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EQUIVALENTS OF NOTOP

MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

Abstract. Working within the context of countable, superstable theories, we give many equivalents
of a theory having NOTOP. In particular, NOTOP is equivalent to V-DI, the assertion that any type
V -dominated by an independent triple is isolated over the triple. If T has NOTOP, then every model N
is atomic over an independent tree of countable, elementary substructures, and hence is determined up to
back-and-forth equivalence over such a tree. We also verify Shelah’s assertion from Chapter XII of [9] that
NOTOP implies PMOP (without using NDOP).

§1. Introduction. The notion of a complete theory T having NOTOP was
introduced by Shelah in [8]. This notion was the capstone of his celebrated “Main
Gap” theorem. There, he proves that a complete theory T in a countable language
has fewer than 2κ non-isomorphic models of some uncountable cardinal κ if and
only if T is superstable, has NDOP and NOTOP, and is shallow. In more detail,
call a complete theory T in a countable language classifiable if it is superstable with
NDOP and NOTOP.1 In [9], Shelah and Buechler prove that a countable theory
T is classifiable if and only if every model N is constructible and minimal over an
independent tree of countable, elementary submodels. In particular, N is uniquely
determined up to isomorphism by such a tree. This structure theorem is used heavily
in [1, 4].

Historically, the notion of NOTOP was only defined after Shelah proved that
any countable, superstable theory with DOP had 2κ non-isomorphic models of
size κ for every uncountable cardinal κ. Consequently, relatively little effort was
made in studying countable, superstable theories with NOTOP, without additionally
assuming NDOP. Here, we remedy this by proving many equivalents of a (countable
and superstable) theory T having NOTOP. We see that such theories admit a
structure theorem that is only slightly weaker than in the classifiable case.

Theorem 1.1. If T is countable, superstable, with NOTOP, then every model N is
atomic over an independent tree of countable, elementary submodels.

Thus, N is determined up to back-and-forth equivalence by such a tree.
So, what is NOTOP? Unlike other stability theoretic dividing lines, it is expressed

in terms of a family of modelsMR that can code arbitrary graphs via omitting types.
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2 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

It is noteworthy that the definition makes sense for any complete theory, without
even assuming stability.

Definition 1.2. A theory T has the Omitting Types Order Property (OTOP), if
there is a type p(x, y, z) such that for every binary relation R on any set X, there is
a model MR of T and {ai : i ∈ X} from MR such that, for every (i, j) ∈ X 2, MR
omits p(x, ai , aj) if and only if R(i, j) holds.

T has NOTOP if it does not have OTOP.

Here, within the context of countable, superstable theories, we give many
equivalents of NOTOP that can be described in terms of finite configurations of sets.
Most notably, the property that T satisfies V-DI – short for ‘V-Domination implies
Isolation,’ which asserts that tp(c/A1A2) is isolated whenever c is V -dominated by
an independent triple (A0, A1, A2) of finite sets, is one such equivalent. Independent
triples and V-domination are defined in Definitions 2.1 and 2.3. Lemma 2.6 lists
several equivalent statements, any one of which is equivalent to V-DI.

Theorem 1.3. The following are equivalent for a countable, superstable theory T.
1. T has V-DI;
2. T has Pe-NDOP and PMOP;2

3. T has Pe-NDOP and countable PMOP;
4. T has linear NOTOP;3

5. T has NOTOP.

In particular, we prove that NOTOP implies PMOP for countable, superstable
theories. This implication had previously been proved under the additional
assumption of NDOP [3, 8].

Throughout the article, we assume T is a complete, superstable theory

in a countable language.

As is usual in the study of stable theories, we work within a large, saturated model
C, and we assume all sets we consider are ‘small’ subsets of C, i.e., if A,B ⊆ C and
tp(A) = tp(B), then there is an automorphism of C sending A to B. As well, all
models M are assumed to be elementary substructures of C. Finally, we work in Ceq ,
a many-sorted expansion of C, see, e.g., the Introduction of [7]. In particular, the
algebraic closure acl(A) of a set A is always computed in Ceq .

In Section 2 we define V -domination and V-DI. With Lemma 2.6 we prove many
equivalences of V-DI. It is immediate from these characterizations that V-DI implies
countable PMOP, but in Section 3 we show that V-DI implies full PMOP, i.e.,
constructible models exist over independent triples of models of any size. This
requires us to consider P–(n)-stable systems of models for all n ≥ 2.

In Section 4 we develop an idea of Baisalov [2] by defining a family of non-
orthogonality classes of regular types Pe in terms of the existence of a stationary,
weight one (not necessarily regular!) type in the class being non-isolated over some

2PMOP, Prime models over pairs, is classical and asserts the existence of a constructible model over
every independent triple of models (see Definition 3.1). Regular types being Pe is defined in Definition
4.2, and T having Pe-NDOP is defined in Definition 4.31.

3See Definition 6.2.
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EQUIVALENTS OF NOTOP 3

finite set containing its canonical base. Following the thesis of [6], we localize the
notion of NDOP to the specific class Pe of regular types and show its relation
to V-DI. With Theorem 4.33 we show that V-DI is equivalent to the conjunction of
Pe-NDOP and PMOP.

On the flip side, we use ideas from [5] to study dull pairs M � N , where every
c ∈ N \M has tp(c/M ) ⊥ Pe. We see that ifM � N is a dull pair, then M and N
are back-and-forth equivalent over any finite subset of M.

In Section 6, we show that theories with V-DI admit tree decompositions in the
same sense as for classifiable theories. In both cases, arbitrarily large models N
are atomic over an independent tree of countable, elementary substructures. In the
classifiable case, this is tight, i.e., N is prime and minimal over the tree. Here, we
show that if N,N ′ are two models that admit the same tree decomposition, then N
and N ′ are back-and-forth equivalent over the tree.

In Section 7, we explore more about the class of regular types Pe. In the �-stable
case, having Pe-NDOP is equivalent to the older notion of eni-NDOP, but with
Example 7.2, we see that they can differ in some countable, superstable theories.

Many of the old, standard results we use are relegated to the Appendix. There is
a small amount of new material in the Section A.5 of the Appendix, but mostly it
is a recording of definitions and facts that are presented for the convenience of the
reader.

We are grateful to Saharon Shelah for many insightful conversations about
potential variants of OTOP.

§2. V-domination and V-DI. The notion of V -domination is due to Harrington,
who as early as the 1980s, realized its connection to NOTOP. Our story starts with
an investigation of independent triples of sets.

Definition 2.1. An independent triple of setsA = (A0, A1, A2) is any triple of sets
satisfying A0 ⊆ A1 ∩ A2 and A1�

A0
A2.

Given two independent triples A = (A0, A1, A2) and B = (B0, B1, B2) of sets, we
say that B extends A, written A�B if Ai ⊆ Bi for each i, B0�

A0
A1A2, B1 �

B0A1
A2,

and B2 �
B0A2
B1 hold.

It is easily checked that the relation � is transitive. WhereasM1M2 need not be
a model for an arbitrary independent tripleM , the category of independent triples
with � acts similarly to the category of models with �. In particular, we have the
following.

Fact 2.2.

1. For any independent triples, M�B implies M1M2 ⊆TV B1B2 (see Defini-
tion A.4).

2. (Upward LS) For any independent tripleA, there is an independent tripleM 	 A
consisting of a-models (or even, κ-saturated for any cardinal κ).

3. (Downward LS) For any independent tripleM of models, for any infinite cardinal
�, and for any set X ⊆M1M2 with |X | < �, there is A�M with X ⊆ A1A2 and
|A1A2| < �.
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4 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

Definition 2.3. We say that c is V-dominated byA if c �
A1A2
B1B2 for everyB 	 A.

Many facts about V -domination are evident.

Fact 2.4.

1. If c is V-dominated by A, then stp(c/A1A2) 
 tp(c/B1B2) for every B 	 A.
2. If c is V-dominated by A, then c is V-dominated by every B 	 A.
3. If c is V dominated by B and B 	 A with c �

A1A2
B1B2, then c is V-dominated

by A.
4. IfM is an independent triple of models and if tp(c/M1M2) is �-isolated, then c

is V-dominated byM .

Proof. (1) Choose c′ such that stp(c′/A1A2) = stp(c/A1A2). Clearly, c′ is
V -dominated by A as well, so we have both c �

A1A2
B1B2 and c′ �

A1A2
B1B2, hence

tp(cB1B2) = tp(c′B1B2).
(2) is immediate by the transitivity of �. (3) and (4) are, respectively, Lemmas 2.2

and 2.6 of [3]. �
If the independent triple consists of a-models, we can say more.

Fact 2.5. SupposeM = (M0,M1,M2) is an independent triple of a-models. Then
the following are equivalent for a finite tuple c.

1. c is V-dominated byM ;
2. there is an independent triple B�M of finite sets with tp(c/B1B2) 


tp(c/M1M2);
3. tp(c/M1M2) is a-isolated;
4. tp(c/M1M2) is �-isolated (see Definition A.6).

Proof. (1) ⇒ (2) : By superstability, choose a finite X0 ⊆M1M2 such that
c �
X0
M1M2. In fact, by either Shelah’s Conclusion XII.3.5 in [8] or Hart’s Relative

Stationarity Lemma, Lemma 1.19 of [3], there is a finite X, X0 ⊆ X ⊆M1M2

for which tp(c/X ) is based and relatively stationary inside M1M2. Find a finite
A�M withX ⊆ A1A2. By Fact 2.2(3), c is V -dominated byA, hence stp(c/A1A2) 

tp(c/M1M2) by Fact 2.4(1). However, by the relative stationarity, this is strengthened
to tp(c/A1A2) 
 tp(c/M1M2).

(2) ⇒ (3) is trivial, and (3) ⇒ (4) is by Conclusion XII.2.11 of [8]. Finally,
(4) ⇒ (1) is immediate from Fact 2.4(4). �

We ostentatiously ask when all of these variants of isolation over independent
triples are actually isolated over the triple. There are many equivalent ways of
formalizing this idea.4

Lemma 2.6. The following are equivalent for any countable, superstable theory.

1. for every independent triple A of sets and for every finite c, if c is V-dominated
by A, then tp(c/A1A2) is isolated;

4The analogous statement involving �-isolation over arbitrary sets would not be equivalent, as e.g.,
every type over a finite set is always �-isolated.
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EQUIVALENTS OF NOTOP 5

2. for every independent triple M of a-models and for every finite c, if c is
V-dominated byM , then tp(c/M1M2) is isolated;

3. for every independent tripleM of countable models and for every finite c, if c is
V-dominated byM , then tp(c/M1M2) is isolated;

4. for every independent tripleM of models and for every finite c, if tp(c/M1M2) is
�-isolated, then tp(c/M1M2) is isolated;

5. for every independent tripleM of a-models and for every finite c, if tp(c/M1M2)
is �-isolated, then tp(c/M1M2) is isolated;

6. for every independent triple M of countable models and for every finite c, if
tp(c/M1M2) is �-isolated, then tp(c/M1M2) is isolated.

Proof. As (5) and (2) are equivalent by Fact 2.5, it suffices to show the
equivalence of (1), (2), (3) and (4), (5), (6) separately.

(1) ⇒ (3) is trivial. (3) ⇒ (2): Suppose c is V -dominated by a-modelsN . Choose a
finite B�N with tp(c/B1B2) 
 tp(c/N1N2). By Fact 2.2(3), choose an independent
triple M�N of countable models with B1B2 ⊆M1M2. By Fact 2.4(3), c is V -
dominated byM1M2, hence tp(c/M1M2) is isolated by (3). In particular, tp(c/B1B2)
is isolated, hence tp(c/N1N2) is isolated as well.

(2) ⇒ (1): Suppose c is V -dominated by A. By Fact 2.2(2), choose a tripleM of
a-models with A�M . Then c is V -dominated byM , hence tp(c/M1M2) is isolated.
As c �

A1A2
M1M2, tp(c/A1A2) is isolated by the Open Mapping Theorem, Fact A.3.

Turning to (4), (5), (6), (4) ⇒ (6) is trivial. (6) ⇒ (5): Suppose N is an
independent triple of a-models and tp(c/N1N2) is �-isolated. As T is countable,
choose a countableA ⊆ N1N2 such that for everyϕ(x, y), tpϕ(c/N1N2) is isolated by
someL(A)-formula�(x). By Fact 2.2(3), choose a triple of countable modelsM�N
with A ⊆M1M2. By (6), tp(c/M1M2) is isolated, hence tp(c/N1N2) is isolated as
well by Fact 2.2(1) and Lemma A.5.

(5) ⇒ (4): Say M is an arbitrary triple of models and tp(c/M1M2) is
�-isolated. By Fact 2.2(2), choose an independent triple of a-models N 	M .
By Fact A.8, tp(c/N1N2) is also �-isolated, hence tp(c/N1N2) is isolated by (5).
Thus, tp(c/M1M2) is isolated by the Open Mapping Theorem. �

Definition 2.7. A (countable, superstable) theory T has V-DI, read V-domination
implies isolation, if any one of the conditions in Lemma 2.6 hold.

