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INJECTIVE HULLS OF TORSION FREE MODULES 

J. ZELMANOWITZ 

Introduction. In § 1, we begin with a basic theorem which describes a 
convenient embedding of a nonsingular left i?-module into a complete direct 
product of copies of the left injective hull of R (Theorem 2). Several applica­
tions follow immediately. Notably, the injective hull of a finitely generated 
nonsingular left i?-module is isomorphic to a direct sum of injective hulls of 
closed left ideals of R (Corollary 4). In particular, when R is left self-injective, 
every finitely generated nonsingular left i?-module is isomorphic to a finite 
direct sum of injective left ideals (Corollary 6). 

In § 2, where it is assumed for the first time that rings have identity elements, 
we investigate more generally the class of left i^-modules which are embeddable 
in direct products of copies of the left injective hull Q of R. Such modules are 
called torsion free, and can also be characterized by the property that no 
nonzero element is annihilated by a dense left ideal of R (Proposition 12). 
When Q is a left quotient ring of R, we show that every finitely generated 
torsion free left i^-module is torsionless if and only if Q is a right quotient 
ring of R (Corollary 13). An examination of the injective hull of a torsion 
free module follows, and provides convenient sufficient conditions for the 
embedding of torsion free modules into free modules. Specifically, if R has 
an artinian left quotient ring then every finitely generated torsionless i?-module 
can be embedded in a free module (Theorem 18). Combining this with an 
earlier result we learn that if Q is an artinian left and right quotient ring of R, 
then every finitely generated torsion free i£-module can be embedded in a free 
module (Corollary 20). 

1. Throughout this section, all rings are associative, but do not necessarily 
contain identity elements. When a ring R fails to have an identity element, we 
let R1 denote a ring with identity in which R is embedded in the usual manner. 
Except as indicated, all modules will be left i?-modules and module homomor-
phisims will be written on the right. The injective hull of an i^-module M is 
denoted M. Q = R will always indicate the left injective hull of R. For all 
notions regarding injective modules over rings without identity elements we 
refer the reader to [2]. 

Let M be an i^-module. For any submodule N of M and any subset K of M 
we set (N:K) = {r G R\rK C N], a left ideal of R. Z(M) = {m G M\(0:m) 
is an essential left ideal of R} is a submodule, called the singular submodule of 
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M. If Z(M) = 0 we say that M is nonsingular. We write N Ç ' M to indicate 
that iV is an essential submodule of M. A submodule N of M is closed in ikf if it 
has no proper essential extensions in M. (The zero submodule is closed.) We 
remark that if N is a submodule of M and RNr is chosen maximal with respect 
to N H V̂T/ = 0, then iV is a closed submodule of Af and N + iV is an essential 
submodule of M (such Nf exist by Zorn's lemma). Finally, an i£-module M is 
(essentially) Y-generated if it is (an essential extension of a submodule) 
generated by T elements, V a cardinal number. 

LEMMA 1. Let N be a submodule of an R-module M and let m G M. 
(1) If N is essential in M then (N:m) is an essential left ideal of R. 
(2) If M is nonsingular and (N:m) is an essential left ideal of R, then N is an 

essential submodule ofN + Rlm. (See [3].) 

THEOREM 2. Suppose that M is a nonsingular R-module which is essentially 
Y-generated. Then there exists an embedding /*: M —» ITo<,3<«(?/? where card a = Y, 
each Qp = Q, and there exist closed left ideals Ip C R Ç Qp with ]Lo</3<« © Ip 
an essential submodule of Mix. 

Proof. We may assume that M is an essential extension of ]Co</9<« R1^, 
where card a = Y and {mp}0^p<a CI M. For each ordinal y ^ a, set 

<2T = n &. 
We proceed to establish the theorem for Ma by a transfinite induction. 

