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Abstract

This paper is concerned with the distribution of N points placed consecutively around the
circle by an angle of a. We offer a new proof of the Steinhaus Conjecture which states that, for
all irrational a and all N, the points partition the circle into arcs or gaps of at least two, and
at most three, different lengths. We then investigate the partitioning of a gap as more points
are included on the circle. The analysis leads to an interesting geometrical interpretation of
the simple continued fraction expansion of a.

1980 Mathematics subject classification {Amer. Math. Soc.) (1985 Revision): 10 F 40, 10 F 05.

1. Introduction

The Three Gap Theorem was originally a conjecture of H. Steinhaus: proofs
were subsequently offered by various authors ([2], [8-12]). Consider the sequence
wjv(a) = {{not} = na mod 1), n = 0,1,2,.. . , N - 1, and let {net} designate the
point on the circle of unit circumference lying a clockwise circumferential distance
of {na} from the origin, ({i} denotes the fractional part of x, and [x] the integer
part such that x = [x] + {x} and y mod x = y- x[y/x] = x{y/x}.) The theorem
states that the circumference is then partitioned into arcs or gaps of at most
three, and at least two, different lengths for any irrational a (and any N). This
theorem does not appear to be well known and our purpose here is to review the
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result and offer a new proof. In part icular , we formulate t ransformation rules
for the part i t ioning of a gap.

The theorem is related to the arrangement of elements of wjv(a) into as-
cending order of magni tude . Let ({uj(N)a}), j = 1,2,...,N, be t h a t or-
dered sequence. That is, {ui(N),u2(N),... ,UN(N)} — {0,1 , . . . ,7V - 1} where
{uj(N)a} < {uj+i(N)a}. In Section 2, we determine the recurrence relation
which allows one to determine this ordered sequence. Section 3 obtains val-
ues involved in this expression in terms related to the simple continued fraction
expansion (C.F.) of a. From this result we present an interesting geometrical
interpretation of the C.F. of a by investigating (in Section 4) the change in gap
structure induced by the addition of extra points to the circle. Results concern-
ing rational approximations to a are derived from Section 3 and presented in the
appendix.

All results hold as well for rational a, say a = p/q in lowest terms, where it
is always assumed that N < q. {UN — q, the circle is partitioned into q gaps of
length 1/q.)

2. The recurrence relation

We call Uj(N) = Uj the point which lies on the circle of unit circumference,
a clockwise distance of {UJOI} from the origin. The operators Pre and Sue are
defined such that Uj = Pre(u,+i) = Suc(uJ_1),2 <j<N. We let ditj(N) = ditj
denote the shortest clockwise distance from point i to point j . It is clear that

(1) <kj = {{ja} - {ia}} = {(j - i)a}, 0 < i, j < N.

We do not always measure distance in the clockwise direction—if we say that
point i is closest to point j then we mean that no other point is closer to point
j in the clockwise or anti-clockwise direction.

Consider those points located a distance {qa} from a point j where 0 < q < N
(and thus, 0 < j < N — q). Of these points, j + u2 is the successor of point j
since {u2a} is the smallest of all possible distances, {qa}. That is, using (1), for
0 < j < N - q,

(2) min djj+q = min do,q = d0<U2 = dktk+u2, 0 < k < N - u2.
0<q<N Q<q<N

Similarly, for q < j < N,

(3) min djj-q — min dq$ = dUNio = dkik-UN, UN < k < N.

This allows us to state the following (two gap) case.
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LEMMA 2.1 . ForN = u2+uN,

« i = ( 0 " - l ) « a ) mod TV, j = l,2,...,N.

( Ui,

(4) Suc(m)-m={
I -U

PROOF. From (2) and (3), for this value of TV,

0 < m < UN,

UN, UN < TO < TV,
or

( u2, 0 < TO < TV-u 2 ,
Suc(m) — m — {

\u2-N, TV - u2 < TO < TV.