Note that if a (countable, superstable) T is V-DI, then a constructible model exists
over every independent triple of countable models. [Given such anM , by Fact A.7(2)
choose a countable, �-atomic model overM1M2. Since T is V-DI, N is atomic over
M1M2, hence constructible by Fact A.2(2).] In the next section we will improve
this by showing that V-DI implies the existence of a constructible model over any
independent triple of models.

§3. V-DI implies PMOP.

Definition 3.1. A theory T has PMOP, if there is a constructible model over
every independent triple of models.

The main goal of this section is to prove Theorem 3.6, that a countable superstable
theory T with V-DI also has PMOP. Although V-DI was never explicitly described,
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6 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

this result was essentially proved by both Shelah [8] and Hart [3], under the
additional assumption of NDOP. Here, we prove the theorem without assuming
NDOP. Curiously, the proof without NDOP is arguably more straightforward than
either of the previous proofs.

For this, we pass from independent triples of models to certain stable systems of
models. All of this development is due to Shelah and can be found in Chapter XII
of [8].

Definition 3.2. For n ≥ 2, let P–(n) denote the partial order defined by subset
on the set P(n) \ {n} with 2n – 1 elements.

• A P–(n)-stable system of sets B = (Bs : s ∈ P–(n)) satisfies:
– Bt ⊆ Bs whenever t ⊆ s ; and
– for each s, Bs �

B<s

⋃
{Bt : t 
⊇ s}.

• Given two P–(n)-stable systems B,C , we say B�C if, for each s ∈ P–(n),
Bs ⊆ Cs and Cs �

Bs
⋃
C⊂s

⋃
{Ct : t 
⊇ s}.

• We say a finite tuple a is P–(n)-dominated by P–(n)-stable system B if
a �⋃

B

⋃
C for all C 	 B .

• A P–(n)-stable system of models M = (Ms : s ∈ P–(n)) is a P–(n)-stable
system of sets such that each Ms � C (from which it follows that Mt �Ms
for all t ⊆ s .)

Note that an independent triple (M0,M1,M2) of models is precisely a P–(2)-
stable system of models and the definitions of � given in Definitions 2.1 and 3.2
coincide. As well, Facts 2.2, 2.4, and 2.5 go through in this more general setting.

Fact 3.3. SupposeM is a P–(n)-stable system of a-models. Then the following are
equivalent for a finite tuple c.

1. c is P–(n)-dominated byM ;
2. there is some P–(n)-system B�M of finite sets such that tp(c/

⋃
B) 


tp(c/
⋃
M );

3. tp(c/
⋃
M ) is a-isolated;

4. tp(c/
⋃
M ) is �-isolated.

The following notion is a simplification of Hart’s ‘�-special P–(n)-system’ and
Shelah’s sp. stable system in Definition XII 5.1 of [8]. The crucial distinction is
that we only require our “special” nodes to be atomic, as opposed to constructible.
By, e.g., Fact A.2(2), the notions coincide over systems of countable models, but
typically are distinct over uncountable systems.

Definition 3.4. An atomic-special P–(n)-stable system of models has the
additional property that for all s ∈ P–(n) with {0, 1} ⊆ s ,Ms is atomic over

⋃
M<s .

We say T has a-s P–(n)-DI if there is an atomic modelM ∗ over
⋃
M for every

atomic-special P–(n)-stable system of models.

Note that any independent triple M = (M0,M1,M2) of models is an atomic-
special P–(2)-stable system of models, so V-DI implies a-s P–(2)-DI by the
discussion at the end of Section 2. The following Proposition extends this to higher
dimensional a-s systems.
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EQUIVALENTS OF NOTOP 7

Proposition 3.5. Suppose T has V-DI. Then T has a-s P–(n)-DI for all n ≥ 2.

Proof. We prove this by induction on n ≥ 2. That T has a-s P–(2)-DI was
noted above, so fix n ≥ 2 and assume T has a-s P–(k)-DI for all 2 ≤ k ≤ n. Let
M = (Ms : s ∈ P–(n + 1)) be an atomic-special P–(n + 1)-stable system. We first
note that, under these hypotheses, the standard method of blowing up M to a
P–(n + 1)-system of ℵ1-saturated models preserves being atomic-special. To see
that, choose an enumeration (si : i < 2n+1 – 1) ofP–(n + 1) such that si ⊆ sj implies
i ≤ j. We recursively construct a sequence (Nsi ) of ℵ1-saturated models satisfying
Nsi �

Msi
⋃
{Nsj :j<i}

⋃
{Mt : t 
⊇ s} and when |si | ≥ 2, Nsi is chosen to be ℵ1-prime

over Msi
⋃
N<si . It follows from Fact XII 2.6 of [8] that the resulting system

N = (Ns : s ∈ P–(n + 1)) is a stable system, and in fact M�N . To see that N is
atomic-special, we argue by induction on i, that if {0, 1} ⊆ si , thenNsi is atomic over
N<si . Choose i for which {0, 1} ⊆ si and assume that this holds for all j < i . Let
k = |si |. Our inductive hypothesis implies the subsystem N⊂si is an atomic-special
P–(k)-system. SinceM was assumed to be atomic-special,Msi is atomic overM⊂si .
However, since

⋃
M⊂si�

⋃
N⊂si , we also have that the set Msi is atomic over⋃

N⊂si by Lemma A.5. AsNsi was chosen to be ℵ1-atomic overMsiN⊂si , it follows
that Nsi is also ℵ1-atomic over N⊂si . Since the subsequence (Nt : t ⊂ si) is an a-
s P–(k)-stable system of ℵ1-saturated models, it follows from Fact 3.3 that Nsi is
P–(k)-dominated by (Nt : t ⊂ si). Thus,Nsi is atomic overN⊂si since a-s P–(k)-DI
holds.

Now suppose c is P–(n + 1)-dominated byM and choose an a-s P–(n + 1)-stable
system N 	M consisting of ℵ1-saturated models. We will show that tp(c/

⋃
N )

is isolated, which, since c �
M
N , directly implies tp(c/M ) is isolated by the Open

Mapping Theorem.
Next, we unpack N into three pieces. Let K0 = (Ns : s ∈ P–(n)) and let K1 =

(Ns∪{n} : s ∈ P–(n)), with the third, remaining piece Nn. Note that K0�K1 as
P–(n)-systems;

⋃
K0 ⊆

⋃
K1, hence

⋃
N =

⋃
K1 ∪ {Nn}; and that K1 is an a-s

P–(n)-stable system.

Claim. Nnc is P–(n)-dominated by K1.

Proof. SinceNn is atomic over
⋃

K0,Nn is P–(n)-dominated by K0. As K0�K1,
it follows that Nn is P–(n)-dominated by K1 as well. Now choose any P–(n)-stable
system E 	 K1. It follows that

Nn �⋃
K1

⋃
E.

Form a P–(n + 1)-stable system E
∗

by piecing together K0, E, and Nn. It is readily
checked that N�E∗

as P–(n + 1)-structures, hence c �⋃
N

⋃
E

∗
, so by transitivity

we have cNn �⋃K1

⋃
E, proving the Claim. �

By the Claim and K1 being an a-s P–(n)-DI, we have that cNn is atomic over⋃
K1. Additionally, by Fact 2.5, there is a finite b ⊆

⋃
N for which
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8 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

tp(c/b) 
 tp(c/
⋃
N ).

Recall that
⋃
N =

⋃
K1 ∪Nn. Thus, tp(bc/K1) is isolated, which implies tp(c/K1b)

is isolated as well. As tp(c/b) 
 tp(c/N ), the same formula isolates tp(c/N ) as well.

At this point, we could simply quote Theorem 3.3 of [3] to conclude the
following theorem. However, our new notion of being atomically special simplifies
the argument somewhat.

Theorem 3.6. If a countable, superstable theory T has V-DI, then it has PMOP.

Proof. We argue that for all infinite cardinals κ,

For all n ≥ 2, there is a constructible model N over any atomic-
special P–(n)-systemM with |

⋃
M | ≤ κ. (∗∗)

To begin, note that this holds for κ = ℵ0 by coupling Fact A.2(2) with Proposi-
tion 3.5. Fix an uncountable cardinal κ and assume we have the above for all � < κ.
Choose n ≥ 2 and an atomic-special P–(n)-stable system M = (Ms : s ∈ P–(n))
with |

⋃
M | = κ. Let 	 = cf(κ). By iterating the analog of Fact 2.2(3), choose an

elementary chain (M
α

: α < 	) of P–(n)-systems such that
1. |

⋃
M
α | < κ;

2. M
α�Mα+1

for all α; and
3. M =

⋃
{Mα : α < 	}.

We will recursively build a sequence of sequences cα for each α such that
1. cα is an initial segment of c� whenever α ≤ � < 	;
2. cα enumerates a constructible model Nα over

⋃
M
α

;

3. cα is also a construction sequence overM (hence also over anyM
�
, � ≥ α).

To begin, since |
⋃
M

0| < κ, apply (∗∗) to get c0, enumerating a constructible model

overM
0
. As

⋃
M

0 ⊆TV M , c0 is also a construction sequence over
⋃
M . For � < 	

a non-zero limit, take c� to be the concatenation of all cα , α < �.

Say α < 	 and cα has been found. Let Nα =
⋃
cα . Note that sinceM

α�Mα+1
,

the three pieces (M
α
,M

α+1
, Nα) form aP–(n + 1)-stable system. We also claim that

it is atomic-special. For this, choose s ∈ P–(n + 1) with {0, 1} ⊆ s . There are three
cases. First, if s = n = {i : i ∈ n}, then asNα is constructible over

⋃
M
α

, it is atomic
over

⋃
M
α

as well. Second, if s ⊂ n, s 
= n, then byM
α�M we haveMαs �Mα

<s

M<s .

But, asM is atomic-special, every finite e ∈Mαs has tp(e/
⋃
M<s) isolated. Thus,

by the Open Mapping Theorem, tp(e/M
α+1
<s ) is isolated as well. Third, if n ∈ s , then

similarly,Mα+1
s �

M
α+1
<s

M<s and tp(e/
⋃
M<s) is isolated for all finite e ∈Mα+1

s , so

again, tp(e/M
α+1
<s ) is isolated by the Open Mapping Theorem.

Thus, by our inductive hypothesis, there is a constructible model Nα+1 over
⋃
M
α+1
cα . However, as M

α ⊆TV M
α+1

, cα is also constructible over
⋃
M
α+1

.
Thus, there is a construction sequence cα+1 end extending cα that enumerates Nα .

For any such choice of cα+1, since M
α+1 ⊆TV M , we have that cα+1 is also a

construction sequence over
⋃
M , as required. �
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EQUIVALENTS OF NOTOP 9

§4. Pe and always isolated types. Following an idea of Baisalov [2], we begin with
a novel definition.

Definition 4.1. An e-type is a stationary, weight one type p(x, d ) with d finite
that is non-isolated.

Following the template given in [6], we use this notion to define a family of regular
types. In [2] he called elements of Pe w-types.

Definition 4.2. Pe is the set of all regular types that are non-orthogonal to an
e-type.

It is evident that the class Pe of regular types is closed under automorphisms of
C and non-orthogonality. The latter uses that non-orthogonality is an equivalence
relation on the class of all stationary, weight one types. With an eye on the results
in [6], we show one more closure property of Pe.

Definition 4.3. Suppose p, q are regular types. We say q lies directly over p if
there are a-modelsM � N and elements a, b such that tp(a/M ) regular and non-
orthogonal to p, tp(b/N ) regular and non-orthogonal to q, with N dominated by a
over M and q ⊥M . We also say p supports q if q lies directly over p.

Lemma 4.4. If q ∈ Pe and q lies directly over some regular type p, then p ∈ Pe as
well.

Proof. Let M be an a-model on which p is based and let N =M [a] be a-prime
over M and a realization of p with q 
⊥ N . As q ∈ Pe choose a non-isolated weight
one, stationary r ∈ S(d ) with d ⊆ N finite with r 
⊥ q. Let b be any realization of
r|da. Since da is dominated by a over M and tp(b/da) ⊥M , we have that bda
is dominated by a over M, from which it follows that wt(bd/M ) = 1. Choose any
finite e ⊆M so that tp(bd/M ) is based and stationary on e. Then tp(bd/e) is a
non-isolated weight one, stationary type non-orthogonal to p, hence p ∈ Pe. �

Thus, in the terminology of [6], Pe = Pactive
e . We now turn to the complementary

notion.

Definition 4.5. A strong type p is always isolated if, for all finite d on which p is
based, tp(a/d ) is isolated for any realization of a of p|d .

Lemma 4.6. For any strong type p, if p ⊥ Pe, then p is always isolated.

Proof. By induction on wt(p). If wt(p) = 1, but there were some finite d on
which p is based with p|d non-isolated, then let b be any realization of p|d . Then
p|db is stationary, weight one, and non-isolated by the Open Mapping Theorem,
contradicting p ⊥ Pe, so the Lemma holds for wt(p) = 1.