Let 7 ^ a. If 7 is not a limit ordinal, then by induction there exists an 
embedding Hy-iiMy-i —> Qy~l and closed left ideals 1$ C i? Ç Qp for /3 < 7 — 1 
with X)o</3<-i © //s an essential submodule of lf7_i/x7_i. If ikfT_i is an essential 
submodule of My, then since Q7-1 is injective, /x7_i extends to a monomorphism 
IXyiAIy —> Q7-1. Taking 77_i = 0 and setting ix7 equal to /x7' composed with the 
canonical embedding of (27-1 into Qy~1 © Q7-i = Q7, it is easy to check that 
fiy satisfies the desired requirements. If, on the other hand, ikf7_i is not essential 
in My = My-i + Rlmy-i, then by Lemma 1, (M7_i:ra7_i) is not an essential 
left ideal of R. Hence, choosing a left ideal 77_i maximal with respect to 
Iy-i Pi (M7_i:w7_i) = 0, Iy-i is a closed left ideal of R and 77_im7_i = 77_i 
under the homomorphism J U ^ / I / ^ I W ^ I - > <27_i defined via rw7_i —> r, r G / 7 - i 
(this map is well-defined since J7_i H (0:ra7_i) = 0 ) . Next, note that 
My-i + J7_iw7_i (direct sum) is an essential submodule of My. (Given 
O ^ w Ç My, write m = ny-\ + am7_i with ^7_i Ç M7_i and a Ç i^1. There 
is no loss of generality in assuming that a $ (M7_i:m7_i). By Lemma 1, 
/ = (77_i + (My-i:my-i):a) is an essential left ideal of R, and so Jm 7̂  0. 
Choose 0 ^ b £ J" with bm 9e 0 and write &a = c + d, c £ (M"7_i:m7_i), 
d G / 7 - i . Then 0 9^ bm = bny-\ + bamy-i = (bny-i + cra7_i) + dmy-i Ç M"7_i + 
77_iw7_i). Set ju7

r = M7-1 © /ty-i'rMy-i + 77_iw7_i —> Ç7 - 1 © Gy-i = <2T-
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iJLy is clearly a monomorphism. Since My-\ + Iy-imy-i is an essential sub-
module of My and Q7 is injective, \xy extends to a monomorphism ny:My —> Q7. 
I t is easy to check t h a t ]Lo<s<7 © ^ is an essential submodule of My\xy. If 7 is a 
limit ordinal, then define /x7 = \Jp<yiip'.M$ —» (^ (note t h a t <27 D U^<7Q^). 
T h e definition of /x7 is consistent since /x/3 extends /xg for every ô < (3. T h e 
remaining par t s of the induction hypothesis are equally easy to verify. T h u s 
we have a monomorphism fxa:Ma —> Qa, and since Ma is an essential submodule 
of M, we can take /z to be a n y extension of iia to M. 

Remark. Reviewing the proof, we observe t h a t since {J o*cn<coQn — 
Z)O<TZ<OO © Qn a countably generated nonsingular module can in fact be 
embedded in a countable direct sum of copies of Q. 

COROLLARY 3. If M is an essentially n-generated nonsingular R-moditle, then 
there is a monomorphism /x of M into Qn, and closed left ideals I\, . . . , In of R, 
with J i © . . . © In C ' Mfx Ç Qn and each Ik Q R Q Q = Qk. 

COROLLARY 4. / / M is a finitely generated nonsingular R-module, then there 
exist closed left ideals Ii, . . . , In of R with M = I\ © . . . © In. 

Proof. By Corollary 3, we have M ^ (Mfx)A ^ the injective hull of 

Ii © . . . © /„ ^ Ii © . . . © /„ . 

COROLLARY 5. If M is an n-generated nonsingular R-module, then there exist 
n-generated R-submodules Ji, . . . , Jn of Q with M isomorphic to an essential 
submodule of Ji © . . . © Jn. 