Hence, u,-+i — (UJ + u2) mod TV, j = 1,2,. . . , TV, from which the lemma follows.

Equation (4) shows that the circle of U2+UN points is partitioned into UN gaps
of length ||u2a|| and u2 gaps of length ||ujva||, where ||a;|| = min({x}, 1 — {x}) =
\x — [x + 1/2]|, the difference between x and its nearest integer.

The following is a proof of the conjecture of Steinhuas.

T H E O R E M 2.2 .

0 < TO < N -u2,

Suc(m) — TO = ^ u2 — UN, TV — u2 <m < UN,

UN <m< TV.

PROOF. Firstly observe that max(u2,uN) < N < u2 + uN- (Clearly, TV >
max(u2, UN)- Also, if TV > u2 + UN, then u2 + UN would lie closer to the origin
than one of u2 or UN, thus contradicting their definition.)

From the sequence of M = u2 + UN points, remove i = M — TV points;
u2 + UN — 1, u2 + UN — 2 , . . . , u2 + UN — i- That is, remove the successors of
points r; r — UN~i,UN—i+l,... ,UJV —1, so that the original TV points are left on
the circle. Note that u2(M) = u2{N),uM(M) = UN{N), and so M = u2 + UM-

Then from (4),

Suc(r) = r + u2,

Suc(Suc(r)) = r + u2 — UN,

where

r = uN-i,uN-i + l,...,uN-l

= TV - u2, TV - u2 + 1 , . . . , uN - 1.

Thus, on the circle of JV points, the successor of point r is r + u2 — UN where r =
N -u2,N -u2 + l,. ..,uN-l- Combining this with (4) proves the theorem. •

The theorem shows that the circle of TV points is partitioned into TV - u2 gaps
of length ||u2<*||, TV - uN gaps of length ||ujva|| and u2+uN -N gaps of length

ll«aa|| -
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3. The predecessor and successor of the origin

We determine «2 and UJV in terms of the C.F. of a. First, we introduce some
notation from the theory of continued fractions.

We define the C.F. of a by the following algorithm: we write t0 = a and
define (for n = 0 ,1 ,2 , . . . ) ,

1
O-n = [tn\, tn+1 = TTT-

In this way we express the C.F. of a by

1
a - a0 H 1

1
a3-\

= { a o ; a i , a 2 , a 3 , - • } .

It is evident that tn is the nth tail of our C.F. such that

(5) tn = {an;an+1,...},

and
a = {ao;ai,a2,... ,an-i,tn}.

We say that a is equivalent to j3 if we can find some tail in a which is equal to
some tail in /?.

Note that the algorithm terminates (so that the number of terms in the con-
tinued fraction expansion is finite) if and only if a is rational.

Partial convergents are defined by the (irreducible) fractions

Pn,i _ Pn-2 +»Pn-l _ r . 1 = 1 2
qn,i qn-2+iqn-i

where

qn,an qn

We call pn/qn a total convergent to a.
We note the following results which may be easily proved. (See, for example,

Khintchine [4].)

(6) pn-iqn,i ~ qn-iPn,i - (-1)",

(8) qna -pn =

The following result comes from Diophantine approximat ion theory and for

the proof we refer the reader to Khintchine [4]. This lemma shows t h a t point

</n_i is closest to the origin for qn-i < N < qn^, i = 1 , 2 , . . . , an (n > 2).

https://doi.org/10.1017/S1446788700031062 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031062


364 Tony van Ravenstein [5]

LEMMA 3 . 1 .

min ||gor|| = | |gn_ia| | , i = 1,2,... , o n (n > 2).
<q<9

The following lemma proves that, for N in the same interval, point qn,i-i is
the next closest point on the opposite side of the origin to point qn-\-

LEMMA 3.2 .

min ||<?a|| = ||qv»,i-ia||, i = 1,2,... ,an (n > 2),
0<q<qn,i

where k is integer so that 0 < kqn-\ < qnj or k < qn-2/Qn-i +i or k <i < an.