Assume the Lemma holds for all strong types of weight at most n. Choose a strong
type p ⊥ Pe of weight n + 1 and choose a finite set d on which p is based. Choose
an a-model M ⊇ d and let a realize p|M . We will show tp(a/d ) is isolated. As
M is an a-model, choose an M-independent set {bi : i ≤ n} such that tp(bi/M ) is
regular and a �/

M
bi for each i. Choose an a-model N ∗ =M [bi : i ≤ n] with a ∈ N ∗

and within N ∗, choose N � N ∗ to be a-prime over M ∪ {bi : i < n}. Choose any
finite e ⊆ N on which tp(a/N ) is based. As e ⊆ N , e is dominated by {bi : i < n}
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10 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

over M, hence tp(e/M ) ⊥ Pe and wt(e/M ) ≤ n. Choose a finite h ⊇ d on which
tp(e/M ) is based. By our inductive hypothesis tp(e/h) is isolated. As well, eh ⊆ N
and tp(a/N ) is based on this set, hence tp(a/eh) is isolated as well. Putting these
together, tp(a/h) is isolated. However, a �

d
h, so tp(a/d ) is isolated by the Open

Mapping Theorem. �
Proposition 4.7. Let p be any strong type. Then p ⊥ Pe if and only if every strong

type q 
 p is always isolated (see Definition A.10).

Proof. If p ⊥ Pe, then q ⊥ Pe for every q 
 p, so left to right follows from
Lemma 4.6. For the converse, assume p 
⊥ Pe. Choose a regular q ∈ Pe with q 
⊥ p.
As q ∈ Pe, choose a stationary, weight one r 
⊥ q that is not always isolated. As
r 
 q 
 p, we finish. �

The following Lemma is likely well-known, but as we do not know of a specific
reference, we include its proof for the convenience of the reader. Recall that FE(b)
denotes the set of all b-definable equivalence relations with finitely many classes.

Lemma 4.8. (T stable) Suppose p = tp(a/b) is any non-algebraic type and let
q(x) ∈ S(ba) be the stationary non-forking extension for which stp(c/b) = stp(a/b)
for some/every realization c of q. If q is isolated, then there are only finitely many
strong types extending p. In fact, there is some E∗(x, y) ∈ FE(b) such that for any
a1, a2 realizing p, stp(a1/b) = stp(a2/b) iff E∗(a1, a2) holds.

Proof. Let {αi(x, b, a) : i ∈ I } enumerate the formulas that fork over b and let
{Ej : j ∈ J} enumerate FE(b). Note that

∧
j∈J Ej(x, a) 
 p(x), so by the Finite

Equivalence Relation theorem, q is generated by

{Ej(x, a) : i ∈ J} ∪ {¬αi(x, b, a) : i ∈ I }.
Ifϕ(x, b, a) isolates q, there are finite subsets J0 ⊆ J and I0 ⊆ I } entailingϕ(x, b, a).
PutE∗(x, y) :=

∧
j∈J0 Ej(x, y). ThenE∗(x, y) ∈ FE(b), and it suffices to show that

∀x(E∗(x, a) 
 Ej(x, a)) for every j ∈ J . To see this, fix any j ∈ J and choose any
a1 such thatE∗(a1, a) holds. AsE∗(x, a) ∈ FE(b), it is not a forking formula over b,
hence there is some a2 ∈ C such that stp(a1/b) = stp(a2, b),E∗(a1, a2), and a2�

b
a.

From above, ϕ(a2, b, a), hence Ej(a2, a) holds. But stp(a1/b) = stp(a2/b) implies
Ej(a1, a2), so Ej(a1, a), as required. �

Lemma 4.8 immediately gives the following �-stable-like behavior of types
orthogonal to Pe.

Lemma 4.9. Suppose M is any model and p = tp(a/M ) ⊥ Pe. Then there is some
finite d ⊆M on which p is based and stationary.

Proof. Choose a finite b ⊆M on which p is based. Since p is always isolated,
choose �(x, b) isolating p0 := tp(a/b). Choose a′ ∈ p(C) with a �

b
a′ and let

q = tp(a/ba′). So q is stationary and based on ba′. As q is parallel to p, it is always
isolated, hence there is ϕ(x, b, a′) isolating q|ba′. Choose E∗(x, y) ∈ FE(b) as in
Lemma 4.8. Now a′ 
∈M , but �(M,b) contains a complete set of representatives of
the E∗(x, y)-classes consistent with �(x, b). Choose a∗ ∈ �(M,b) with E∗(a′, a∗).
As both a′ and a∗ realize p0, it follows from Lemma 4.8 that stp(a′/b) =
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EQUIVALENTS OF NOTOP 11

stp(a∗/b). Choose a strong automorphism � ∈ Aut(C/b) with �(a′) = a∗ and put
q∗(x, b, a∗) := �(q). Then q∗ is stationary and, since since both a′ and a∗ are
independent from a over b, it follows that tp(aa′b) = tp(aa∗b). That is, a realizes
the stationary type q∗, so p is based and stationary over ba∗. �

Recall that a stationary type p ∈ S(A) is strongly regular if there is a formula
ϕ(x, a) ∈ p such that for every global type q ∈ S(C) with ϕ(x, a) ∈ q, either q ⊥ p
or q is the unique non-forking extension of p to S(C). Call a regular type p ∈ S(M )
na if, for everyϕ(x, d ) ∈ p, there is some b ∈ ϕ(M,d ) \ acl(d ). A regular type being
na is a localization of the notion of an na-substructure, as Proposition A.22 in the
Appendix shows that for any pair M � N , M ⊆na N if and only if every regular
type p ∈ S(M ) realized in N is na.

Lemma 4.10. Suppose p ∈ S(M ) is regular with p ⊥ Pe. Then p is both strongly
regular and na.

Proof. By Lemma 4.9, choose any finite d ⊆M on which p is based and
stationary. Since p is always isolated, there is a formula �(x, d ) ∈ p isolating the
type p|d . We first argue that p is strongly regular via �(x, d ). To see this, choose
any global type q ∈ S(C) with �(x, d ) ∈ q. As �(x, d ) isolates p|d , q extends the
regular type p|d . Thus, if q 
⊥ p, then q 
⊥ p|d , so q is the non-forking extension of
p|d , which is also the non-forking extension of p to S(C).

To see that p is na, choose any ϕ(x, b) ∈ p. By replacing ϕ(x, b) by ϕ(x, b) ∧
�(x, d ), we may assume d ⊆ b and ϕ(x, b) 
 �(x, d ). Since p is always isolated, p|b
is isolated, say by �(x, b). Since M is a model, choose e ∈M realizing �(x, b). Then
e ∈ ϕ(M,b), but tp(e/b) = p|b, hence is non-algebraic. �

Recall that a type tp(a/B) is c-isolated if there is a formula ϕ(x, b) ∈ tp(a/B)
such that R∞(q) = R∞(ϕ(x, b)) for every q ∈ S(B) with ϕ(x, b) ∈ q.

Proposition 4.11. Suppose stp(b/M ) ⊥ Pe and choose c to both be c-isolated over
Mb and such that bc is dominated by b over M. Then tp(c/Mb) is isolated.

Proof. Choose �(x, b,m) ∈ tp(c/Mb) with R∞(�(x, b,m)) = R∞(c/Mb). By
increasing m (but keeping it finite), Lemma 4.9 allows us to assume tp(bc/M )
is based and stationary on m. As tp(bc/M ) ⊥ Pe, we conclude that tp(bc/m) is
isolated, say by ϕ(x, y,m). It follows that ϕ(x, b,m) isolates tp(c/bm), but we argue
that ϕ(x, b,m) isolates tp(c/Mb).

To see this, choose any c′ realizing ϕ(x, b,m). Note that ϕ(x, y,m) 
 �(x, y,m),
so it follows that c′�

bm
M . However, tp(c′b/m) = tp(cb/m) is stationary and both

cb and c′b are independent with M over m, hence tp(c′bM/m) = tp(cbM/m). As
m ⊆M , this implies tp(c′/Mb) = tp(c/Mb), as required. �

We do not know whether the following result requires that M be countable.

Corollary 4.12. For any countable model M and any finite b, if tp(b/M ) ⊥ Pe,
then there is a constructible modelM (b) ⊇Mb.

Proof. As T and M are countable, it suffices to show that the isolated types over
Mb are dense. Choose any consistent formula �(x, a, b) with a from M. Among
all consistent L(Mb)-formulas that imply �(x, a, b), choose �(x, a′, b) 
 �(x, a, b)
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12 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

of least R∞-rank and then choose an element c ∈ �(C, a′, b) that is �-isolated over
Mb. Thus, cb is dominated by b over M and tp(c/Mb) is c-isolated, hence tp(c/Mb)
is isolated by Proposition 4.11. From this density result, a constructible model over
Mb exists. �

4.1. Dull pairs.

Definition 4.13. We callM � N a dull pair if tp(N/M ) ⊥ Pe.

The following Proposition gives an easily checkable criterion for whether a given
pair of models is dull. The notion ofM ⊆na N is defined in Definition A.17.

Proposition 4.14. M � N is a dull pair if and only if every regular type p ∈ S(M )
realized in N is orthogonal to Pe.

Proof. Left to right is immediate. For the converse, assume M � N and
that every regular type p ∈ S(M ) realized in N is ⊥ Pe. By Lemma 4.10, every
such p is na, so by Proposition A.22 in the Appendix, M ⊆na N . Assume by
way of contradiction that tp(N/M ) 
⊥ Pe. Choose a (regular) r ∈ Pe such that
tp(N/M ) 
⊥ r. SinceM ⊆na N , it follows from e.g., Proposition 8.3.5 of [7] that there
is b ∈ N \M such that tp(b/M ) is regular and non-orthogonal to r, contradicting
our assumption. �

Lemma 4.15. SupposeM � N is a dull pair. Then:
1. M ⊆na N ;
2. there is some a ∈ N \M with tp(a/M ) strongly regular, and for any such choice

of a,
(a) There is a modelM ′ � N containing a, and dominated by a over M; and
(b) For any suchM ′,M ′ � N is a dull pair.

3. if (Mα : α < �) is any continuous, increasing chain of substructures of N with
Mα � N dull for each α, then

⋃
{Mα : α < �} � N is a dull pair.

Proof. (1) Choose any regular typep ∈ S(M ) that is realized in N. Sincep ⊥ Pe,
p is na by Lemma 4.10, soM ⊆na N by Proposition A.22 in the Appendix.

(2) Choose any a ∈ N \M for which tp(a/M ) is regular. Then tp(a/M ) is
strongly regular by Lemma 4.10. Now fix such an a ∈ N \M . For (a), the existence
of such an M ′ follows by (1) and Fact A.18(3). For (b), fix any such M ′ and
choose any regular p ∈ S(M ′) that is realized in N. Any such p is strongly regular
by Lemma 4.10. We show p ⊥ Pe by splitting into cases. If p 
⊥M , then since
M ⊆na N by (1), Fact A.18(2) (the 3-model Lemma) implies there is some regular
q ∈ S(M ) non-orthogonal to p that is realized in N. SinceM � N is dull, q ⊥ Pe,
hence p ⊥ Pe as well. On the other hand, if p ⊥M , then p lies directly above
tp(a/M ), hence p ⊥ Pe by Lemma 4.4.

(3) Let M ∗ :=
⋃
{Mα : α < �} and choose any regular type p ∈M ∗ that is

realized in N. By superstability, choose α∗ < � such that p is based and stationary
onMα∗ . SinceMα∗ � N is dull, p|Mα∗ and hence p are ⊥ Pe. �

Definition 4.16. Suppose M � N are models. A strongly regular filtration of
N over M is a continuous, elementary chain (Mα : α ≤ �) of models satisfying
M0 =M , M� = N , and for each α < � , there is some aα ∈Mα+1 such that
tp(aα/Mα) is strongly regular andMα+1 is dominated by aα overMα .
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EQUIVALENTS OF NOTOP 13

We say that a strongly regular filtration is prime if, in addition, Mα+1 is
constructible overMaα .

Proposition 4.17. SupposeM � N is dull. Then a strongly regular filtration of N
over M exists. Additionally, if N is countable, then a prime strongly regular filtration
exists.

Proof. Given M � N , construct a maximal continuous chain of submodels
(Mα : α < �) of N such that M0 =M , each Mα � N is dull, and Mα+1 is
dominated over Mα by some aα ∈ N for which tp(aα/Mα) is strongly regular.
By Lemma 4.15(3), � cannot be a limit ordinal, so say � = � + 1. We argue that
M� = N . If this were not the case, then asM� � N is dull, by Lemma 4.15(2) there
is some a� ∈ N andM� contradicting the maximality of the chain.

In the case where N is countable, we argue similarly, but at stage α, if we are given
Mα and aα ∈ N \Mα with tp(aα/Mα) strongly regular, we use Corollary 4.12 to
choose a constructible modelMα(aα) overMαaα to serve asMα+1. �

Proposition 4.17 begets the following Corollaries.

Corollary 4.18.

1. SupposeM � N is dull and K is any model satisfyingM � K � N . Then both
M � K and K � N are dull.

2. SupposeM � K is dull and K � N is dull. ThenM � N is dull.

Proof. (1) Given M � K � N with M � N dull, it is trivial that M � K
is dull, hence has a strongly regular filtration (Mα : α ≤ �) with M� = K . By
Lemma 4.15(2,3), depending on whether or not � is a limit ordinal, K � N as
well.

