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INJECTIVE HULLS OF TORSION FREE MODULES

J. ZELMANOWITZ

Introduction. In § 1, we begin with a basic theorem which describes a
convenient embedding of a nonsingular left R-module into a complete direct
product of copies of the left injective hull of R (Theorem 2). Several applica-
tions follow immediately. Notably, the injective hull of a finitely generated
nonsingular left R-module is isomorphic to a direct sum of injective hulls of
closed left ideals of R (Corollary 4). In particular, when R is left self-injective,
every finitely generated nonsingular left R-module is isomorphic to a finite
direct sum of injective left ideals (Corollary 6).

In § 2, where it is assumed for the first time that rings have identity elements,
we investigate more generally the class of left R-modules which are embeddable
in direct products of copies of the left injective hull Q of R. Such modules are
called torsion free, and can also be characterized by the property that no
nonzero element is annihilated by a dense left ideal of R (Proposition 12).
When Q is a left quotient ring of R, we show that every finitely generated
torsion free left R-module is torsionless if and only if Q is a right quotient
ring of R (Corollary 13). An examination of the injective hull of a torsion
free module follows, and provides convenient sufficient conditions for the
embedding of torsion free modules into free modules. Specifically, if R has
an artinian left quotient ring then every finitely generated torsionless R-module
can be embedded in a free module (Theorem 18). Combining this with an
earlier result we learn that if Q is an artinian left and right quotient ring of R,
then every finitely generated torsion free R-module can be embedded in a free
module (Corollary 20).

1. Throughout this section, all rings are associative, but do not necessarily
contain identity elements. When a ring R fails to have an identity element, we
let R! denote a ring with identity in which R is embedded in the usual manner.
Except as indicated, all modules will be left R-modules and module homomor-
phisims will be written on the right. The injective hull of an R-module M is
denoted M. Q = R will always indicate the left injective hull of R. For all
notions regarding injective modules over rings without identity elements we
refer the reader to [2].

Let M be an R-module. For any submodule N of M and any subset K of M
we set (V:K) = {r € R|rK C N}, a left ideal of R. Z(M) = {m € M|(0:m)
is an essential left ideal of R} is a submodule, called the singular submodule of
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M. If Z(M) = 0 we say that M is nonsingular. We write N ' M to indicate
that N is an essential submodule of M. A submodule N of M is closed in M if it
has no proper essential extensions in M. (The zero submodule is closed.) We
remark that if Vis a submodule of M and gV’ is chosen maximal with respect
to N N\ N’ = 0, then N’ is a closed submodule of M and N 4+ N’ is an essential
submodule of M (such N’ exist by Zorn’s lemma). Finally, an R-module M is
(essentially) T-gemerated if it is (an essential extension of a submodule)
generated by T elements, T a cardinal number.

LeEMMA 1. Let N be a submodule of an R-module M and let m € M.

(1) If N is essential in M then (N:m) is an essential left ideal of R.

(2) If M is nonsingular and (N:m) is an essential left ideal of R, then N is an
essential submodule of N -+ R'm. (See [3].)

THEOREM 2. Suppose that M is a nonsingular R-module which is essentially
T'-generated. Then there exists an embedding p: M — 1lo<saQp where carda = T,
each Qg = Q, and there exist closed left ideals Is & R & Qp with Y o<s<a ® I
an essential submodule of Mu.

Proof. We may assume that M is an essential extension of Y ocg<a R,
where card & = T and {ms}ocs<ca & M. For each ordinal v < a, set

M,= 3 R'my,
0=8<y

Q"= ]I Qs
0=p<y

We proceed to establish the theorem for M, by a transfinite induction.