PROOF. We emphasise that q is integer, lies between 0 and qn,i, and may not
be a multiple of qn-i- We write

(7 = /i(/n_l +uqn,i, P = MPn-l +'/Pn,t-

Solving for fj, and v using (6) yields the integer solution:

H = (-l)n{pqnii - qpn,i), v - (~l)n~1(pqn-i - qpn-i)-

Neither \i nor v may equal 0 (if// = 0, then q = uqn^, while ifv = 0,q = /ugn-i—
two obvious contradictions). Note that

qa-p = n{qn-ia - pn-i) + v{qn^a - pn^.

Now, 0 < q — /iffa-i + ^9n,t < Qn,i- This shows that fi and v are of opposite
sign. Also, (qn_ia — p n - i ) and {qn^a — pn,j) are of opposite sign, which may be
deduced using (8). Thus,

That is, from (7),

Equality occurs when |/*| = \v\ = 1. If n = —v = 1, then q = qn-i - qn^ < 0 (a
contradiction), while — fi = v = 1 implies that q — —qn-i + qn,i — Qn,i-i- Thus
we conclude that

||ga|| > ||gn,j_ia||, 0 < q < qn,i, q / kqn-i, k=l,2,...,i.

We mention that the upper bound of k (that is, i) in Lemma 3.2 may be
replaced by min(i, an — i + 1).

From Lemmas 3.1 and 3.2, one may deduce the following theorem. The proof
which we omit, is fairly routine.
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THEOREM 3.3.

r qn_!, n odd, ( qn,i-i, n odd,
«2 = \ uN - <

I Qn,i-i, n even, { qn-i, n even,
where qn>i-i <N < qn<i, 2<i<an (n > 2).

»-i < N < qnA (n > 2),

{ qn-i, n odd, ( qn-2, n odd,

UN = {
gn_2, n even, I qn-i, n even.

4. Gap s t ructure

The following describes the change in gap structure induced by the transition
from a circle of qn-i or qn^ gaps to one of gn>i or qn,i+i gaps respectively (i —
1,2,...,On — 1). The analysis provides an interesting geometrical interpretation
of the C.F. of a.

Suppose that the circle is partitioned into gaps of only two different lengths
which we describe as large and small. We label a large gap / and call a small
gap s. Let

where i = 1,2,..., an, denote the string of gap types for N = qn>i, i = 1,2,..., an

(n > 1) ordered clockwise around the circle so that <jPn i denotes the gap type
(either s or /) formed by the points Uj(qn>i) and Uj+i(qn<i). Assume that $o = s-

Define Pn^ such that

/, n odd,

s, n even,

where i = 1,2,..., an,

Pn,l{s)=l,
p .(„) <> ,'_oo „

1 n,i\&) — *5) l — "•> °i • • • •> u n '

Assume that Pn,i is a homomorphism such that, for instance, Pn,i(sl) =

THEOREM 4 . 1 .
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PROOF. Suppose t ha t TV = ui + UN = g n _ i , where n is odd so tha t there are

UN large gaps of length ||tt2«|| and u 2 small gaps of length | | u ^ a | | . Let a = u-i-

Now place point qn-i on the circle. From Theorem 3.3 it enters the large gap

succeeding the origin and becomes the new Suc(O), t ha t is u2. From Lemma 3.1

this point is closest to 0 and thus the gap I is transformed into si. The next point,

qn-i +1, enters the large gap succeeding point 1, transforming this I into si. As