Proof. In the si tuation described by Corollary 3, wre choose Ik to be an 
injective hull of Ik contained in Qk = Q. By [4, p . 91], there exists an isomor­
phism v of (Mfi)A C Qn onto A © . . . © In which leaves A © . . . © In 

elementwise fixed. W e then have h © . . . © In C M/JLV Ç 7 îl © . . . © în 

with each Ik Q. Ik C Q^. T h e n Mfxvwk Çz Ik ÇL Qk for each &, where irk is the 
canonical projection of Qn onto ft- Since each M[xvKk is ^-generated and 
MJJLV Ç MfjLVTi © . . . © MfjLvirni the conclusion follows. 

COROLLARY 6. If R is a left s elf-injective ring, then every finitely generated 
nonsingular module is isomorphic to a finite direct sum of injective left ideals. 

Proof. A closed left ideal of a left self-injective ring is clearly injective, and 
so the conclusion follows from Corollary 3. 

W e remark t h a t the hypothesis actual ly used in the proof of the previous 
Corollary is t h a t every closed nonsingular left ideal of R is injective. 

Recall t h a t a module is finite dimensional if it contains no infinite direct 
sums of nonzero submodules. A finite dimensional module is essentially finitely 
generated. A ring R will be called finite dimensional if RR is finite dimensional. 

COROLLARY 7. If R is a finite dimensional left self-injective ring, then every 
nonsingular module is isomorphic to a direct sum of left ideals. 
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Proof. Over a finite-dimensional ring, a direct sum of nonsingular injective 
modules is injective [8, Theorem 2.5]. This corollary thus follows from 
Theorem 2. 

COROLLARY 8. A left s elf-injective left nonsingular ring is regular [4, p. 106]. 

Proof. By Corollary 6, every finitely generated left ideal is injective; hence, 
it is a direct summand of R1, and therefore is generated by an idempotent. 

COROLLARY 9. Let R be a finite dimensional ring and M a nonsingular left 
R-module. Then M is finite-dimensional if and only if M is essentially finitely 
generated [7, p. 226]. 

Proof. If M is essentially finitely generated, then M can be embedded in Qn 

for some n. Since RR is finite-dimensional, so is RQ, and hence so is every 
submodule of Qn. 

We next turn our attention to a sufficient condition for the singular 
submodule to split off. 

COROLLARY 10. If R is a regular left self-infective ring and M is an essentially 
finitely generated R-module, then M = Z(M) © N, where N is isomorphic to a 
finite direct sum of finitely generated injective left ideals of R. 

Proof. By [5, p. 338], Z(M/Z(M)) = 0, since Z(R) = 0, and so M/Z{M) 
is seen to be essentially finitely generated and nonsingular. By Corollary 6, 
M/Z(M) is isomorphic to a finite direct sum of finitely generated injective 
left ideals. Since an injective left ideal is a direct summand of R1, M/Z(M) is 
projective. So M = Z(M) 0 N with N ^ M/Z(M). 

2. Henceforth, we will assume as a blanket hypothesis that R has an identity 
element. 

A module RM is a rational extension of a submodule N if, given any m £ M 
and 0 7e m' G M", (N:m)m' ^ 0. S is a left quotient ring of R if 5 is a ring, R is 
a subring of S, and RS is a rational extension of RR. For i^-modules 5 and M, 
M will be called S-torsionless if RM can be embedded in a direct product of 
copies of S; equivalently, M is S-torsionless if for every 0 ^ m G M there 
exists / G Horn R (Af, S) with mf ^ 0. An i^-torsionless i^-module is called 
simply torsionless. 

A left ideal D of R is dense if RR is a rational extension of D. For the purpose 
at hand, we require the following facts. Let D be a left ideal of R and 5 a left 
quotient ring of R. (Refer to [4] for details.) 

(1) R is a dense left ideal of R. 
(2) D is a dense left ideal of R if and only if Dq ^ 0 for all 0 ^ g G Q. 
(3)n?=iCP:s») is a dense left ideal of R for any si, . . . , sn G 5 and dense 

left ideal Z> of R. 
(4) If 4̂ and B are 5-modules and the only element of B which is annihilated 

by a dense left ideal of R is the zero element, then Horn R {A, B ) C Horn s {A, B ). 
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(This is easily proved by observing that for any s £ S, a £ A, and 
/ £ Horn R (A, B), (sa)f — s(af) is annihilated by (R:s).) 

