(tk + s)x - T[t)u\\
k—oo

| | ( )
Jt — oo

= A«r,, namely,

(4.1) r.+t ^ \tr. for all s, t ^ 0.

F r o m t h i s , i t f o l l o w s t h a t l i m r* = : r e x i s t s a n d r ^ r, f o r a l l s ^ 0 . I f r = 0 , t h e n
t—»oo

it is immediate that u £ F(T). So, we assume r > 0. In this case, we show that
T(t)u —* u strongly as t —• oo. Suppose not; then there is a sequence {tn} for which
limtn = oo such that

(4.2) | |T ( i n )u -u | | £eo , n = l, 2, . . .

for some eo > 0. Choose 0 < rj < eo so small that

(4.3) (r + r,){l-S{eo/(r+r,)))<r,

where 6 is the modulus of convexity of X. Choose N and so so that
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where A^ is the Lipschitz constant of T(tpf). Using the Opial's condition of X and
combining (4.1), (4.2) and (4.4), it yields

r < rtQ+iN =limsup||T(tjb + s0 + tN)s - u\\

limsup
Jfc — o o

T(tk + s0 + iN)x - I(T(tN)u + u)

which contradicts (4.3) and therefore, T(t)u —* u strongly as t —> oo. This implies that
u 6 F(T) by continuity of T'. Now we set

d(t) = ||r(t)x - PT{i)x\\, O 0,

where P is the metric projection of X onto F(J-). Since

d(t + s)= \\T(t + s)x - PT(t + s)x\\

= \\T(s)T(t)x - T(s)PT(t)x\\

^ X. \\T(t)x - PT(t)x\\

= X.d{t)

for all t, s ̂  0, it follows that d := lim d(t) exists and d ̂  d(t) for all t ^ 0. We now
t—*oo

claim that {PT(t)x} is norm Cauchy. This is trivially valid if d — 0. Suppose now
d > 0. For any e > 0, choose first TJ > 0 such that

(4.5)

and then to such that

(4.6)

v)(l-S(e/(d

^n and At (d + ^r < d +

for all t ^ t0. Now let tlyt2 > to be arbitrary but fixed. If \\PT(ti)x - PT(t2)x\\ > e,
then, since

t2)x - = ||T(t0 + t2)T{ti)x - T{t0 + t2)PT(h)x\\
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we get

d ^ d(t0 +h+ t2) = \\T{tQ +tt+ t2)x - PT{t0 + h + t2)x\\

< |T(<O + *i + u)* - ^ |

a contradiction to (4.5). This shows \\PT(t!)x - PT(t2)x\\ < e and hence {PT(t)x}
is norm Cauchy. Let y — lim PT(t)x and u = weak-lim T(ifc)s: be an arbitrary weak

t—>oo k

limit point of {T(t)x}. If u ^ y, using the Opial's condition of X, we then obtain

Urn \\T{tk)x - j/ll = lim \\T(tk)x - PT(tk)x\\

This is a contradiction. We have therefore u = y and {T(t)x} converges weakly to y.
The proof is complete. U

REFERENCES

[1] J.B. Baillon, 'Un theoreme de type ergodique pour les contractions non lineaires dans un
espace de Hilbert", C.R. Acad. Set. Paris 280 (1975), 1511-1514.

[2] R.E. Bruck, 'A simple proof of the mean ergodic theorem for nonlinear contractions in
Banach spaces', Israel J. Math. 32 (1979), 107-116.

[3] R.E. Bruck On the convex approximation property and the asymptotic behavior of non-
linear contractions in Banach spaces, Israel J. Math. 34 (1981), 304-314.

[4] D. van Dulst, 'Equivalent norms and the fixed point property for nonexpansive mappings',
J. London Math. Soc. 25 (1982), 139-144.

[5] M. Edelstein, 'The construction of an asymptotic center with a fixed-point property',
Bull. Amer. Math. Soc. 78 (1972), 206-208.

[6] K. Goebel and W.A. Kirk, 'A fixed point theorem for asymptotically nonexpansive map-
pings', Proc. Amer. Math. Soc. 35 (1972), 171-174.

[7] N. Hirano, 'A proof of the mean ergodic theorem for nonexpansive mappings in Banach
spaces', Proc. Amer. Math. Soc. 78 (1980), 361-365.

[8] N. Hirano, 'Nonlinear ergodic theorems and weak convergence theorems', J. Math. Soc.
Japan 34 (1982), 35-46.

[9] N. Hirano and W. Takahashi, 'Nonlinear ergodic theorems for nonexpansive mappings in
Hilbert spaces', Kodai Math. J. 2 (1979), 11-25.

[10] W.A. Kirk, 'Fixed point theorems for non-Lipschitzian mappings of asymptotically non-
expansive type', Israel J. Math. 17 (1974), 339-346.

https://doi.org/10.1017/S0004972700036972 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036972


36 Kok-Keong Tan and Hong-Kun Xu [12]

[11] G.G. Lorentz, 'A contribution to the theory of divergent series', Ada Math. 80 (1948),
167-190.

[12] Z. Opial, 'Weak convergence of the sequence of successive approximations for nonexpan-
sive mappings', Bull. Amer. Math. Soc. 73 (1967), 591-597.

[13] S. Reich, 'Weak convergence theorems for nonexpansive mappings in Banach spaces', J.
Math. Anal. Appl. 57 (1979), 274-276.

[14] K.K. Tan and H.K. Xu, 'The nonlinear ergodic theorem for asymptotically nonexpansive
mappings in Banach spaces', Proc. Amer. Math. Soc. (to appear).

[15] K.K. Tan and H.K. Xu, 'An ergodic theorem for nonlinear semigroups of Lipschitzian
mappings in Banach spaces', Nonlinear Anal, (to appear).

[16] Z.Y. You and H.K. Xu, 'An ergodic convergence theorem for mappings of asymptotically
nonexpansive type', Chinese Ann. of Math. 11A (1990), 519-523. (in Chinese) .

Department of Mathematics,
Statistics and Computing Science

Dalhousie University
Halifax, Nova Scotia
Canada B3H 3J5

Institute of Applied Mathematics
East China University of Chemical Technology
Shanghai 200237
People's Republic of China

https://doi.org/10.1017/S0004972700036972 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036972