TV is increased to gn,i all new points enter in succession the large gaps which

succeed points m where m = 1 ,2 , . . . , UN — 1: thus all the small gaps are of length

| |u2a| | anda l l the (new) large gaps are of length | |oa| | — | |u2a| | = ||«Ara|| = ||«*f<*||

where M = qn-i- Hence the small gaps present when TV = qn-\ are now labelled

as large and $n,i = Pn,i(*n-i)-
If an > 1 the next point qn<1 = qn-\ + qn-2 becomes the new Pre(O) and,

since qn-i is still the closest point to the origin, it transforms the large gap I it
divides into si. As TV is increased to gn,2 these new points successively divide
the large gaps succeeding points m where m = 1,2,..., «2 — 1. Thus all the large
gaps present when TV = qn<1 are transformed into si, where the length of the
small gap is equal to ||ie2oc||. Thus, each small gap remains undivided and retains
its label s and hence $n>2 = -Pn,2(̂ 71,i)- Similar statements may be made for
the transition from TV = qnii to TV = qn,i+i — 1 (t = 2 ,3 , . . . , on — 1).

The proof for even n is omitted since it follows in a like manner.

Theorem 4.1 leads us to the following observation and geometrical interpre-
tation of the C.F. of a: each large gap present at qn-\ points (n > 2) is par-
titioned into an small gaps of length ||qn_1a|| and a new large gap of length
||9«—1«|| + ||<7n<*|| a s w e g° to qn — 1 points. If we pretend that each of the large
gaps present when N = qn-\ +qn-2 are circles of unit circumference, then as TV
is increased they appear as if they are being divided by an angle of \/tn for odd
n and 1 — \/tn for even n.

Each point divides some gap forming two new gaps—we interpret this event
as the death of an old gap and the simultaneous birth of two new gaps and thus
define the age of the gap with endpoints Uj, Uj+\ to be

a,j(N) = TV — 1 — max(uj,Uj+1).

PROPOSITION 4 . 2 . Suppose we have placed N — 1 points and are to place

point TV — 1. Then, point TV — 1 divides that gap which is the oldest of the largest

gaps. The age of this gap is always min(u2(TV),itjv(TV)) — 1. (Note that u^ and

UN relate to points adjacent to the origin after the point TV — 1 has been placed.)

PROOF. From Theorem 2.2, each additional point TV - 1 divides a large gap,
since Suc(TV - 1) - Pre(TV — 1) = u2 — UJV- It now remains to show that this gap
is the oldest. From Theorem 2.2, each point TV - 1 divides the gap which is of
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age

N - 2 - max(iV - 1 - u2, N - 1 - uN) = N-2-(N-l+ max(-u2, -

If this is not the oldest of the large gaps then the gap, say, with endpoints a
and b which we will call <?„,(, is older. Since </O)j, is a large gap it follows that
b — a + u-2 — UJV- Without loss of generality assume that u2 > UN- Then
ga<b is of age N — 2 — max(a, b) = N — 2 — a — u 2 + UN- It then follows that
N-2-a — U2 + UN > UN — 1 or N — 1 — a > U2- From Theorem 2.2, if
b — a = u 2 — UN, then N — u 2 < a < UJV- Thus , N — 1 — UN < N — I — a < u 2 — 1,
which contradicts the above and hence completes the proof.

5. Discussion

We conclude with a brief survey (using our notation) of the different ap-
proaches adopted by various authors to prove the Steinhaus Conjecture.

Our approach was to first describe the case (Lemma 2.1) where the circle is
partitioned into gaps of just two different lengths. This was achieved by applying
the identities (2) and (3). Points were then carefully removed and the situation
analysed to determine Theorem 2.2, a statement of the Three Gap Theorem.
Neighbouring points to the origin, u2 and UN, were derived in terms of the C.F.
of a via Lemmas 3.1 and 3.2 which (as shown in the appendix) are concerned
with 'best' and 'second best' rational approximations to a.

One of the first proofs was offered by Swierczkowski [11] who determined the
recurrence relation after showing that the first point to replace either Suc(O) or
Pre(O) is the point Suc(0)+Pre(0). Swierczkowski did not relate any of his results
to continued fractions. As a corollary he proved a conjecture of J. Oderfeld,
determining the gap sizes for the case a = (v^5 — l)/2 by using this result to
show inductively that Suc(O) and Pre(O) are consecutive Fibonacci numbers.