(2) Now supposeM � K andK � N are dull. By Proposition 4.17 on each part,
there is a filtration of K over M and a filtration of N over K. The concatenation
of these filtrations gives a filtration (Mα : α ≤ �) of N over M. Note that for every
α < � , tp(aα/Mα) ⊥ Pe, either becauseM � K is dull (whenMα � K) or because
K � N is dull (whenK �Mα). To see thatM � N is dull, choose any e ∈ N \M for
which q = tp(e/M ) is regular. As e ∈M� = N , there is a least α such that e �

M
Mα ,

but e �/
Mα
Mα+1. Then q is non-orthogonal to tp(aα/Mα), the latter being regular and

⊥ Pe by our sentences above. ThusM � N is dull by Proposition 4.14. �

We now embark on a series of Lemmas that will lead us to Proposition 4.24 and
Theorem 4.25. The structure of this argument is similar to what appears in Section
1 of [5], but there we were assuming the theory was �-stable. Indeed, these Lemmas
would have much easier proofs under the assumption of (ℵ0, 2)-existence, but here
we are not even assuming this.

Lemma 4.19. Suppose N is countable andM � N is dull. Let J ⊆ N \M be any
M-independent set of finite sets. Then a constructible model overMJ exists.

Proof. Enumerate J = {ai : i ∈ �} and, for each n ∈ �, let Jn = {ai : i < n}.
For each n ∈ �, choose Mn to be constructible over MJn. Without loss, we may
assume Mn �Mn+1 for each n. We claim that M ∗ =

⋃
{Mn : n ∈ �} is atomic

over MJ . To see this, choose any e ⊆M ∗. Choose n ∈ � so that e ⊆Mn. As
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14 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

Jn �
M

(J \ Jn) we have MJn ⊆TV MJ , hence tp(e/MJ ) is isolated by Lemma A.5.

Thus,M ∗ is atomic overMJ . But asM ∗ is countable, it is also constructible over
MJ by Fact A.2(2). �

Lemma 4.20. Suppose N is countable and M � N is dull. If J ⊆ N \M is any
maximal M-independent set, then N is constructible overMJ .

Proof. By Lemma 4.19 there is some constructible modelM ∗ overMJ , which
we may assume is contained in N. Thus, N contains an atomic model over MJ .
By Zorn’s Lemma, let N0 � N be any maximal atomic model over MJ contained
in N. By Fact A.2(2) it suffices to show thatN0 = N . Assume by way of contradiction
that N0 ≺ N is proper. Choose any e ∈ N \N0 such that q = tp(e/N0) is regular.
By Corollary 4.18(1),N0 � N is dull, hence q ⊥ Pe. On one hand, if q 
⊥M , then as
M ⊆na N by Lemma 4.15(1), the 3-model lemma gives d ∈ N with d �

M
N0, but this

contradicts the maximality of J. So assume q ⊥M . We will obtain a contradiction
by showing thatN0e is atomic overMJ . For this, it suffices to show that tp(de/MJ )
is isolated for any finite d ⊆ N0. So choose any finite d ⊆ N0. Choose a finite d∗,
d ⊆ d∗ ⊆ N0 on which q is based and stationary. By superstablity, choose any finite
J ∗ ⊆ J for which d∗ �

MJ∗
J . Note that d∗J ∗ is finite and d∗J ∗�

M
(J \ J ∗). Choose

any finite a∗ ⊆M such that d∗J ∗�
a∗
M . It follows by transitivity of non-forking

that

d∗J ∗�
a∗
M (J \ J ∗).

As d∗J ∗a∗ ⊆ N0, tp(e/d∗J ∗a∗) = q|d∗J ∗a∗, and since q ⊥M (hence q ⊥ a∗) it
follows from Fact A.11(2) that

tp(e/d∗J ∗a∗) 
 tp(e/d∗MJ ).

However, since tp(e/N0) is always isolated, tp(e/d∗J ∗a∗) is isolated, so tp(e/d∗MJ )
is isolated as well. Since d∗ ⊆ N0, tp(d∗/MJ ) is also isolated. Thus, tp(ed∗/MJ )
and hence tp(ed/MJ ) is isolated as well. This contradicts the maximality ofN0. �

Lemma 4.21. Suppose N is countable and p ∈ S(N ) is regular and ⊥ Pe. Then for
any finite set A ⊆ N , N ∼=A N (c), where c is any realization of p and N (c) is any
constructible model over Nc.

Proof. Note that by Corollary 4.12, a constructible model N (c) exists. Choose
any finite A ⊆ N , and by increasing A if necessary, we may assume p is based and
stationary on A. As p is always isolated, there is an infinite Morley sequence J ⊆ N
in p|A. Partition J = J0 ∪ J1 into two infinite pieces and choose B ⊆ N maximal
such that B �

AJ0
J1.

Claim 1. B is the universe of an elementary submodelM � N .

Proof. If not, choose α least for which R∞(ϕ(x, b)) = α for some consistent
L(B)-formula ϕ(x, b) that is not realized in B. Since N is a model, choose
e ∈ ϕ(N, b). We argue that e �

B
J1, which contradicts the maximality of B.

Assume by way of contradiction that this non-forking failed. Then there would
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be some finite b∗ ⊆ B such that e �/
AJ0b

∗ J1, and we may assume b∗ ⊇ b. Choose

a forking formula �(x, a, b∗, h0, h1) ∈ tp(e/AJ0b
∗J1), where a ∈ A, h0 ⊆ J0 and

h1 ⊆ J1. By replacing � by � ∧ ϕ, we may assume �(x, a, b∗, h0, h1) 
 ϕ(x, b), yet
R∞(�(x, a, b∗, h0, h1)) < α. We will obtain a contradiction by ‘dropping h1 down
into J0,’ thereby contradicting the minimality of α.

By superstability again, by enlarging h0 ⊆ J0 we may additionally assume that
b∗ �
Ah0
J0, hence also

b∗ �
Ah0

J0J1,

by transitivity of non-forking. As J = J0 ∪ J1 is indiscernible over A and J0 is
infinite, we can find some h

′
0 ⊆ J0 such that

stp(h
′
0/Ah0) = stp(h1/Ah0).

Thus, as both h1 and h
′
0 are independent from b∗ over Ah0, tp(b∗ah0h

′
0) =

tp(b∗ah0h1). It follows that R∞(�(x, b∗, a, h0, h
′
0)) < α and is a consistent

L(B)-formula that is not realized in B. This contradicts our choice of ϕ(x, b). �
Claim 2. J1 is a maximal M-independent subset of N \M .

Proof. Choose any e ∈ N with e �
M
J1. SinceM �

AJ0
J1,Me is independent from

J1 over AJ0, hence e ⊆M by the maximality of M. �
It follows from Claim 2 that M � N is dull. To see this, choose e ⊆ N with

tp(e/M ) regular. Since J1 is Morley sequence in p|M , the fact that e �/
M
J1 implies

that tp(e/M ) 
⊥ p, hence tp(e/M ) ⊥ Pe. ThusM � N is dull by Proposition 4.14.
From this, it follows from Lemma 4.20 that N is constructible overMJ1.

Claim 3. N (c) is constructible overMJ1c.

Proof. We know N is constructible overMJ1 and since c �
M
J1, we haveMJ1 ⊆TV

MJ1c, thus by Lemma A.5, the universe of N is a construction sequence overMJ1c.
As N (c) is constructible over Nc, it follows that the concatenation of these two
sequences is a construction sequence of N (c) overMJ1c. �

Finally, since both J1 and J1c are infinite Morley sequences in p|M , any bijection
f0 : J1 → J1c extends to an elementary map f :MJ1 →MJ1c with f�M = id . By
the uniqueness of constructible models, it follows that f can be extended to an
isomorphism f∗ : N → N (c) fixing M (and hence A) pointwise.

Definition 4.22. Given two structuresM,N and finite tuples of the same length
a ∈Mk , b ∈ Nk , we say tp∞

M (a) = tp∞
N (b) if the structures (M,a) and (N, b) are

back and forth equivalent.
We sayM �∞,� N if,M ⊆ N and tp∞

M (a) = tp∞
N (a) for all finite a ∈M<�.

It is evident that the relation �∞,� is transitive. Moreover, when M ⊆ N are
countable, then for a ∈Mk , b ∈ Nk , tp∞

M (a) = tp∞
N (b) if and only if there is an

isomorphism f :M → N with f(a) = b.
We record the following easy Lemma.
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16 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

Lemma 4.23. Suppose {Mn : n ∈ �} are countable withMn �∞,� Mn+1 for every
n ∈ � and letM ∗ =

⋃
{Mn : m ∈ �}. ThenMn �∞,� M

∗ for every n ∈ �.

Proof. Note that sinceM� �∞,� M�′ whenever � ≤ � ′ < �, tp∞
M�

(b) = tp∞
M�′

(b)

for every b ⊆M� . It suffices to show thatM0 �∞,� M
∗. For this, we claim that

F = {(a, b) : a ⊆M0, b ⊆M ∗, and tp∞
M0

(a) = tp∞
M�

(b) whenever b ⊆M�}

is a back-and-forth system.
Since (a, a) ∈ F for any a ⊆M0, F is nonempty. Next, choose (a, b) ∈ F and

choose c ∈M0. Choose � such that b ⊆M� . As tp∞
M0

(a) = tp∞
M�

(b), choose an

isomorphism f :M0 →M� with f(a) = b. Put d := f(c). Then (ac, bd ) ∈ F .
Finally, choose (a, b) ∈ F and choose d ∈M ∗. Choose � such that bd ⊆M� .
As tp∞

M0
(a) = tp∞

M�
(b), choose an isomorphism g :M� →M0 with g(b) = a. Then

taking c := g(d ) yields (ac, bd ) ∈ F .
Given that F is a back and forth system, showing M0 �∞,� M

∗ is easy.
Choose a ∈Mk0 . Since (a, a) ∈ F and both M0 and M ∗ are countable, there is
an isomorphism h :M0 →M ∗ with h�a = id , as required. �

Proposition 4.24. Suppose N is countable andM � N is dull. Then for any finite
set A ⊆M ,M ∼=A N . In particular, M and N are isomorphic.

Proof. By Proposition 4.17, choose a prime, strongly regular filtration (Mα :
α ≤ �) of N over M. AsMα+1 is constructible overMαaα with tp(aα/Mα) ⊥ Pe, it
follows from Lemma 4.21 thatMα �∞,� Mα+1 for eachα < � . Additionally, for any
countable limit ordinal � < � , Mα �∞,� M� for all α < �. That is, (Mα : α ≤ �)
is a �∞,�-chain of countable models with with M0 =M and M� = N . Thus,
M �∞,� N , which suffices. �

Theorem 4.25. Suppose (only) that T is countable and superstable. Suppose
M � N is dull with M,N of arbitrary size. Then for any finite set A ⊆M ,
(M,a)a∈A ≡∞,� (N, a)a∈A. In particular, M and N are back and forth equivalent.

Proof. We prove this by a forcing argument. [One could also proceed by a
Downward Löwenheim–Skolem argument: briefly, if the conclusion of the theorem
fails, then this is witnessed by a winning strategy in a certain game, and one can take
a countable elementary substructure of the pair (M,N, ...) where we add structure
for the winning strategy in the game. This would contradict Proposition 4.24.].

Fix any finite A ⊆M and choose an enumeration a of A. We show that for all
ordinals α, (M,a) ≡α (N, a), i.e., are α-equivalent. To see this, pass to any forcing
extension V[G ] of V in which M and N are countable. It is easily checked that
M � N remains dull in V[G ]. Thus, by Proposition 4.24, there is an isomorphism
f :M → N fixing A pointwise. The existence of f implies that (M,a) ≡α (N, a) in
V[G ] for all ordinals α. By absoluteness it follows that this holds in V as well. �

We close the section by showing that that dull pairs can be amalgamated, with no
new non-orthogonality classes of regular types being realized.

Lemma 4.26. Suppose M � N1 and M � N2 are both dull pairs with N1�
M
N2.

Then there is N ∗ for which N1 � N ∗, N2 � N ∗ and M � N ∗ are all dull pairs.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2025.10135
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 04 Oct 2025 at 16:10:03, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2025.10135
https://www.cambridge.org/core


EQUIVALENTS OF NOTOP 17

Moreover, for any e ∈ N ∗ \M withp := tp(e/M ) regular, either there some is h ∈ N1

or there is some h ∈ N2 with tp(h/M ) regular and 
⊥ p.

Proof. As T is countable and superstable, choose an �-contructible model N ∗

overN1N2. We first show that no new non-orthogonality classes of regular types over
M are realized in N ∗. To see this, choose e ∈ N ∗ \M with p := tp(e/M ) regular.
Since N1�

M
N2 and since wt(e/M ) = 1, e forks with either N1 or N2 over M. By

symmetry, assume the former. Then p 
⊥ tp(N1/M ), and sinceM � N1 dull implies
M ⊆na N1 by Lemma 4.15(1), it follows from Fact A.18(1) that there is h ∈ N1 such
that tp(h/M ) is regular and 
⊥ p.