Let v < a. If v is not a limit ordinal, then by induction there exists an
embedding py—1: My_1 — Q7T and closed left ideals Is C R C Qgforg < v — 1
with Y. ¢<s<_1 @ I an essential submodule of M,_iu,_;. If M,_; is an essential
submodule of M, then since Q"~! is injective, u,—; extends to a monomorphism
uy': M, — Q1. Taking I,_; = 0 and setting u, equal to u,” composed with the
canonical embedding of Q"1 into Q" ! @ Q,.1 = Q, it is easy to check that
uy satisfies the desired requirements. If, on the other hand, M,_, is not essential
in M, = M,_; + R'm,_, then by Lemma 1, (M, _i:m,_1) is not an essential
left ideal of R. Hence, choosing a left ideal 7,.; maximal with respect to
L1 (My—1:my_1) = 0, I, is a closed left ideal of R and Iy_im,.1 =2 I,
under the homomorphism w,_1": I, _1m, 1— Q,_1defined via rm,_1 — 7,7 € I,
(this map is well-defined since 7,1 M (0:m,-1) = 0). Next, note that
My 1y + I,_ymy_1 (direct sum) is an essential submodule of M,. (Given
0= m € M, write m = #,_1 + am,_1 with n,1 € M, ; and a € R'. There
is no loss of generality in assuming that a ¢ (My_1:my—1). By Lemma 1,
J = (I,_1 + (M,_1:m,_1):a) is an essential left ideal of R, and so Jm = 0.
Choose 0= b € J with bm £ 0 and write ba = ¢+ d, ¢ € (M,_1:my_1),
d € I,_1. Then 0 5 bm = bn,_1+ bam,_1 = (by—1+ cmy_1) +dm,_1 € M, 1+
L_im,_1). Set p = pyo1 @ gyt :Mys + Loy — Q1 @ Qyer = Q.
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u, is clearly a monomorphism. Since M,_; + Iy,_1m,—1 is an essential sub-

module of M, and Q" is injective, u,” extends to a monomorphism p,: 3, — Q.
It is easy to check that 3 o<y @ Ipisan essential submodule of Myu,. If vis a
limit ordinal, then define pu, = Ug<yus: Mz — QF (note that Qv D Uz« (QF).
The definition of u, is consistent since ug extends us; for every § < 8. The
remaining parts of the induction hypothesis are equally easy to verify. Thus
we have a monomorphism u,: M, — (02, and since M, is an essential submodule
of M, we can take u to be any extension of u, to M.

Remark. Reviewing the proof, we observe that since Uocy<co,Q" =
> o<n<e D O, a countably generated nonsingular module can in fact be
embedded in a countable direct sum of copies of Q.

CoOROLLARY 3. If M is an essentially n-generated nonsingular R-module, then
there is a monomorphism u of M into Q", and closed left ideals I, . .., I, of R,
withI; @ ...® L, ' Mp C Q"and each I, ©T R C Q = Q.

COROLLARY 4. If M s a finitely generated nonsingular R-module, then there
exist closed left ideals I, . . ., I, of R with M=L®...® I,

Proof. By Corollary 3, we have M =~ (M,u)A = the injective hull of
L®...0L,=2L,®...0 1,

COROLLARY 5. If M is an n-generated nonsingular R-module, then there exist
n-generated R-submodules J1, ..., J, of Q with M isomorphic to an essential
submoduie of J1 @ ... @ J,.

Proof. In the situation described by Corollary 3, we choose I, to be an
injective hull of I, contained in Q; = Q. By [4, p. 91], there exists an isomor-
phism » of (]l[u)A C QO onto Iy ®...® I, which leaves [, ® ... ® I,
elementwise fixed. We then have I, ® ... @ [, C Mw 'L ® ... ® I,
with each I, C I, € Q. Then Muvm, C I, € Q, for each k, where m; is the
canonical projection of Q® onto Q. Since each Muvm; is n-generated and
Muy € Muvr, @ ... ® Muvw,, the conclusion follows.

COROLLARY 6. If R is a left self-injective ring, then every finitely generated
nonsingular module is isomorphic to a finite direct sum of injective left ideals.

Proof. A closed left ideal of a left self-injective ring is clearly injective, and
so the conclusion follows from Corollary 3.

We remark that the hypothesis actually used in the proof of the previous
Corollary is that every closed nonsingular left ideal of R is injective.

Recall that a module is finite dimensional if it contains no infinite direct
sums of nonzero submodules. A finite dimensional module is essentially finitely
generated. A ring R will be called finite dimensional if zR is finite dimensional.

COROLLARY 7. If R s a finite dimensional left self-injective ring, then every
nonsingular module is isomorphic to a direct sum of left ideals.
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Proof. Over a finite-dimensional ring, a direct sum of nonsingular injective
modules is injective [8, Theorem 2.5]. This corollary thus follows from
Theorem 2.

COROLLARY 8. 4 left self-injective left nonsingular ring is regular [4, p. 106].

Proof. By Corollary 6, every finitely generated left ideal is injective; hence,
it is a direct summand of R!, and therefore is generated by an idempotent.

COROLLARY 9. Let R be a finite dimensional ring and M o nonsingular left
R-module. Then M 1is finite-dimensional if and only if M is essentially finitely
generated [7, p. 226].

Proof. If M is essentially finitely generated, then M can be embedded in Q*
for some #. Since zR is finite-dimensional, so is zQ, and hence so is every
submodule of Q~.

We next turn our attention to a sufficient condition for the singular
submodule to split off.