The proof offered by Sos [9, 10] is similar in approach to that of Swierckowski.
In [10] Sos identified the points Suc(0) and Pre(0) with the denominators of con-
vergents to a. She also showed that if the terms in the C.F. of a are unbounded,
then

liminf NIIN — 0, liminf NHN — 1,
N—KX N—>oo

lim sup ./V/ijv = 1, lim sup NHN ~ oo,
JV—oo 7V-.OO

where HN and /IAT denote, respectively, the lengths of the largest and smallest
gap belonging to a circle of JV + 1 points. These results were also conjectured
by Steinhaus and first proved by Hartman [3] using the theory of continued
fractions.
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Suranyi [12] enclosed a in an interval whose endpoints are consecutive mem-
bers of a Farey sequence of certain order. That is, he supposed that A/a <
a < B/b where aB — bA = \ and A/a, B/b G F^. F^ is the Farey sequence of
order N (the ordered sequence of irreducible fractions in the unit interval with
denominators not greater than N) where max(a, b)<N<a + b— 1. He then
deduced that a = u^ and b = us and that UN{(*) — UN{A/O). This result was
then used to verify Theorem 2.2.

The proof offered by Halton [2] involves a description of the dynamics of the
gap division with reference to quantities derived from the C.F. of a. Halton,
however, did not concern himself with ordering the points.

Salter [8] approached the problem by first deducing Theorem 2.2. From this
relation it is readily shown that UN||«2a|| + «2J|w;v»|| = 1. To find ui and UN
this equation was solved subject to the constraint A/u^ < a < B/UN where A
and B are the nearest integers to u^a and tijva respectively. Thus Slater was
able to express U2 and UN in terms of the C.F. of a. Slater also considered the
problem of determining the relationship between the successive integer values of
j for which {ja} < $ where 0 < $ < 1. He showed that the 'gaps' between the
successive j may take on at most three different values, one being the sum of the
other two. This problem was originally discussed in [7].

6. Note

It has been pointed out by a referee that Chung and Graham [1] have gener-
alised the Three Gap Theorem. R. L. Graham [5] first conjectured that the d
sets of points {riia + /?»}, 0 < rii < Ni, 1 < i' < d (0i = 0) partition the circle of
unit circumference into gaps of at most 3d different lengths. The proof offered
by Chung and Graham is somewhat involved—after its publication a simpler
(2-page) proof was produced by Liang [6].

7. Appendix. Rational approximations to a

In this appendix we interpret Lemmas 3.1 and 3.2 in terms of Diophantine
approximation theory. As defined in Khintchine [4], a/b is a best approximation
(of the second kind) to a (BA2 to a) if

min
0<q<b

where q is integer. (Note that a = [ba + 1/2] and the minimum is unique.)
Lemma 3.1 then expresses the fact that the total convergents to a provide the

unique sequence of BA2's to a.
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We define c/d to be the second best approximation (of the second kind) to a

(BA22 to a) if
\\qa\\ = \\da\\,

where c = [da + 1/2]. T h a t is, if we exclude from consideration the BA2 to a

{a/b), then c/d is the remaining best approximation. From Lemma 3.1 it is clear

that a/b = pn/qn, where n = max{fc: qk < d}. From Lemma 3.2,

min ||qa|| = ||gn+i,ia||, i = 0,1,2,... , a n + i - 1,
0<q<d

p/q^a/b

where i — max{fc: qn+i,k < d}. Thus, to conform with the definition of a £1422,

we may replace d by qn+i,i for t = 1 ,2 , . . . , an+\ — 1. (If i = 0, the definition of

a BA22 is violated since

as d > qn. We note that if d = qn, we are considering BA2''s to a.)
We conclude that a BA22 to a is necessarily a partial or total convergent to

a (c/d is a total convergent if an + i =1).
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