
SUBSTITUTIONAL LEMMA FOR G-SPACES OF
1-DIMENSIONAL GROUPS

by JUAN ANTONIO PEREZ

(Received 14 December, 1994)

1. Introduction. Let G be a compact Lie group and X a G-CW complex. We are
interested in the calculation of the Borel cohomology of X

H*c(X) = H*(EGxcX)

where EG is a universal free G-space and we use on the right hand side cellular
cohomology. For an introduction to G-CW complexes see Matumoto [4] and for a good
exposition on Borel cohomology see for instance torn Dieck [2], We want to replace X
with an ordinary CW complex Y in order to find an ordinary CW structure on the Borel
construction EG x c Y so we can use cellular chains to compute the Borel cohomology of
X. For every compact Lie group one has an extension

where Go is the identity component, so for our case Go is isomorphic to the circle group T.
We are dealing with the case in which Jto(G) is isomorphic to C2, the cyclic group of order
2. Let us denote by T the circle group T c C with C2 acting antipodally on it, and
analogously, denote Z. Thus we have the Hochschild cohomology group

which shows that the only possible extensions of T by C2 where C2 acts non-trivially on T
are 0(2), the continuous dihedral group and Q = NSU(2)(J), the continuous quaternion
group. From now on G will mean either O(2) or Q. See Brown [1] for a good exposition
on Hochschild cohomology and group extensions.

The same we prove for the mentioned 1-dimensional groups is proved for the circle
group in Greenlees and May [3], Lemma 14.1. The point is that the circle group is abelian
and connected while 0(2) and Q are not. The proof here was inspired by the proof in [3].

2. Preliminary observations. Let us denote by 5^(G) the set of closed subgroups of
G. If we write H ~ K meaning that H and K are conjugate subgroups of G, then we can
write <#(G) = 5^(G)/~. This provides a projection n : Sf(G)-* <g(G) given by n :H^(H).
The notation between conjugacy classes (H) < (K) means that the subgroup H is
subconjugate to K. The first observation is the following.

LEMMA 1. Let G be either 0(2) or Q. If there exists a section v : ̂ (G)-* S (̂G) such
that (H) < (K) then v((H)) < v((K)).

The existence of a section like the one in Lemma 1 for a general compact Lie group
is not clear for the author, furthermore, it is not even clear whether it exists for any finite
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group. It would be interesting to find necessary and sufficient conditions for the existence
of such a v. Now, if NC(H) denotes the normalizer of the closed subgroup H in the group
G, we will write WC(H) to denote the factor group NC(H)/H. Next, the proof of the
substitution lemma rests upon the existence of the above v and the existence of the
ordinary CW structures guaranteed by the next observation.

LEMMA 2. For G being either 0(2) or Q, and H any closed subgroup of C, there exist
ordinary CW structures on G, G/H and WG(H) such that the product on G is a cellular
map and for every H e Im(v):

(a) The action of G on G/H is cellular.
(b) (G/H)m = {WG(H)Y°\
(c) The group operation in WC(H) is cellular.
(d) For H<K the projection G///-> G/K is cellular.
(e) (G/K)H is a subcomplex of G/K.

For the sake of brevity, a CW structure like the one in Lemma 2 will be called a good
family CW structure in what follows. Also, for the sake of clarity, if Y is an ordinary CW
complex, as usual, we denote by Yik) its ordinary k-skeleton while if A" is a G-CW
complex, its equivariant /c-skeleton will be written Xlk\ Section 3 is devoted to state and
prove the substitution lemma. In Sections 4 and 5, Lemmas 1 and 2 are proved.

3. The substitution lemma.

THEOREM 3. Let G be either O(2) or Q. Then for every G-CW complex X there exists
a G-CW complex Y which is G-homotopy equivalent to X and has a decomposition as an
ordinary CW complex with a cellular action by G and such that YH is a subcomplex of Y
for every H e Im(v).

Proof. Let *[01 be the equivariant 0-skeleton of X and define Y[O] = X[O]. By
regarding V101 as a disjoint union of G-orbits, the space Y[0] has the structure of an
ordinary CW complex given by the CW structure on the homogeneous spaces G/K, for
K e Im(v). Moreover, according to (a) Lemma 2, G acts cellularly on the CW complex
Y[0]. Note that dim(F(01)« 1 and thanks to (e) Lemma 2, (Y[0])H is a subcomplex of Y[o]

for every H e Im(v). Now, if we take

to be the identity map, we have that £0 is a G-homeomorphism. Assume inductively that
we have constructed a CW complex yl"~1] and a G-homotopy equivalence

where y'""11 has the structure of an ordinary CW complex with G acting cellularly on it
and such that (Yl"~l])H is a subcomplex of yt""1' for any H e Im(v). Let us take an
equivariant n-cell of X with domain (G/H)xEn, and denote by <p the corresponding
attaching map and by <p° its restriction to (G///)(0) x S"'1. To carry on, we need to make
the following observation which will be proved in a final section.

LEMMA 4. The 0-skeleton (G///)(O) has a group structure making the sub-complex
(yl»-i])« a (QIHfUpace.
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Using the equivariant cellular approximation theorem, let y be a (G///)(0)-cellular
approximation to the following composite

The following two lemmas are also proved in the last section.

LEMMA 5. The map T :(G/H)xS"-^Yl"-i] defined by T(gH, x) = gy(H, x) is an
extension of y and it is C-equivariant.

LEMMA 6. The map T defined in the above lemma is cellular.