CoroLLARY 10. If R is a regular left self-injective ring and M is an essentially
finitely generated R-module, then M = Z(M) @ N, where N is isomorphic to a
finite divect sum of finitely generated injective left ideals of R.

Proof. By [5, p. 338], Z(M/Z(M)) = 0, since Z(R) = 0, and so M/Z (M)
is seen to be essentially finitely generated and nonsingular. By Corollary 6,
M/Z (M) is isomorphic to a finite direct sum of finitely generated injective
left ideals. Since an injective left ideal is a direct summand of R, M/Z (M) is
projective. So M = Z(M) @ N with N = M/Z(M).

2. Henceforth, we will assume as a blanket hypothesis that R kas an identity
element.

A module zM is a rational extension of a submodule NV if, given any m € M
and 0 = m' € M, (N:m)m' # 0. S is a left quotient ring of R if S is a ring, R is
a subring of S, and zS is a rational extension of zR. For R-modules .S and M,
M will be called S-torsionless if zgM can be embedded in a direct product of
copies of S; equivalently, M is S-torsionless if for every 0 = m € M there
exists f € Homg(M,S) with mf #£ 0. An R-torsionless R-module is called
simply forsionless.

A left ideal D of R is dense if gR is a rational extension of D. For the purpose
at hand, we require the following facts. Let D be a left ideal of R and S a left
quotient ring of R. (Refer to [4] for details.)

(1) R is a dense left ideal of R.

(2) D is a dense left ideal of R if and only if Dg # 0 for all 0 = ¢ € Q.

(3)Ni=1(D:s;) is a dense left ideal of R for any s1,...,s, € S and dense
left ideal D of R.

(4) If A and B are S-modules and the only element of B which is annihilated
by a dense left ideal of R is the zero element, then Hom (4, B) € Hom (4, B).
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(This is easily proved by observing that for any s€ S, « € 4, and
f € Homg(4, B), (sa)f — s(af) is annihilated by (R:s).)

THEOREM 11. For R a ring with identity element and left quotient ring S, the
following conditions are equivalent.

(1) S is a right quotient ring of R.

(2) Every finitely generated R-submodule of S is torsionless.

(3) Every finitely generated S-torsionless R-module is torsionless.

Proof. (1) = (2). Assume that S is a right quotient ring of R. Let
M = Rs; + ...+ Rs, be a submodule of S. Set D = Nii[R:s,], where
[R:s;] = {r € R|s;r € R}. Since S is a right quotient ring of R, D is a dense
right ideal of R. Define f:M — H“DR,;, where each R; = R, via mf ="
{md},cp, m € M. fis clearly an R-homomorphism, and m € ker f if and only
if mD = 0. Since D is a dense right ideal of R, mD = 0 implies that m = 0.
So f is a monomorphism.

(2) = (3). If M is a finitely generated submodule of Il,¢; S, each S, = S,
then M C Il ;Mn; where , is the canonical projection map into S,. Each M,
is torsionless because it is a finitely generated R-submodule of S. Finally, M,
being a submodule of a direct product of torsionless modules, is torsionless.

8) = (1). (3) implies (2) trivially. We assume that (2) holds and let
M = Rs; + ...+ Rs, be a finitely generated, hence torsionless, left R-sub-
module of S. Set [R:M] = {r € R|Mr C R} and [[R:M] = {s € S|s[R: M] =
0}; [R:M] is a right ideal of R and /[R:M] is a left ideal of S. We claim that
[R:M] M M = 0. Suppose that 0 £ m € I[[R:M] N M. Since pM is torsion-
less, there exists f € Hom z (M, R) with mf # 0. Extend f to f’ € Hom (S, Q).
(Here, as always, Q denotes the left injective hull of R, and for convenience we
can assume that S € Q. This will automatically be supposed in the sequel
without mention.) Then, as was remarked prior to this theorem, f’ €
Hom (S, Q). Hence, for each s € S, sf’ = s(1f), and since M (1f ) = Mf C R,
1f € [M:R]. So mf = m(Lf ) = 0, which is a contradiction, establishing that
I[R:M] N\ M = 0 for any finitely generated R-submodule M of S.

Finally, suppose that s € .S, 0 & ¢ € S are given. Set M = Rs + R¢. Then
[R:M] = [R:s] N [R:{], so t[R: M] C t[R:s]. Were it the case that {[R:s] = 0,
we would have ¢ € [[R:M] N M = 0, contradicting the assumption that
t % 0. Hence, t[R:s] ## 0, proving that .S is a right quotient ring of R.