THEOREM 11. For R a ring with identity element and left quotient ring S, the 
following conditions are equivalent. 

(1) S is a right quotient ring of R. 
(2) Every finitely generated R-submodule of S is torsionless. 
(3) Every finitely generated S-torsionless R-module is torsionless. 

Proof. (1) => (2). Assume that 5 is a right quotient ring of R. Let 
M = Rsi + . . . + Rsn be a submodule of S. Set D = n?=i[^:st-L where 
[R:s{] = \r G R\s{r 6 R}. Since S is a right quotient ring of R, D is a dense 
right ideal of R. Define /:Af —•» ITd€jDi^d, where each i?d = i£, via mf =% 

{md}d(zDj m 6 Af. / is clearly an i?-homomorphism, and m Ç ker / if and only 
if mD = 0. Since D is a dense right ideal of R, mD — 0 implies that m = 0. 
S o / is a monomorphism. 

(2) => (3). If Af is a finitely generated submodule of I I t € 7 S\ , each 5* = S, 
then AT C n<€7Af7rt- where 7rt- is the canonical projection map into 5,-. Each Mw{ 

is torsionless because it is a finitely generated i^-submodule of S. Finally, Af, 
being a submodule of a direct product of torsionless modules, is torsionless. 

(3) => (1). (3) implies (2) trivially. We assume that (2) holds and let 
M = Rsi + . . . + Rsn be a finitely generated, hence torsionless, left i?-sub-
module of S. Set [R:M] = K R\Mr C R) and /[i?:AT| = {s Ç S|s[i?: Af] = 
0} ; [f?:Af] is a right ideal of i? and /[i?:Af] is a left ideal of 5. We claim that 
l[R:M] H M = 0. Suppose that 0 9* m £ l[R:M] H M. Since fîAf is torsion­
less, there exists/ Ê Hom^Af, R) with w/ ^ 0. Extend/ t o / ; Ç HornB(5, (?). 
(Here, as always, Q denotes the left injective hull of R, and for convenience we 
can assume that 5* ÇZ Q. This will automatically be supposed in the sequel 
without mention.) Then, as was remarked prior to this theorem, f £ 
Hcms(S, (2). Hence, for each s £ S, sf = s (If), and since Af (1/ ) = Mf Ç R, 
1/ £ [M:R]. So mf = m (If ) = 0, which is a contradiction, establishing that 
I[R:M] Pi M = 0 for any finitely generated i^-submodule AT of S. 

Finally, suppose that s £ S, 0 ^ / £ S are given. Set M = Rs + i^ . Then 
[i?:Af] = [R:s] fl [£:*], so *[f?:Af] C ;[i?:s]. Were it the case that t[R:s] = 0, 
we would have t £ l[R:M] C] M = 0, contradicting the assumption that 
/ 7e 0. Hence, £[i£:s] ^ 0, proving that 5 is a right quotient ring of R. 

The preceding theorem appeared in [1] for nonsingular rings. We have 
followed the proof given there, suitably modified. One should observe that in 
the proof that (1) => (2), the fact that S was a left quotient ring of R was not 
used. Also, in the proof of the converse, we needed the hypothesis only for 
two-generator submodules of S.1 

]]t has been kindly brought to our attention by the referee that for the case where 5 is the 
maximal left quotient ring of R, the previous theorem has been independently proved by 
Kanzo Masaike, On quotient rings and torsionless modules, Science Reports of Tokyo U. of 
Education (to appear). 
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Next, a word on a related situation. Define an i^-module M to be torsion free 
if for any 0 9e m G M there exists a G R with Homfî(i?flm, R) 9^ 0; see [6]. 
We have proved in the course of Theorem 2 that a nonsingular module is 
torsion free in this sense. 

