Note on Hypercomplex Numbers,
By J. H. MacLacaN-WEDDERBURN, ML A.

The present note is an extension of a previous paper* on the
same subject. In this paper a concise proof was given of a theorem
by Scheffers to the effect that if a linear associative algebra contains
the quaternion algebra as a subalgebra, both having the same
modulus, then it can be expressed as the direct product of that
quaternion algebra and another algebra. It was also shown that
this theorem could be generalised to the extent of substituting a
matric quadrate algebra for the quaternion algebra. In the present
paper the theorem is extended to certain other types of algebras.

As the phrase linear associative algebra is rather cumbersome,
I use throughout the word algebra in its place, and for the same
reason I call a subalgebra which has the same modulus as the given
algebra a proper subalgebra.

1. A number or element of an algebra is said to be rational with
respect to a given field or domain if all its coefficients are rational
in the same field and the algebra itself is said to be rational if the
product of any two rational elements is also rational. Thus
Hamilton’s quaternions are rational in the field of rational numbers,
and hence also in any subfield of the field of real numbers.

Let A be an algebra rational in a given field and having a
rational proper subalgebra B which on extending the field is found
to be equivalent to the matric quadrate algebra

e (P q=1, 2,...m; €8, =6,, 6,2,=0, q%7);
then the algebra A can be expressed as the direct product of B and
some other rational subalgebra.

By the extension of Scheffers’ theorem mentioned in the intro-
duction, A can be expressed in the extended field as the direct
product of B and another algebra D. Let the bases of A and B be

A=, x, ... Z,

B=y, 42 -0 %
These elements can be chosen rational and the proof of the theorem
consists in showing that a rational basis can also be chosen for D.

* Proceedings of the Royal Society of Edinburgh, vol. 26, 1906.
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Any element z of D can evidently be expressed in the form
2=2fx, +
where z/, ... 2/, ' are linearly independent rational elements of
A and §, ... §, are irrational scalars which are linearly independent
in the given field. If now y is any rational element of B
yz=zy

therefore 0="¢(yr, - wy) +yx' - x'y.
Hence as the £'s are independent we must have

yz, -z y=0 (r=1,2 ...9)

yr' —x'y =0
for every rational element y of B and therefore «/, x,), ... 2/, 2’ are
elements of D, t.e., a rational basis can be chosen for D.

2. The second extension is as follows.

If an algebra A contains a rational proper subalgebra B in which
(1) every element has an inverse, (2) no element save the modulus is
commutative with every other element, then A can be expressed as the
direct product of B and a rational algebra C.

Let y,, ¥; ... ¥, be a rational basis and
y=326Y,
any rational element of B. If now we form
Y =9y - 49 = 8(yy.— Yy.) = SEy.

the coefficient £, disappears possibly along with some others.
Similarly if £, is any coefficient which has not been eliminated by
this process,

Y'=y.y -y'y. =3¢y
does not contain the coetficient ¢, and so on. This process may come
to an end in two ways.

(1) If in Yy =2 yln
7" ¥, ... are all commutative,
(2) It Y = Ly,

The first case reduces to the second if p=1, so we may suppose
p>1. Now from the conditions imposed on B, there is an element x

which is not commutative with y, "y %, unless y,” =y/". But by
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replacing »"—! by «'y" where «’ is suitably chosen, we can always
arrange that ¥, +y ", hence we may assume

Yy -y = Sy Sy e - gy ) 40,
The coefficient of ¢, under the summation sign is, however, zero.
Any other coefficient can be eliminated in the same way, and by
this process we can reduce the number of terms under the summa-
tion sign step by step till an equation of the second type is reached.
In both cases, therefore, we are led to an equation of the form

Y=y
or L=yy
where £, is any preassigned coefficient of y. Hence remembering

that y is an arbitrary element of B, we see that we can represent its
rth coordinate in the form
§&=Sy)

where the form of /,( )} does not depend on y. Hence, as was proved
in the paper referred to in the introduction, A can be expressed as
the direct product of B and the algebra obtained from A by forming

Sx) (r=1,2,..0;8=12 ... a)
Zy, &, ... being a basis of A.
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