The preceding theorem appeared in [1] for nonsingular rings. We have
follcwed the proof given there, suitably modified. One should observe that in
the proof that (1) = (2), the fact that.S was a left quotient ring of R was not
used. Also, in the proof of the converse, we needed the hypothesis only for
two-generator submodules of S.

1]t has been kindly brought to our attention by the referee that for the case where S is the
maximal left quotient ring of R, the previous theorem has been independently proved by
Kanzo Masaike, On quotient rings and torsionless modules, Science Reports of Tokyo U. of
Education (to appear).
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Next, a word on a related situation. Define an R-module M to be torsion free
if for any 0 ## m € M there exists ¢ € R with Homz(Ram, R) 5 0; see [6].
We have proved in the course of Theorem 2 that a nonsingular module is
torsion free in this sense.

ProrosITION 12. For an R-module M, the following conditions are equivalent.
(1) M 1s torsion free.

(2) M s Q-torsionless.

(8) No nonzero element of M is annihilated by a dense left ideal of R.

Proof. (1) = (2). For each 0 £ m € M, choose 0 # f,, € Homz(Ram, R),
for some a € R. f,, extends to g, ¢ Homg (M, Q). Define v: M — Ilowp c2:00m,
where each Q, = Q, via xv = {Xgn}omea- v 1s easily seen to be the desired
monomorphism.

(2) = (3). This follows directly from property (2) of dense left ideals.

(3) = (1). Let T be a torsion submodule of M; Homz (T, Q) = 0 (see [6]).
If 0 # x € T, then (0:x), by hypothesis, is not a dense left ideal; i.e., there
exists 0 % ¢ € Q with (0:x)g = 0. Define f € Homg(Rx, Rq) via (rx)f = rq.
f then extends to a nonzero element of Homg(7", Q). Thus it must be that
T =0.

COROLLARY 13. Assume that Q is a left quotient ring of R. Then Q is a right
quotient ring of R if and only if every finitely generated torsion free R-module is
torsionless.

Proof. This follows from Proposition 12 and Theorem 11.

COROLLARY 14. zQ is torsionless if and only if every torsion free R-module is
torsionless.

Proof. This follows from the fact that direct products and submodules of
torsionless modules are torsionless.

LEMMA 15. Let S be a left quotient ring of R and M an R-torsion free S-module.
Then M is R-injective if and only if M is S-injective.

Proof. Assume that M is R-injective and that f € Homg(J, M), with J a
left ideal of S. Extend f to f* € Homg(S, M). Then by the remark preceding
Theorem 11, f* € Hom s(S, M), proving that M is S-injective.

Conversely, suppose that M is S-injective and let f € Homz(Z, M) be given
with I a left ideal of R. f extends to a homomorphism g € Homz(SI, M) by
defining (X i-15.%;)g = 2ie1S5; (x,g), for any s, ..., €S, x1,...,%, € I.
(g is well-defined because Ni=1(R:s;) is a dense left ideal of R.) Again,
g € Homg(SI, M), and since M is S-injective and SI is a left ideal of S, ¢
extends to g’ € Homg(S, M). g’'|z is then the desired extension of f, which
proves that M is R-injective.

This lemma has appeared often and in many guises, frequently for S a
classical left quotient ring of R.
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LEMMA 16. Let S be a left quotient ring of R and J a left ideal of S. Then J is an
essential (dense) left ideal of S if and only if J (M R is an essential (dense) left
ideal of R.

Proof. Let I be a nonzero R-submodule of S. Then ST N J # 0. So there
exist S1, ..., €S, x1,...,%, €I with 0 >isx, €J. Then D =
Ni=1(R:s;) is dense, and so 0 # D (3 i-1s,x,) € I N J. This proves that J
is an essential R-submodule of S, and clearly, then, so is J (N R. The converse
is obvious. The remainder of the proof is left as an exercise.

ProposiTION 17. Let S be a left quotient ring of R and M a torsion free
R-module. Then SM is a rational extension of M, and SM is S-nonsingular if and
only if M is R-nonsingular. If S = Q and M 1is essentially finitely generated and
nonsingular over R, thenm QM is the R-injective hull of M and is a finitely
generated Q-module. If S = Q is a finite-dimensional ring and M is any non-
singular R-module, then QM is the R-injective hull of M.

Proof. Of course, we assume here that S C Q, and by SM we mean the
S-module generated by M inside a fixed direct product of copies of Q in which
M is embedded.

Let x € SM and 0 % y € SM be given. Write x = > /_1s5,m,;, where each
s; € Sand each m; € M. D = Ni1(R:s,) is then a dense left ideal of R, and
Dx C M. Also, Dy 5 0 since SM is still R-torsion-free.