PROPOSITION 12. For an R-module M, the following conditions are equivalent. 
(1) M is torsion free. 
(2) M is Q-torsionless. 
(3) No nonzero element of M is annihilated by a dense left ideal of R. 

Proof. (1) =» (2). For each O ^ w ^ I , choose 0 ^ fm G UomR(Ram, R), 
for some a £ R. fm extends to gm G Hom f î (¥ , Q). Define i>:M—» TL09£m€MQmi 

where each Qm = Q, via x*> = {#gTO}ô m€iif- v *s easily seen to be the desired 
monomorphism. 

(2) => (3). This follows directly from property (2) of dense left ideals. 
(3) =» (1). Let T be a torsion submodule of M ; Hom«(7\ (?) = 0 (see [6]). 

If 0 9e- x G JT, then (0:x), by hypothesis, is not a dense left ideal; i.e., there 
exists 0 9^ q G Q with (0:x)g = 0. Define/ G Hom^C^x, Rq) via (rx)/ = fg. 
/ then extends to a nonzero element of Hom i 2(r , Ç). Thus it must be that 
T = 0. 

COROLLARY 13. Assume that Q is a left quotient ring of R. Then Q is a right 
quotient ring of R if and only if every finitely generated torsion free R-module is 
torsionless. 

Proof. This follows from Proposition 12 and Theorem 11. 

COROLLARY 14. RQ is torsionless if and only if every torsion free R-module is 
torsionless. 

Proof. This follows from the fact that direct products and submodules of 
torsionless modules are torsionless. 

LEMMA 15. Let S be a left quotient ring of R and M an R-torsion free S-module. 
Then M is R-injective if and only if M is S-injective. 

Proof. Assume that M is i^-injective and t h a t / G H o m ^ J , M), with J a 
left ideal of S. Extend/ t o / ' G HornR(S, M). Then by the remark preceding 
Theorem 1 1 , / ' G Horns (S, M)y proving that M is S-injective. 

Conversely, suppose that M is S-injective and l e t / G HomB(J, M) be given 
with I a left ideal of R. f extends to a homomorphism g G Horn fi (SI, M) by 
defining ( L 5 U ^ ) g = ZJ-tf.-fog), for any su . . . , sn G S, xu . . . , xn G I. 
(g is well-defined because PiLiC^s») is a dense left ideal of R.) Again, 
g G Horns (ST, M), and since M is S-injective and SI is a left ideal of S, g 
extends to g' G Horn s (S, M). g'\R is then the desired extension of / , which 
proves that M is i?-injective. 

This lemma has appeared often and in many guises, frequently for S a 
classical left quotient ring of R. 
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LEMMA 16. Let S be a left quotient ring of R and J a left ideal of S. Then J is an 
essential (dense) left ideal of S if and only if J (~) R is an essential (dense) left 
ideal of R. 

Proof. Let / be a nonzero i^-submodule of S. Then SI C\ J 9^ 0. So there 
exist sh . . . , sn G S, Xi, . . . , xn G / with 0 ^ S L i ^ , G J- Then D = 
r)l=i(R'>Si) is dense, and so 0 ^ ^ ( Z t i ^ i ) Q I H J- This proves that J 
is an essential i?-submodule of 5, and clearly, then, so is J D R. The converse 
is obvious. The remainder of the proof is left as an exercise. 

PROPOSITION 17. Let S be a left quotient ring of R and M a torsion free 
R-module. Then SM is a rational extension of M, and SM is S-nonsingular if and 
only if M is R-nonsingular. If S = Q and M is essentially finitely generated and 
nonsingular over R, then QM is the R-injective hull of M and is a finitely 
generated Q-module. If S = Q is a finite-dimensional ring and M is any non-
singular R-moduley then QM is the R-injective hull of M. 

Proof. Of course, we assume here that 5 Ç Ç , and by SM we mean the 
•S-module generated by M inside a fixed direct product of copies of Q in which 
M is embedded. 