In particular, since every regular type tp(h/M ) ⊥ Pe, for every h ∈ N1 and every
h ∈ N2, the regular type p is also ⊥ Pe. Thus, by Proposition 4.14, M � N ∗

is a dull pair. That N1 � N ∗ and N2 � N ∗ are dull as well follows from
Corollary 4.18(1). �

4.2. Pe-NDOP. We begin with some general comments about DOP witnesses.
In [6], this was extensively studied for regular types. The following definition appears
as Definition 3.1 of [6]. Among superstable theories T, the definition of DOP given
here is equivalent to Shelah’s original definition via Lemma X 2.2 of [8].

Definition 4.27. A regular type r has a DOP witness if there is an independent
triple (M0,M1,M2) of a-models and an a-prime model M3 over M1M2 such that
the canonical base Cb(r) ⊆M3, with r ⊥M1 and r ⊥M2.

A theory T has DOP, the Dimensional Order Property, if some regular type has a
DOP witness. T has NDOP if it does not have DOP.

Clearly, if a regular type r has a DOP witness, then by Fact A.16, every stationary,
weight one type p(x, d ) non-orthogonal to r is also orthogonal to both M1 and
M2. So, going forward, we consider ‘having a DOP witness’ to be a property of
the non-orthogonality class of a regular type. In applications, the dependence on
a-models make the definition a bit awkward to use. The following two Lemmas use
V -domination to get more malleable conditions.

Lemma 4.28. Let A = (A0, A1, A2) be any independent triple, let A∗ be
V-dominated by A and let p(x) be any stationary, weight one type whose non-
orthogonality class does not have a DOP witness. If p 
⊥ A∗, then p 
⊥ A1 or p 
⊥ A2.

Proof. By way of contradiction, suppose p 
⊥ A∗, but p ⊥ A1 and p ⊥ A2. We
will obtain a contradiction by constructing a DOP witness for some regular type r
non-orthogonal to p. Suppose p is based and stationary on the finite set d. Choose
any e such that p 
⊥ stp(e/A∗) (where stp(e/A∗) need not be regular). Choose a
finite b ⊆ A∗ such that e �

b
A∗. By Fact 2.4,(3) choose a finite B�A such that b

is V -dominated by B . Now letM be any independent triple of a-models such that
B�M and d �

B1B2
M1M2. Note that for � = 1, 2, p ⊥ A� implies p ⊥ B� . However,

from B�M and d �
B1B2
M1M2, it follows that d �

B�
M� , hence p ⊥M� as well.

Since b was V -dominated by B and since B�M , we have that tp(b/M1M2) is
a-isolated. Thus, we can find an a-prime model M3 over M1M2 with b ⊆M3. As
p 
⊥ b, p 
⊥M3, hence there is a regular type r ∈ S(M3) non-orthogonal to p. Then
(M0,M1,M2,M3) and r form a DOP witness, giving our contradiction. �
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18 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

Definition 4.29. A stationary type p(x, d ) over a finite set has a finitary DOP
witness if there is an independent triple A = (a, b, c) of finite sets satisfying:

1. d is V -dominated by A;
2. p(x, d ) ⊥ b and p(x, d ) ⊥ c.
Lemma 4.30. Suppose p(x, d ) is a stationary, weight one type whose non-

orthogonality class has a DOP witness. Then p(x, d ) has a finitary DOP witness.

Proof. Choose a regular type r 
⊥ p(x, d ) and choose a quadruple
(M0,M1,M2,M3) of a-models exemplifying that r has a DOP witness, and fix
a finite e ⊆M3 on which r is based and stationary. First, as a special case, assume
d ⊆M3. Then, as tp(d/M1M2) is a-isolated, d is V -dominated byM via Fact 2.5.
Choose a finite h ⊆M1M2 on which tp(d/M1M2) is based and by Fact 2.2(3),
choose a finite A�M with h ⊆ A1A2. As d �

A1A2
M1M2, it follows from Fact 2.4(3)

that d is V-dominated by A. Since p(x, d ) is weight one, non-orthogonal to r, and
as r ⊥M1 with b ⊆M1, it follows that p(x, d ) ⊥ b. Dually, p(x, d ) ⊥ c, so A is a
finitary DOP witness for p(x, d ).

Now for the general case, sinceM3 is an a-model, choose d ′ ⊆M3 with stp(d/e) =
stp(d ′/e) and letp′(x, d ′) be the conjugate type top(x, d ) over e. Since r is based and
stationary on e, we have that p′(x, d ′) is stationary, weight one, and non-orthogonal
to r. As d ′ ⊆M3, apply the special case above to get A = (a, b, c) for p′(x, d ′).
Then, take any automorphism � of C fixing acl(e) pointwise, with �(d ′) = d . Then
�(A) = (�(a), �(b), �(c)) is a finitary DOP witness for p(x, d ). �

Definition 4.31. A countable, superstable theory T has Pe-DOP if some
(regular) r ∈ Pe has a DOP witness. We say T has Pe-NDOP if it does not have
Pe-DOP.

Proposition 4.32. If T has V-DI, then T has Pe-NDOP.

Proof. By way of contradiction, assume some r ∈ Pe has a DOP witness, and
that V-DI holds. Choose a stationary, weight one p(x, d ) 
⊥ r with d finite and
p(x, d ) non-isolated. By Lemma 4.30, find a finitary DOP witness A = (a, b, c)
for p(x, d ). Let p′(x, dbc) ∈ S(dbc) be the non-forking extension of p(x, d ) and
let e realize p′(x, dbc). Since d is V -dominated by A with p(x, d ) orthogonal
to b and c, Lemma A.12 implies that de is also V -dominated by A. Thus, by
V-DI, tp(de/bc) is isolated, hence tp(e/dbc) = p′(x, dbc) is isolated as well. As
p′(x, dbc) is a nonforking extension of p(x, d ), this contradicts the Open Mapping
Theorem. �

We close this section by summarizing our results so far, the equivalence of the
first three conditions of Theorem 1.3.

Theorem 4.33. The following are equivalent for a countable, superstable theory T.

1. V-DI;
2. Pe-NDOP and PMOP;
3. Pe-NDOP and countable PMOP.

Proof. (1) ⇒ (2) is Theorem 3.6 and Proposition 4.32, and (2) ⇒ (3) is trivial.
So assume T has Pe-NDOP and countable PMOP. Choose any independent triple
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N = (N0, N1, N2) of a-models and assume c is V -dominated byN . We will show that
tp(c/N1N2) is isolated. For this, first note that tp(c/N1N2) is a-isolated by Fact 2.4.
Choose an a-prime model N ∗ over N1N2 containing c.

Construct, as a nested union of an �-chain of finite sets, a countableM ∗ � N ∗

such that, lettingMi :=M ∗ ∩Ni for i ∈ {0, 1, 2} we have

1. M ∗ �
M1M2

N1N2;

2. Mi ⊆na Ni for each i;
3. M = (M0,M1,M2) is a (countable) independent triple of models andM�N ;
4. c ⊆M ∗.

[To get the non-forking conditions, note that by superstablity, for every finite d
fromN ∗, there is a finiteXd ⊆ N1N2 for which d �

A1A2
N1N2 wheneverXd ⊆ A1A2 ⊆

N1N2.] Given such anM ∗, lettingM = (M0,M1,M2), we haveM ∗ is V-dominated
by M by Fact 2.4(3). By countable PMOP, choose M ′ �M ∗, constructible over
M1M2.

Claim 1. For any a ⊆M ∗ \M ′, if tp(a/M ′) is regular, then tp(a/M ′) ⊥M1

and ⊥M2.

Proof. Suppose p = tp(a/M ′) is regular. By symmetry, it suffices to show
p 
⊥M1. For this, note that sinceM ∗ is V -dominated byM ,M ∗ is dominated byM2

over M1. [Why? Choose any Y with M2�
M1
Y . It follows that M�(M0,M1Y,M2),

henceM ∗ �
M1M2

Y by V -domination. Thus,M ∗�
M1
M2Y by transitivity.]

Now, by way of contradiction, suppose p 
⊥M1. Since M1 ⊆na M ∗, the
3-model Lemma (Fact A.18(2)) applied to M1 �M ′ �M ∗ gives some h ∈M ∗

with h �
M1
M ∗, hence h �

M1
M2, contradicting the domination described above. �

Claim 2.M ′ �M ∗ is a dull pair, and tp(c/M ′) is orthogonal to Pe,M1, andM2.

Proof. Choose any a ∈M ∗ \M ′ with p = tp(a/M ′) regular. Since M ′ is
V -dominated byM and T has Pe-NDOP, it follows from Lemma 4.28 and Claim 1
that p ⊥ Pe. Thus, M ′ �M ∗ is a dull pair by Proposition 4.14. It follows by
Lemma 4.15(1) thatM ′ ⊆na M ∗.

Concerning the orthogonality, first suppose there were some q ∈ Pe with
q 
⊥ tp(c/M ′). Since M ′ ⊆na M ∗, it follows from Fact A.18(1) that there is some
a ∈M ∗ \M ′ with tp(a/M ′) ∈ Pe, contradicting M ′ �M ∗ a dull pair. Similarly,
suppose tp(c/M ′) 
⊥M1. Then there would be some regular type q 
⊥ tp(c/M ′)
with q 
⊥M1. SinceM1 ⊆na M ∗, there again would be a ∈M ∗ \M ′ with tp(a/M ′)
regular and 
⊥ q, hence 
⊥M1, contradicting Claim 1. Showing tp(c/M ′) ⊥M2 is
symmetric. �

As tp(c/M ′) ⊥ Pe, choose a finite b ⊆M ′ over which tp(c/M ′) is based and
stationary. By Claim 2 and Lemma A.14(1),M1M2 is essentially finite with respect
to tp(c/b) (see Definition A.13) hence there is some finite e ⊆M1M2 for which

tp(c/be) 
 tp(c/bM1M2).

By Proposition 4.7, tp(c/be) is isolated, hence tp(c/bM1M2) is isolated as well.
However, since b ⊆M ′, tp(b/M1M2) is also isolated, hence so are tp(bc/M1M2) and
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20 MICHAEL C. LASKOWSKI AND DANIELLE S. ULRICH

tp(c/M1M2). Finally,M�N , soM1M2 ⊆TV N1N2, hence tp(c/N1N2) is isolated by
Lemma A.5.

§5. Tree decompositions. The material in this section closely resembles Section 5
of [5], but here we are not assuming that T is �-stable. However, from our work
above, we see that under the assumption of V-DI (or any of its equivalents given
in Theorem 4.33) enough of the consequences of �-stability hold to make the
arguments in [5] go through. Some of the earlier results of this section only require
weaker hypotheses, such as PMOP.

Definition 5.1. A tree (I,�) is a non-empty, downward closed subset ofOrd<�,
ordered by initial segment. An independent tree of models is a sequenceM = (M� :
� ∈ I ) of models, indexed by a tree (I,�), that satisfiesM� �

M�–

⋃
{M	 : 	 
 ��} for

all � 
= 〈〉. To ease notation, for any subtree J ⊆ I , we writeMJ for
⋃
{M� : � ∈ J}.

Any independent tree of models is a stable system, hence analogues of Facts 2.2
and 2.4 apply to this case. Our first Lemma is an easy inductive construction.

Lemma 5.2. Suppose T is countable, superstable, with PMOP. Then there is a
constructible model over every independent treeM = (M� : � ∈ I ).

Proof. Choose any well ordering I = (�α : α < �) such that �α 
 �� implies
α < � .

This implies that for all α < �, I<α = {�� : � < α} is a subtree of (I,�), thus

M<α :=
⋃

{M� : � < α} ⊆TV
⋃
M<� := {M� : � < �} ⊆TV MI ,

for all α < � < �. It follows that any construction sequence c over M<α is also a
construction sequence overM<� and overMI .

We recursively find a sequence (cα : α ≤ �) of sequences satisfying:

1. cα enumerates a constructible model Nα over
⋃
M<α ; and

2. cα is an initial segment of c� for all α ≤ � ≤ �.
If we succeed, then c� will be a construction sequence over MI . Put c0 := 〈〉 and,
for all non-zero limit ordinals �, take c� to be the concatenation of (cα : α < �).
Assuming cα has been chosen with α < �, note that Mα is a ‘leaf’ of the subtree
M≤α . As well,

Mα �
Mα–

Nα,

where Nα is the constructible model overM<α enumerated by cα . From above, cα
is also a construction sequence over M<αMα . By PMOP, there is a constructible
modelNα+1 overMαNα , from which it follows there is an enumeration cα+1 ofNα+1

in which cα is an initial segment. �

To obtain our atomicity results, we use the notion of essential finiteness that was
first named in [5]. For a given strong type p, call a set A essentially finite with respect
to p if there is some finite A0 ⊆ A for which p|DA0 
 p|DA. The basic properties of
this notion are stated in Lemma A.14 in the Appendix.
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Lemma 5.3. (T stable) Suppose (M� : � ∈ I ) is any independent tree of models
indexed by a finite tree (I,�). Then the set

⋃
�∈I M� is essentially finite with respect

to any strong type p that is orthogonal to everyM�.