Next, assume that Zg(SM) £ 0. Then Zs(SM) N M # 0. Hence, there
exists 0 %2 m € M and J an essential left ideal of S with Jm = 0. By Lemma
16, J N R is an essential left ideal of R, and (J N\ R)m = 0, so Z(zM) = 0.
Conversely, suppose that Z(gM) # 0. Let 0 £ m € M with Im = 0 for some
essential left ideal I of R. Since ST N R 2 I, ST is, by the previous lemma, an
essential left ideal of S. Since SIm = 0, m € Zs(SM).

Now assume that S = Q and that M is essentially finitely generated and
nonsingular over R. Then by Theorem 2, we may assume that M C Q" for
some positive integer #. QM is an R-essential extension of M, by the first
paragraph; hence, QM is essentially finitely generated over Q. By the previous
paragraph, QM is a nonsingular Q-module. Since Q is left self-injective [4, p. 95],
Corollary 6 may be applied to learn that QM is Q-injective and Q-finitely
generated. It follows from Lemma 15 that QM is the R-injective hull of M.

Finally, let S = Q be a finite dimensional ring and M a nonsingular
R-module. Then, as in the preceding paragraph, QM is an R-essential extension
of M and is Q-nonsingular. By Theorem 2, we may assume that QM contains
a direct sum of nonsingular closed left ideals I,(a € 4) of R as an essential
R-submodule. It follows that > .c.QI, &' QM with the sum direct. By the
hypothesis on Q, each left ideal QI, of Q is essentially finitely generated and
nonsingular; hence, by Corollary 6, it is Q-injective. Applying [8, Theorem 2.5],
we learn that >, c4 ® QI, is Q-injective, and so, therefore, is QM = > .4 @ QL.
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As an application of these results we obtain a convenient sufficient condition
for finitely generated nonsingular modules to be embeddable in free modules.

TrEOREM 18. If R has an artinian left quotient ring S then every finitely
generated torsionless R-module can be embedded in a free module.

Proof. Set M* = Hom (M, R), M a finitely generated torsionless R-module.
Then there is a natural embedding of M into Il,¢,+R;, where each R, = R,
under the map u defined by m — {mf} e+ We may regard Il,c,+R, C
11,08, € 11,6140, where each S, =S, Q, = Q. Each f € M* extends
to f' € Homz(SM, Q;), and by the remark preceding Theorem 11,
f € Homg(SM, Q;). We then have an S-homomorphism u':SM — 1,10,
via xp’ = {xf'} rears, ¥ € SM.

Then p’ extends p, and since u is a monomorphism and SM is an R-essential
extension of M, ¢ is also a monomorphism. Also, SM is an artinian S-module
since it is finitely generated over S. Now among all finite intersections
Ni=1 ker £/, f; € M*, choose one which is minimal. Since x’ is a monomor-
phism, MNjeau+ ker f/ = 0. Hence, it must be that for the minimal choice,
Niz1 ker f;/ = 0. But then Ni_i ker f;, = 0, and this implies that M can be
embedded in X i1 @ Ry,.

Combining this theorem with Theorem 11 and Corollary 13 yields the
following results.

CoRroLLARY 19. If R has a left artinian left and right quotient ring S, then every
finitely generated S-torsionless R-module can be embedded in a free R-module.

CoRroLLARY 20. If Q is a left artinian left and right quotient ring of R, then
every finitely generated torsion free R-module can be embedded in a free module.

REFERENCES

1. V. C. Cateforis and F. L. Sandomierski, On modules of singular submodule zero, Can. J. Math.
23 (1971), 345-354.

. C. Faith, Lectures on injective modules and quotient rings (Springer-Verlag, New York, 1967).

. R. E. Johnson and E. T. Wong, Self-injective rings, Can. Math. Bull. 2 (1959), 167-173.

. J. Lambek, Lectures on rings and modules (Blaisdell, Waltham, Mass., 1966).

. R. Yue Chi Ming, A note on singular ideals, T6hoku Math. J. 21 (1969), 337-342.

. R. S. Pierce, Modules over commutative regular rings, Amer. Math, Soc. Memoir No. 70
(Amer. Math. Soc., Providence, R.I., 1967).

7. F. L. Sandomierski, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230.

8. Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112-120.

SRk wWN

Carnegie-Mellon University,
Piitsburgh, Pennsylvania;
University of California,
Santa Barbara, California

https://doi.org/10.4153/CJM-1971-115-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-115-x