Let x G SM and 0 ^ y G SM be given. Write x = Y,i=isimi, where each 
Si G 5 and each m{ G M. D = r)i=i(R:Si) is then a dense left ideal of R, and 
Dx Ç M. Also, Dy j£ 0 since SM is still i^-torsion-free. 

Next, assume that ZS(SM) j£ 0. Then ZS(SM) D M ^ 0. Hence, there 
exists 0 ?£ m G M and J an essential left ideal of S with Jm = 0. By Lemma 
16, I H R is an essential left ideal of R, and ( / H R)m = 0, so Z(BM) ^ 0. 
Conversely, suppose that Z(BM) ^ 0. Let 0 ^ m G M with Im = 0 for some 
essential left ideal / of R. Since SI H R 2 I, SI is, by the previous lemma, an 
essential left ideal of S. Since Sim = 0, m G ZS(SM). 

Now assume that S = Q and that Af is essentially finitely generated and 
nonsingular over R. Then by Theorem 2, we may assume that M Ç Çn for 
some positive integer w. CM is an inessential extension of M, by the first 
paragraph; hence, QM is essentially finitely generated over Q. By the previous 
paragraph, QM is a nonsingular Ç-module. Since Q is left self-injective [4, p. 95], 
Corollary 6 may be applied to learn that QM is Q-injective and Ç-finitely 
generated. I t follows from Lemma 15 that QM is the i?-injective hull of M. 

Finally, let S = Q be a finite dimensional ring and M a nonsingular 
jft-module. Then, as in the preceding paragraph, QM is an inessential extension 
of M and is Ç-nonsingular. By Theorem 2, we may assume that QM contains 
a direct sum of nonsingular closed left ideals Ia(a G A) of R as an essential 
i^-submodule. It follows that J^a^AQIa Q' QM with the sum direct. By the 
hypothesis on Q, each left ideal QIa of Q is essentially finitely generated and 
nonsingular; hence, by Corollary 6, it is Q-injective. Applying [8, Theorem 2.5], 
we learn that ^a^A © QIa is Q-mJective, and so, therefore, is QM = J2a^A © QIa-
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As an application of these results we obtain a convenient sufficient condition 
for finitely generated nonsingular modules to be embeddable in free modules. 

THEOREM 18. If R has an artinian left quotient ring S then every finitely 
generated torsionless R-module can be embedded in a free module. 

Proof. Set M* = HornR(M, R), l a finitely generated torsionless i?-module. 
Then there is a natural embedding of M into Ylf^M*Rf, where each Rf = R, 
under the map /x defined by m —> {mf}f^M*. We may regard JJfeM*Rf C 
TlfçM*Sf ÇZ TLf£M*Qf, where each Sf = S, Qf = Q. Each / Ç M* extends 
to / ' G HornR(SM, Qf), and by the remark preceding Theorem 11, 

/ ' 6 Hom5(5M, Qf). We then have an 5-homomorphism JJL'-.SM —» IT/€ilf*(2/ 
via x// = {X/'Î/ÇM*, x Ç SM. 

Then // extends /x, and since \x is a monomorphism and 57lf is an ^-essential 
extension of ikf, M' is also a monomorphism. Also, SM is an artinian 5-module 
since it is finitely generated over 5. Now among all finite intersections 
Pl?=i k e r / / , /t- Ç Af*, choose one which is minimal. Since // is a monomor­
phism, H/6M* ker / ' = 0. Hence, it must be that for the minimal choice, 
PlLi k e r / / = 0. But then HLi ker/ , = 0, and this implies that M can be 
embedded in £ L i 0 Rfi. 

Combining this theorem with Theorem 11 and Corollary 13 yields the 
following results. 

COROLLARY 19. If R has a left artinian left and right quotient ring S, then every 
finitely generated S-torsionless R-module can be embedded in a free R-module. 

COROLLARY 20. If Q is a left artinian left and right quotient ring of R, then 
every finitely generated torsion free R-module can be embedded in a free module. 
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