Proof. We argue by induction on |I |. For |I | = 1, this is immediate by
Lemma A.14(1) (taking A =M〈〉 and B = ∅). So assume (M� : � ∈ I ) is any
independent tree of models with |I | = n + 1 and we have proved the Lemma when
|I | = n. Fix any strong type p that is orthogonal to everyM�. Choose any leaf � ∈ I
and let J ⊆ I be the subtree with universe I \ {�}. By the inductive hypothesis,MJ
is essentially finite with respect to p, so the result follows by Lemma A.14(2), taking
A =MJ and B =M�. �

Lemma 5.4. Suppose (M� : � ∈ I ) is any independent tree of models indexed by any
tree (I,�) and let N be any model that contains and is atomic overMI . Let p ∈ S(N )
be any regular type ⊥ Pe and ⊥M� for every � ∈ I . Then Nc is an atomic set over
MI for every realization c of p.

Proof. As notation, for K ⊆ I , we let MK denote
⋃
�∈K M� . By Lemma 4.9

there is a finite d0 ⊆ N over which tp(c/N ) is based and stationary. It suffices to
show that tp(dc/MI ) is isolated for any finite d with d0 ⊆ d ⊆ N , so choose such
a d. Choose a finite e ⊆MI with a formula ϕ(x, e) isolating tp(d/MI ). Choose a
finite, downward closed subtree J ⊆ I containing e. As tp(c/d ) is stationary and
⊥M� for every � ∈ J , Lemma 5.3 implies thatMJ is essentially finite with respect
to tp(c/d ), so there is a finite e∗, e ⊆ e∗ ⊆MJ for which tp(c/de∗) 
 tp(c/dMJ ).
As tp(c/N ) ⊥ Pe , by Lemma 4.6, tp(c/de∗) is isolated. Thus, tp(c/dMJ ) is isolated
as well. Since tp(d/MJ ) is isolated, so is tp(cd/MJ ). But now, since MJ ⊆TV MI ,
we conclude that tp(cd/MI ) is isolated as well. �

We define three species of decompositions. These definitions, and the notation
contained therein, will be used for the remainder of this section. Note that in a weak
decomposition, we do not require the types tp(a�/M�) to have weight one, but the
other species of decompositions place stronger constraints on these types.

Definition 5.5. Fix a model M. A weak decomposition d = 〈(M�, a�) : � ∈ I 〉
inside M consists of an independent tree d = {M� : � ∈ I } of countable, na-
substructuresM� ⊆na M indexed by (I,�), and a distinguished finite tuple a� ∈M�
(but a〈〉 is meaningless) satisfying the following conditions for each � ∈ I :

1. the set C� := {a� : � ∈ SuccI (�)} is independent overM�;
2. for each � ∈ SuccI (�), we have:

(a) If � 
= 〈〉, then tp(a�/M�) ⊥M�– ;
(b) M� is dominated by a� overM�.

• A regular decomposition inside M is a weak decomposition inside M such that
tp(a�/M�) is a regular type for every � ∈ I and a� ∈ C�.

• A Pe-decomposition inside M has each tp(a�/M�) ∈ Pe .

For a given M, let KPe ⊆ Kreg ⊆ Kwk denote the sets of [Pe, regular, weak]
decompositions d inside M. For each of these notions, there are two ways in which
a decomposition d can be maximal. Thankfully, both notions are equivalent.
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We define a natural partial order ≤∗ on each of KPe , Kreg , Kwk by increasing the
index tree, but leaving the nodes unchanged. That is say

d = 〈M�, a� : � ∈ J 〉 ≤∗ d′ = 〈M ′
�, a

′
� : � ∈ I 〉,

if and only if the index tree (J,�) is a downward closed subtree of (I,�) and
(M�, a�) = (M ′

�, a
′
�) for all � ∈ J .

Lemma 5.6. Fix any model M and any [weak,regular,Pe] decomposition
d = 〈M�, a� : � ∈ I 〉 inside M. Then:

1. d is ≤∗-maximal inside M if and only if C� is maximal for every � ∈ I ; and
2. every [weak, regular, Pe] decomposition d inside M can be ≤∗-extended to a

maximal [weak, regular, Pe ] decomposition inside M.

Proof. (1) If d′ is a proper ≤∗-extension of d, then it is obvious that some
C� gets extended. For the converse, suppose there is some � ∈ I for which C�
can be extended. Choose a �-least such � and choose a∗ ∈M so that C� ∪ {a∗}
satisfies the constraints. Let I+ = I ∪ {�+} be the one-point extension of (I,�)
whose extra note is a leaf, with � 
 �+. SinceM� ⊆na M , we can use Fact A.18(3)
to choose M�+ ⊆na M with M�a∗ ⊆M�+ and M�+ dominated by a∗ over M�.
The verification that (M� : � ∈ I+) remains an independent tree of models follows
from the domination and the fact that tp(a∗/M�) ⊥M�– . Then d+ = d � 〈M�+ , a∗〉
properly ≤∗-extends d.

(2) It is evident that decompositions inside M of any species are closed under
≤∗-chains, so (2) follows by (1) and Zorn’s Lemma. �

Definition 5.7. A [weak, regular, Pe] decomposition of M is a maximal [weak,
regular, Pe] decomposition (in either of these senses).

Lemma 5.8 (T V-DI). Let M be any model, let d = 〈M�, a� : � ∈ I 〉 be any [weak,
regular, Pe ] decomposition inside M, and let N be atomic over MI . If p ∈ Pe is any
regular type with p 
⊥ N , then p 
⊥M� for some � ∈ I .

Proof. Recall that V-DI implies PMOP and Pe-NDOP by Theorem 3.6 and
Proposition 4.32. We first prove the Lemma for all finite index trees (I,�) by
induction on |I |. To begin, if |I | = 1, then we must have N =M〈〉 and there
is nothing to prove. Assume the Lemma holds for all trees of size n and let
d = 〈M�, a� : � ∈ I 〉 be a decomposition inside M indexed by (I,�) of size n + 1.
Let N be atomic over

⋃
�∈I M� and let p ∈ Pe be non-orthogonal to N. Choose

a leaf � ∈ I and let J = I \ {�}. If (I,�) were a linear order, then again N =M�
and there is nothing to prove. If (I,�) is not a linear order, then by Lemma 5.2,
choose anyNJ � N to be constructible overMJ . By Lemma 4.28, either p 
⊥M� or
p 
⊥ NJ . In the first case we are done, and in the second we finish by the inductive
hypothesis since |J | = n. Thus, we have proved the Lemma whenever the indexing
tree I is finite.

For the general case, fix a decomposition d = 〈M�, a� : � ∈ I 〉 inside M, let N be
atomic overMI . Fix any p ∈ Pe with p 
⊥ N . Choose q ∈ S(N ), q 
⊥ p and choose
a finite set d ⊆ N on which q is based. As N is atomic overMI , we can find a finite
subtree J ⊆ I such that tp(d/MJ ) is isolated. AsMJ is countable, use Fact A.2(2)
to choose a constructible modelN ′ � N overMJ with d ⊆ N ′. As d ⊆ N ′, p 
⊥ N ′,
and J is finite, it follows from above that p 
⊥M� for some � ∈ J . �
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Theorem 5.9 (V-DI). Let M be any model and let d = 〈M�, a� : � ∈ I 〉 be any
[weak, regular,Pe] decomposition of M. Then N �M is a dull pair for any N �M
containingMI .

Proof. Choose anyN �M withMI ⊆ N . By Lemma 5.2, choose a constructible
model N0 � N over MI . We first show that N0 �M is a dull pair. If this were
not the case, then by Theorem 4.14, there would be some a ∈M \N0 with
p = tp(a/N0) ∈ Pe. By Lemma 4.28, p 
⊥M� for some � ∈ I . Choose a �-least
such � ∈ I . SinceM� ⊆na M , the 3-model Lemma gives us some h ∈M such that
tp(h/M�) is regular and 
⊥ p with h �

M�
N0. It follows that tp(h/M�) ∈ Pe and, by the

minimality of �, we have that tp(h/M�) ⊥M�– (provided � 
= 〈〉). Regardless of the
species of d [weak,regular,Pe] this contradicts the maximality of d. Thus, N0 �M
is dull. That N �M is dull now follows from Corollary 4.18(1). �

The following Corollaries follow easily.

Corollary 5.10 (V-DI). Suppose M be any model and let d = 〈M�, a� : � ∈ I 〉
be any [weak, regular, Pe] decomposition of M. Then M and N are back-and-forth
equivalent for every N �M containingMI .

Proof. Immediate from Theorems 5.9 and 4.25. �
Corollary 5.11 (V-DI). Suppose M and N are models, and the same d = 〈M�, a� :

� ∈ I 〉 is a [weak, regular, Pe] decomposition of both M and N. ThenM ≡∞,� N .

Proof. By Lemma 5.2 there is a constructible model M ′ �M over MI . By
replacing N by a conjugate over MI , we may additionally assume that M ′ � N .
Two applications of Corollary 5.10 yieldM ≡∞,� M

′ ≡∞,� N . �
Theorem 5.9 and Corollaries 5.10 and 5.11 encapsulate what can be said for

Pe-decompositions of M as they do not touch any of the always isolated types.
However, for weak and regular decompositions of M, we can say considerably
more.

Theorem 5.12 (V-DI). Let M be any model and let d = 〈M�, a� : � ∈ I 〉 be any
[weak,regular ] decomposition of M. Then M is atomic overMI .

Proof. We first prove this when M is countable. By Lemma 5.2, we know there
is a constructible, hence atomic, model N0 �M over MI so choose N �M to
be maximal atomic over MI . We argue that N =M . If this were not the case,
choose some e ∈M \N such that p = tp(e/N ) is regular. By Theorem 5.9,N �M
is dull, hence p ⊥ Pe. Additionally, we have the following.

Claim. p ⊥M� for all � ∈ I .
Proof. Suppose this were not the case. Choose � ∈ I �-minimal such that

p 
⊥M�. Thus, either � = 〈〉 or p ⊥M�– . By the 3-model Lemma, Fact A.18(2),
there is an element h ∈M such that tp(eh/M�) is regular and non-orthogonal to
p (hence orthogonal toM�– if � 
= 〈〉), but h �

M�
Nα . This element h contradicts the

maximality of C�. �
By the Claim and p ⊥ Pe, Lemma 5.4 impliesNc is atomic overMI . As well, since

M and hence N is countable with tp(b/N ) ∈ Pe, a constructible modelN ′ �M over
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Nc exists by Corollary 4.12. It follows that N ′ is atomic overMI , contradicting the
maximality of N.

For the general case, suppose M is uncountable. Choose a forcing extension V[G ]
of V in which M is countable. (Alternatively, one could also proceed by a Downward
Löwenheim–Skolem argument, but specifying a sufficiently large countable fragment
of L�1,� would be involved.) As a counterexample to the maximality of d would be
given by a finite tuple, it follows that d is a decomposition of M in V[G ]. Thus, by
the argument above in V[G ], M is atomic overMI . That is, every finite tuple from
M isolated by a formula overMI . The same formulas witness that M is atomic over
MI in V as well.

Corollary 5.13 (V-DI). Suppose M and N are two models that share the same
maximal [weak, regular ]-decomposition d = 〈M�, a� : � ∈ I 〉. Then M and N are
back-and-forth equivalent overMI .

Proof. As bothM,N are atomic overMI by Theorem 5.12, the set

F = {partial, elementary f :M → N : dom(f) = aMI , f�MI = id}

is a back-and-forth system overMI . �

§6. Equivalents of NOTOP. In Chapter XII of [8], Shelah defines a theory having
OTOP.

Definition 6.1. Let T be a countable, superstable theory. We say T has OTOP if
there is a type p(x, y, z) with lg(y) = lg(z) such that, for all infinite cardinals � and
all binary relations R ⊆ �2, there is a model MR |= T and {aα : α ∈ �} such that
MR realizes the type p(x, aα, a�) if and only if R(α, �) holds.

We say T has NOTOP if it fails to have OTOP.

Seeing this definition, one could imagine a weakening that is reminiscent of the
distinction between a formula ϕ(x, y) being unstable (i.e., has the order property)
and ϕ(x, y) having the Independence Property.

Definition 6.2. Let T be a countable, superstable theory. We say T has linear
OTOP if there is a type p(x, y, z) with lg(y) = lg(z) such that, for all infinite
cardinals �, there is a model M� |= T and {aα : α ∈ �} such that M� realizes the
type p(x, aα, a�) if and only if α ≤ � .

We say T has linear NOTOP if it fails to have linear OTOP.

It is somewhat curious that among superstable theories, OTOP and linear OTOP
coincide, since for a first order formula ϕ(x, y) (as opposed to a type) whether it
codes an order is equivalent to ϕ(x, y) being unstable, whereas its coding arbitrary
binary relations is equivalent to ϕ(x, y) having the Independence Property.