Now that r is cellular, the mapping cone Yl"~i] Ur{(G///) X E"} is an ordinary CW
complex and also, given any K<G,v/e have

[yl»-i] Ur{(G/H) x En}]K = (yl"-'))* \jrK{(G/H)K x £"}

which is also a CW complex by the inductive hypothesis and Lemma 6. Taking this T as a
typical attaching map for the construction of Y1"1, we get an ordinary CW structure for
Y["\ where the G-action is cellular and (Yl"])H is a subcomplex for every H <G.

Finally, by comparison of cofiber sequences as shown in the following diagram

X

'If' in- IK «-|Ulj fi,-

we see that ^n_j and its homotopy inverse £„_] extend cell by cell to a G-homotopy
equivalence

and its inverse fn respectively. This completes the induction and proves the theorem.

4. The group 0(2). Throughout this section G will mean 0(2). It is not difficult to
prove that a proper closed subgroup H < G is conjugate to either T, Cn or D2n, the
dihedral group of order 2n. Here, we identify the circle group T with the identity
component SO(2) of 0(2), Cn < J and D2n has underlying set Cn U rCn for

- i ; -?
Therefore, for this case, the diagram of conjugacy classes of subgroups looks as follows

<D2)
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and to define the required good section v it is enough to give its image

Im(v) = { G J l U f ^ | n e Z}U{Cn | n e I}.

The G-orbits are either a discrete space having at most two points or a collection of at
most two circles. Let us give to G a CW structure with G(0) = {1, r} and two 1-cells in the
obvious way, which makes cellular the operation in G. Since if H is not a non-trivial finite
cyclic subgroup then WG{H) is a finite set, so define (G/ / / ) ( 0 ) = WC(H). If H is cyclic then
WC(H) = G/H, for this case define (G// / ) ( 0 ) = [Wc(H)]m = {H, rH).

oo
5. The group Q. The continuous quaternion group Q = Nst,(2)(T) may be seen as

consisting of the matrices of SU(2) having the forms

\e'6 ° i A r ° e'ei

We have seen that Q = NSU(2)(J), where T means now the maximal torus U(l) a SU(2).
The group Q is generated by T and the element

0 01

- 1 OJ

which clearly satisfies j2 = - 1 and je'ej~x = e~'e. Using the equality e'(<r/?> = i we introduce
the symbol k = ij. After that, we can recognize the quaternion group Q8 with underlying
set {±1, ±i, ±j, ±k} as a subgroup of Q. Now, a generalized quaternion group (see [1],
p. 98), denoted Q4n is defined to be the subgroup of Q generated by the normal subgroup
C2n < T and the element / , for n s* 1. The group Q4n has order An and we note that
i, k E Q4n if n is even and i,k E Q - Q4n for n odd. For a start, we need to characterize
the closed subgroups of Q. It is easy to check that a closed proper subgroup H < Q is
isomorphic to either T, Cn or Q4n, so we get the following diagram of conjugacy classes.

-c.

-{1}

Again, in order to define the good section v it suffices to give its image

Im(v) = {Q, 1} U {Q4n | n e 1} U {Cn \ n e I}.
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As in the case of 0(2) the Q-orbits are either discrete with at most two points or a
collection of at most two circles. Let us give to Q a CW structure with Q(0) = {±1, ±;} and
four 1-cells in the obvious way, so the operation in Q becomes cellular. If H is not a
non-trivial finite cyclic subgroup then WQ(H) is a finite set, so we may define
(G///)(0) = WQ(H). If H is nontrivial finite cyclic having even order, since - 1 E H, this
shows that we need to make (G///)(0) = {H,jH}; alternatively, if H has odd order, we
need (G///)(0) = {±H, ±jH}.

' -O1

6. Remaining proofs. In this section, G will mean either 0(2) or Q. It is
straightforward to verify that the CW structures given in the last two sections satisfy
(a)-(d) in Lemma 2. To verify (e) we just need to observe that for H<K one has
(G/K)H = MapG(G///, GIK) = 112 for the case in which neither H nor K are normal in
G. If one of them is normal then (G/K)H = G/K. Next we give here proofs of some facts
that were used in the proof of the substitution lemma. It is worth remarking that the
above cell structures make the 0-skeleton of G/H into a subgroup of WG(H). All the
references in the following proofs are related to Lemma 2.

Proof of Lemma 4. From (d), the projection G^G/H is cellular, so H e (G///)(0),
and also H e Wc(H)m by (b). By (c) we have Wc(//)(0) < WC(H) so (G///)(0) < WC(H).

Proof of Lemma 5. First of all, it is clear that T extends y, since for gH e (G///)(0)

we have

T(gH, x) = gy(H, x) = gHy(H, x) = y(gH,x)

recalling that y is a (G///)(0)-map. Now, for any g e G we have

T(gH,x) = gy(H,x)
and also, since H e (G// / ) ( 0 ) ,

which proves G-equivariance.

Proof of Lemma 6. Recall that we want to prove the cellularity of our new T. It is
enough to do it for (G///)(0)x (5«-i)C-D and for (G///)(1) x ( S " " 1 ^ , since by
dimensional reasons the other products take care of themselves.

First, the restriction of T to (G/H)(0) x (sn~]){n~l) is y, and it was chosen to be
cellular, so the given product is mapped by T to the ordinary (n - l)-skeleton of yl""1!.

By our definition of T, the product (G///)(1) X (5n~1)(0) is mapped by T to the orbit
G(V(H, *)) = G(y(H, *)). We have that y(H, *) maps into the ordinary 0-skeleton of Y[O]

and this clearly means G(y(H, *)) £ Y[0\ Use now the cellularity of the projections.
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