Here, with Theorem 6.4 below, we prove the two notions are equivalent by
demonstrating that each is equivalent to V-DI. We begin with one Lemma that
is of independent interest.

Lemma 6.3. Suppose T is superstable, κ any uncountable regular cardinal, and
(aα : α < κ) is any sequence of finite tuples. Then there is a stationary S ⊆ κ and a
finite F ⊆

⋃
{aα : α} such that {aα : α ∈ S} is independent over F.
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Proof. Let S0 = {α ∈ κ : α is a limit ordinal}. For each α ∈ S0, find
some �(α) < α such that tp(aα/Aα) does not fork over A�(α), where
Aα :=

⋃
{a� : � < α}. By Fodor’s Lemma there is some �∗ < κ and a stationary

S1 ⊆ S0 such that, taking B = A�∗ , aα �
B
Aα for all α ∈ S1. Furthermore, for each

α ∈ S1, there is a finite F ⊆ B for which aα �
F
B . As |B | < κ, there is a stationary

S2 ⊆ S1 and some finite F ∗ ⊆ B for which aα �
F ∗ B holds for all α ∈ S2. Then

{aα : α ∈ S2} is independent over F ∗. �

Theorem 6.4. The following are equivalent for a countable, superstable theory T:

1. T has V-DI;
2. T has Pe-NDOP and PMOP;
3. T has Pe-NDOP and countable PMOP;
4. T has linear NOTOP;
5. T has NOTOP.

Proof. The equivalence of (1)–(3) is by Theorem 4.33, and (4) ⇒ (5) is
trivial.

(5) ⇒ (1) is proved on pages 122–124 of [3]. Hart’s condition (*) is precisely V-DI
in our notation. Another proof of this is given in Section XII.4 of [8].

So, it remains to prove (1) ⇒ (4). The key idea in this argument is that the
existence of a tree decomposition for a purported model witnessing linear OTOP
gives too many symmetries of the structure. We use these symmetries to show that,
for κ large enough, if a modelM ∗ realizes p(x, aα, a�) whenever α < � < κ, then
it must also realize p(x, a� , aα) for some carefully chosen α < � < κ.

Choose a sufficiently large regular cardinal κ, a sequence (aα : α < κ), and a
model M ∗ containing (aα : α < κ) for which M ∗ realizes p(x, aα, a�) whenever
α < � . We will find some � < α for which p(x, aα, a�) is realized as well. For
this, by passing to a large subsequence, Lemma 6.3 allows us to assume that
{aα : α ∈ κ} is independent over a finite set F. Now choose a countableM〈〉 ⊆na M ∗

containing F. As κ > 2ℵ0 and passing to a further subsequence, we may additionally
assume that tp(aα/M〈〉) = tp(a�/M〈〉). By removing at most countably many
elements, we may assume that {aα : α ∈ κ} is independent overM〈〉. Next, for each
α ∈ κ, using Fact A.18(3), choose a countable M〈α〉 ⊆na M ∗ that is dominated
by aα over M〈〉. Thus, d0 = 〈M〈α〉, aα : α < κ〉 �M〈〉 is a weak decomposition
inside M ∗. By Lemma 5.6(2), there is a ≤∗-extension d = 〈M�, a� : � ∈ J 〉 of
d0 that is a weak decomposition of M ∗. Thus, by Theorem 5.12, M ∗ is atomic
overMJ .

For any α < � , choose a realization dα,� of p(x, aα, a�) inM ∗. As tp(dα,�/MJ )
is isolated, choose eα,� ⊇ aαa� from MJ and a formula �(x, eα,�) isolating
tp(dα,�/MJ ). Thus, in particular, �(x, eα,�) is consistent, and every realization of it
realizes p(x, aα, a�).

As notation, for each �, let MJ (�) =
⋃
{M� : � � 〈�〉} \M〈〉. Each pair α < �

induces a partition ofMJ into three (disjoint) pieces, namelyMJ (α),MJ (�), and
the complement, MJ \ (MJ (α) ∪MJ (�)). This partition induces a partition of
eα,� = rα,�sα,� tα,� . Crucially, note that for all α < � the tuples {rα,� , sα,� , tα,�} are
independent overM〈〉.
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By Erdös–Rado, there is a large subsequence I ⊆ κ such that, for all α < �
from I :

• the L-formula �(x, y) for which �(x, eα,�) isolates tp(dα,�/MI ) is constant;
• the partition of eα,� = rα,�sα,� tα,� is independent of α < � ;
• there are unique types r∗, s∗, t∗ ∈ S(M〈〉) with tp(rα,�/M〈〉) = r∗, tp(sα,�/
M〈〉) = s∗, and tp(tα,�/M〈〉) = t∗.

Let I0 ⊆ I have the maximum and minimum elements of I removed (if they exist).
Thus, for every � ∈ I0,MJ (�) contains a realization of r∗ (in particular, r�,� for any
� ∈ I , � > �), and duallyMJ (�) contains a realization of s∗.

Now choose � < α from I0. From above, choose ŝ ∈MJ (�) realizing s∗,
r̂ ∈MJ (α) and let t̂ = t�.α . Put ê := r̂ ŝ t̂. Then, as {r̂, ŝ , t̂} are independent over
M〈〉, we have tp(ê/M〈〉) = tp(e�,α/M〈〉). It follows that M ∗ |= ∃x�(x, ê) and,
moreover, any such realization of �(x, ê) realizes p(x, aα, a�). �

§7. Some context for Pe. Many of the results presented here generalize results of
Shelah and the first author [5] under the stronger assumption of �-stability. Recall
that a regular type p is eventually non-isolated, eni, if there is a finite set b on which it
is based and stationary, and a modelM ⊇ b that omits the restriction p|b. As in the
discussion following Definition 4.27, we say that a theory T has eni-NDOP if no non-
orthogonality class of weight one types containing an eni type has a DOP witness.
In [5], it is proved that for T�-stable, NOTOP is equivalent to eni-NDOP. Noting
that because an �-stable has constructible models over every subset, the following
Corollary is immediate from Theorem 6.4, since both properties are equivalent to
NOTOP.

Corollary 7.1. If T is �-stable, then Pe-NDOP is equivalent to eni-NDOP.

However, outside of �-stable theories, the following example shows that the
notions are distinct.

Example 7.2. A small, superstable theory T with Pe-DOP, but eni-NDOP.

Let L = {U,+, 0, Un}n∈� ∪ {P,E1, E2} ∪ {V, �, g, Vn}n∈� and fix a cardinal
κ ≥ 2ℵ0 . We will describe a saturated L-structure M of size κ, and T = Th(M )
will be as claimed.

The two unary predicatesU (M ) andV (M ) partition the universe of M. One sort,
(U (M ),+, 0, Un)n∈� is a (κ-dimensional) F2-vector space with a nested sequence
of subspaces Un(M ), where U0(M ) = U (M ) and each Un+1(M ) has co-dimension
one in Un(M ). As M is saturated,

⋂
n∈� Un(M ) has dimension κ.

The unary predicate P(M ) ⊆
⋂
n∈� Un(M ) consists of a linearly independent set

(of size κ) such that its linear span 〈P(M )〉 has co-dimension κ in
⋂
n∈� Un.

So far, P(M ) has no structure, i.e., is totally indiscernible. However, the binary
relations E1, E2 are interpreted as cross-cutting equivalence relations, each with
infinitely many classes, on P(M ), with Ei(M ) ⊆ P(M ) × P(M ) for each i. As
notation, letE∗(x, y) := E1(x, y) ∧ E2(x, y). As M is saturated,E∗(M,a) ⊆ P(M )
has size κ for every a ∈ P(M ). One should think of (P(M ), E1, E2, E

∗) as coding
the ‘standard DOP checkerboard.’
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Continuing, V (M ) has size κ, and � : V (M ) → P(M ) is a surjection. The
function g : U × V → V is a group action that acts regularly on �–1(a) for every
a ∈ P(M ).

Finally, for each n ∈ �, Vn is interpreted so that Vn+1 ⊆ Vn for each n, and
for every a ∈ P(M ), the set {u ∈ U (M ) : g(u, v) ∈ Vn(M ) ∩ �–1(a)} is a coset of
Un(M ).

It is readily checked thatT = Th(M ) is small and superstable. We describe the five
species of regular types occurring inS(M ). Letp0 be the complete type asserting that
P(x) holds, but¬E1(x, a) ∧ ¬E2(x, a) for every a ∈ P(M ). For i = 1, 2, letpi(x, a)
assert that Ei(x, a) holds, but E3–i(x, b) fails for every b ∈ P(M ). Let p∗(x, a) be
generated by E∗(x, a) ∧ x 
= a, and let q(x) be the complete type asserting that
x ∈

⋂
Un(M ) \ 〈P(M )〉. As dcl(c) ∩U (M ) 
= ∅ for any finite tuple c, every non-

algebraic type is non-orthogonal to one of these types. As it is akin to the DOP
checkerboard, p∗(x, a) has a DOP witness, and it can be checked that the only
regular types with a DOP witness are those non-orthogonal to p∗(x, a).

We argue that p∗(x, a) ∈ Pe. Choose any b ∈ P(M ) with E∗(b, a) ∧ b 
= a and
choose any c ∈ �–1(b) ∩

⋂
Vn. The type w(x, a) := tp(c/a) is visibly non-isolated,

and since bc is dominated by b over a,w(x, a) has weight one. As b ∈ dcl(c) realizes
p∗(x, a), w(x, a) 
⊥ p∗(x, a) so p∗(x, a) ∈ Pe. Thus, T has Pe-DOP.

The type w(x, a) is not regular, and it can be shown that the non-orthogonality
class of p∗(x, a) does not contain any eni (regular) type. Thus, T has eni-NDOP.

We conclude by observing two extreme cases of Pe.

Corollary 7.3. Assume T is countable and superstable, but Pe = ∅. Then T is
�-stable and �-categorical.

Proof. Let M be any countable model of T. If Pe = ∅, then by Lemma 4.9, every
p ∈ S(M ) is based and stationary over a finite set. As M is countable, this implies
S(M ) is countable, hence T is �-stable. To get that T is �-categorical, we argue
that every countable model is saturated. Since T is �-stable, a countable, saturated
model N exists. Let M be any countable model of T. Since N is countably universal,
we may assumeM � N . Since Pe = ∅, it is also dull. Thus, by Proposition 4.24, M
is isomorphic to N, so M is saturated as well. �

Corollary 7.4. Assume T is countable and superstable, but every regular type is
in Pe. Then T has NOTOP if and only if T is classifiable.

Proof. Right to left is immediate. By our assumption on T, Pe-NDOP is
equivalent to NDOP, so left to right follows from Theorem 6.4. �

Remark 7.5. We close by observing that the countability of the language is crucial
in the equivalents of Theorem 6.4. Indeed, the notion of V-DI is preserved under
the addition or deletion of constant symbols, but NOTOP is not. In particular,
the theory in Example 7.2 has OTOP, since the language is countable and T has
Pe-DOP. However, if one expands by adding constants for an a-model (equivalently,
replacing the theory T by the elementary diagram of M) then the expanded theory
cannot code arbitrary relations, hence has NOTOP.
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§A. Appendix.

A.1. Isolation, construction sequences, and TV-substructures. The initial defini-
tions are well known.

Definition A.1. An n-type p(x) ∈ Sn(A) is isolated if �(x, a) 
 p(x) for some
�(x, a ∈ p.

A model N is atomic over B if B ⊆ N and tp(a/B) is isolated for every finite tuple
a from N.

A construction sequence over B is a sequence c = (aα : α < �) with, for eachα < �,
tp(aα/BAα) isolated, where Aα =

⋃
{a� : � < α}.

A model N is constructible over B if there is a construction sequence c over B and
the universe of N = B ∪

⋃
c.

The following facts are also well known.

Fact A.2. Let T be any complete theory.

1. If N is constructible over B, then N is atomic over B.
2. If N is atomic over B and is countable, then any enumeration of N of order type
� is a construction sequence over B.

3. If B ⊆M and c is a construction sequence over B, then there is c′ ⊆M with
tp(c/B) = tp(c′/B).

In many places, we use the Open Mapping Theorem, which holds for an arbitrary
stable theory.

Fact A.3 (Open Mapping Theorem). IfA ⊆ B and c �
A
B , then tp(c/B) isolated

implies tp(c/A) isolated.

Definition A.4. For any sets A,B , we say A is a Tarski–Vaught subset of B,
written A ⊆TV B ,5. if A ⊆ B and, for every A-definable formula ϕ(x, a), if there is
some b ∈ B with ϕ(b, a), then there is some a∗ ∈ A with ϕ(a∗, a).

Obviously, for any model M,M ⊆TV B,wheneverM ⊆ B . As well, ifA�
M
B , then

the fact that MA ⊆TV MAB is a restatement of the Finite Satisfiability Theorem.
More generally, for arbitrary stable systems M�N of models we have

⋃
M ⊆TV⋃

N (see Lemma XII 2.3(2) of [8]). Tarski–Vaught subsets play well with isolation.

Lemma A.5. Suppose A ⊆TV B and tp(c/A) is isolated. Then tp(c/B) is isolated
by the same formula and, moreover, Ac ⊆TV Bc. Consequently, if (cα : α < �) is any
construction sequence over A, then it is a construction sequence over B via the same
formulas.

Proof. Suppose ϕ(x, a) isolates tp(c/A). If it were not the case that ϕ(x, a)
isolates tp(c/B), then there would be some �(x, a, b) with b from B such that

�(b, a) := ∃x∃x′[ϕ(x, a) ∧ ϕ(x′, a) ∧ �(x, a, b) ∧ ¬�(x′, a, b)].

However, if there were any a∗ from A such that �(a∗, a), this would contradict
ϕ(x, a) isolating tp(c/A).

5In [8], Shelah denotes this same notion by ⊆t .
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For the moreover clause, assume �(x, a′, c) has a solution in B with a′ from A.
Then

�(x, a, a′) := ∃z(ϕ(x, a) ∧ �(x, a′, z))

also has a solution in B, hence in A. By the isolation, any realization of �(x, a, a′)
also realizes �(x, a′, c). The third sentence follows by induction on the length of the
construction sequence. �

A.2. �-isolation and �-construction sequences. �-isolation is a weakening of
isolation.

Definition A.6. A type tp(c/A) is �-isolated over A if, for every ϕ(x, y), there is
a formula �(x, a) ∈ tp(c/A) with �(x, a) 
 tpϕ(c/A).

A model N is �-atomic over B if B ⊆ N and tp(a/B) is �-isolated for every finite
tuple a from N.

An �-construction sequence over B is a sequence c = (aα : α < �) with, for each
α < �, tp(aα/BAα)�-isolated, where Aα =

⋃
{a� : � < α}.

A model N is �-constructible over B if there is an �-construction sequence c over
B and the universe of N = B ∪

⋃
c.

The advantage is that in a countable, superstable theory T, the �-isolated types
are dense over any base set A.

Fact A.7. Let T be any countable, superstable theory.
1. For any base set A, {p ∈ S(A) : p is �-isolated} is dense.
2. For any set A an �-constructible model over A exists.

Proof. (1) holds by e.g., Lemma 4.2.18(4) of [8], and (2) follows by iterating (1)
over larger and larger approximations to a model. �

The analog of Lemma A.5 holds as well, essentially by the same proof as there.

Fact A.8. If A ⊆TV B and tp(c/A) is �-isolated, then tp(c/B) is also �-isolated,
with the same witnessing formulas.

A.3. Orthogonality and domination. Throughout this section, all that is needed is
for T to be stable. The following notions are all due to Shelah.

Definition A.9. Suppose p ∈ S(A) and q ∈ S(B). Then p and q are orthogonal,
p ⊥ q, if, for every E ⊇ A ∪ B , a �

E
b for every a, b realizing any non-forking

extensions of p, q, respectively.
Ifp ∈ S(D), we say p is orthogonal to the set B,p ⊥ B , ifp ⊥ q for every q ∈ S(B).
If p ∈ S(D) and D0 ⊆ D, we say p is almost orthogonal to D0 if c �

D
e for every e

such that e �
D0
D.

In many texts, being almost orthogonal is written in terms of domination.

Definition A.10. We say that forD ⊇ D0, cD is dominated by D overD0 if c �
D
e

for every e satisfying e �
D0
D. Thus, cD is dominated by D over D0 if and only if

tp(c/D) is almost orthogonal to D0. For arbitrary strong types p, q, we write p 
 q
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if, for some/every a-model M on which both p, q are based and stationary, for
some/every b realizing q, there is a realizing p with ab dominated by b over M.

We note the following two facts.

Fact A.11. Suppose tp(e/D) is stationary, D0 ⊆ D, and D�
D0
Y :

1. if eD is dominated by D over D0, then tp(e/D) 
 tp(e/DY ); and
2. if tp(e/D) ⊥ D0, then tp(e/D) 
 tp(e/DY ) and tp(e/D) ⊥ D0Y .

Proof. (1) Choose any e′ such that tp(e′/D) = tp(e/D). Then e′D is dominated
by D overD0 as well, so we have e �

D
Y and e′�

D
Y . Thus, tp(e/DY ) = tp(e′/DY )

since tp(e/D) is stationary. (2) The first clause follows from (1) and the second is
Claim X 1.1 of [8]. �

For lack of a better place, we will require the following technical lemma, whose
proof is similar to the proof of (c) ⇒ (d ) of Lemma X 2.2 of [8].

Lemma A.12. Suppose D is V-dominated by A = (A0, A1, A2) and tp(e/DA1A2)
is stationary and orthogonal to both A1 and A2. Then De is also V-dominated by A.

Proof. Choose any B 	 A and we will prove in three steps that

tp(e/DA1A2) 
 tp(e/DA1A2B0) 
 tp(e/DB1A2) 
 tp(e/DB1B2), (∗)

which implies e �
DA1A2

B1B2. Coupling this withD �
A1A2
B1B2 from the V -domination

of D over A gives De �
A1A2
B1B2, as required. Along the way, we also prove that

tp(e/D) is orthogonal to both A1B0 and A2B0.
To obtain the first implication of (*),A�B andDV -dominated byA giveB0�

A1
A2

and D�
A1
A2, from which it follows that DA1A2�

A1
B0. Thus, applying Fact A.11(2)

with D0 = A1 gives tp(e/DA1A2) 
 tp(e/DA2A2B0) and also tp(e/DA1A2B0) ⊥
A1B0. Also, note that our assumptions are symmetric betweenA1 andA2, so arguing
symmetrically gives tp(e/DA1A2B0) ⊥ A2B0 as well.

For the second implication, again from A�B and DV -dominated by A, we have
B1 �
A1B0
A2 and D �

A1A2
B0B1. By transitivity of non-forking we have B1 �

A1B0
DA2,

hence also B1 �
A1B0
DA1A2. So, applying Fact A.11(2) with D0 = A1B0 gives the

second implication of (*).
Finally, sinceB2 �

B0A2
B1 andD �

A1A2
B1B2, we obtainDB1A2 �

B0A2
B2. As we proved

tp(e/DB1A2) ⊥ A2B0 above, applying Fact A.11(2) withD0 = A2B0 gives the third
implication of (*), completing the proof of the Lemma. �

The following notion and subsequent lemma appear as Defintion 1.4 and
Lemma 1.5 of [5].

Definition A.13. A set A is essentially finite with respect to a strong type p if, for
all finite sets D on which p is based and stationary, there is a finite A0 ⊆ A such that
p|DA0 
 p|DA.
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Lemma A.14. Fix a strong type p. If either of the following conditions hold:

1. p ⊥ A and B is a (possibly empty) A-independent set of finite sets; or
2. if A is essentially finite with respect to p, p ⊥ B , and A �

A∩B
B ;

then A ∪ B is essentially finite with respect to p.

A.4. Regular and weight one types.

Definition A.15. Suppose p ∈ S(A) is stationary and non-algebraic. We say p
is regular if p is orthogonal to every forking extension q ⊃ p.

The type p has weight one if, for everyB ⊇ A and every a realizing the non-forking
extension p|B , whenever b�

B
c, we have either a �

B
b or a �

B
c.

The following facts are well known (see, e.g., [7]).

Fact A.16. Let T be any stable theory.

1. Every (stationary) regular p ∈ S(A) has weight one.
2. Non-orthogonality is an equivalence relation on the set of stationary, weight one

types.
3. If p 
⊥ q are both weight one, then:

(a) for any stationary type r, p 
⊥ r if and only if q 
⊥ r; and
(b) for every set B, p 
⊥ B if and only if q 
⊥ B .

A.5. On na-substructures and na-types. One of the tools that led to the strong
structure theorems proved for classifiable theories was the notion of an na-
substructure, which is due to Hrushovski.

Definition A.17. We say M is an na-substructure of N, written M ⊆na N , if
M � N and, for every finite F ⊆M and every F-definable formula ϕ(x), if there is
some c ∈ ϕ(N ) \M , then there is c′ ∈ ϕ(M ) \ acl(F ).

The salient features of this notion is that for any model N and any countable
subset A ⊆ N , there is a countable M ⊆na N containing A. This is proved by the
same method as the Downward Löwenheim–Skolem theorem.

The following three Facts explain the utility of this notion. Fact A.18(1,2)
appear as Propositions 8.3.5 and 8.3.6 of [7], respectively, and Fact A.18(3) is
Proposition 5.1 of [9].

Fact A.18.

1. WheneverM ⊆na N , if p is any regular type non-orthogonal to tp(N/M ), then
some regular type q ∈ S(M ) non-orthogonal to p is realized in N \M .

2. (3-model Lemma) Suppose M �M ′ � N with M ⊆na N . For every regular
type p = tp(e/M ′) with e from N, there is h ∈ N such that tp(h/M ) is regular,
non-orthogonal to p, and h �

M
M ′.

3. SupposeM ⊆na N and A is any set such thatM ⊆ A ⊆ N . Then there is a model
M ∗ ⊆na N with A ⊆M ∗, |M ∗| = |A|, andM ∗ dominated by A over M.

For our purposes, we need to localize this notion of ‘being na’ to individual
regular types. We begin with two very general lemmas.
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Lemma A.19. SupposeM � N , c from M and b ∈ N \M . If tp(b/c) is isolated
by �(x, c), then there is b∗ ∈ �(M, c) \ acl(c).

Proof. Since �(b, c) holds with b 
∈M , �(x, c) is non-algebraic. AsM � N there
is b∗ ∈M realizing �(x, c). We argue that any such b∗ 
∈ acl(c). Suppose b∗ ∈ acl(c).
Choose an algebraic α(x, c) ∈ tp(b∗/c). Since tp(b∗/c) is isolated by �(x, c), this
would imply that ∀x[�(x, c) → α(x, c)], but this is contradicted by b. �

The following is a slight strengthening on the fact that in a superstable theory,
a realization of a regular type can be found inside any pair of models. Indeed, the
proof below is simply a minor variant of Proposition 8.3.2 in [7].

Lemma A.20. SupposeM � N , d from M, and ϕ(N, d ) \M is non-empty. Then
there is some e ∈ acl(ϕ(N, d ) ∪M ) with tp(e/M ) regular.

Proof. Let D := acl(ϕ(N, d ) ∪M ). As in the proof of Proposition 8.3.2 of
[7], by Lemma 8.1.12(iii) there, since D 
⊆M , choose a regular type p that
is non-orthogonal to tp(D/M ) with R∞(p) = α > 0 such that tp(D/M ) is
foreign to R∞ < α. Choose a ⊆ D such that tp(a/M ) 
⊥ p. Note that tp(a/M )
is orthogonal to all forking extensions of p. There are now two cases. If
p is trivial, then by Lemma 8.3.1 of [7], there is a′ ∈ acl(aM ) ⊆ D such
that tp(a′/M ) is regular, so we are done. On the other hand, if p is non-
trivial, look at the proof of Lemma 8.2.20 in [7]. The first two moves are
to apply Lemma 7.1.17 to obtain a1 ∈ acl(aM ) that is p-simple of positive
p-weight, and then to apply Proposition 8.2.17 to find a2 ∈ dcl(Ma1) such that
tp(a2/M ) contains a formula � as in the statement of 8.2.20. Note that a2 ∈ D.
Thus, by shrinking � slightly (but staying within tp(a2/M )) we may assume that
�(N ) ⊆ D. Now, continuing with the proof of 8.2.20, find c ∈ �(N ) ⊆ D as there.
The verification that tp(c/M ) is regular follows as in the proof of Proposition
8.3.2. �

Definition A.21. For M any model, a type p ∈ S(M ) is na if, for every
ϕ(x, d ) ∈ p, there is b ∈ ϕ(M,d ) \ acl(d ).

Proposition A.22. ForM � N ,M ⊆na N if and only if every regular p ∈ S(M )
realized in N is na.

Proof. Left to right is obvious. For the converse, assume M is not an na-
substructure. Chooseϕ(x, d ) realized inN \M with d ⊆M , butϕ(M,d ) ⊆ acl(d ).
By Lemma A.20, choose e ∈ acl(ϕ(N, d ) ∪M ) such that q := tp(e/M ) is regular.
We show that q is not na. For this, choose a from ϕ(N, d ) for which e ∈ acl(Ma).
Say �(x, a, d ′) ∈ tp(e/Ma) has exactly n solutions and d ′ ⊆M . Put

�(y, d, d ′) := ∃x[∧iϕ(xi , d ) ∧ �(y, x, d ′) ∧ ∃=nz�(z, x, d ′)].

We claim that the formula �(y, d, d ′) witnesses that q is not na. Clearly, �(y, d, d ′) ∈
tp(e/d, d ′), so it suffices to show that �(M,d, d ′) ⊆ acl(dd ′). To verify this, choose
b′ ∈ �(M,d, d ′) and choose a′ from M witnessing this. Then a′ ⊆ ϕ(M,d ), hence
a ⊆ acl(dd ′) by our choice of ϕ(x, d ). But b′ ∈ acl(a′d ′) via �(z, a′, d ′), so b′ ∈
acl(dd ′), as required. �
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