SUBSTITUTIONAL LEMMA FOR G-SPACES OF 1-DIMENSIONAL GROUPS

by JUAN ANTONIO PÉREZ

(Received 14 December, 1994)

1. Introduction. Let G be a compact Lie group and X a G-CW complex. We are interested in the calculation of the Borel cohomology of X

$$H_G^*(X) = H^*(EG \times_G X)$$

where EG is a universal free G-space and we use on the right hand side cellular cohomology. For an introduction to G-CW complexes see Matumoto [4] and for a good exposition on Borel cohomology see for instance tom Dieck [2]. We want to replace X with an ordinary CW complex Y in order to find an ordinary CW structure on the Borel construction $EG \times_G Y$ so we can use cellular chains to compute the Borel cohomology of X. For every compact Lie group one has an extension

$$1 \to G_0 \xrightarrow{j} G \xrightarrow{p} \pi_0(G) \to 1$$

where G_0 is the identity component, so for our case G_0 is isomorphic to the circle group \mathbb{T} . We are dealing with the case in which $\pi_0(G)$ is isomorphic to C_2 , the cyclic group of order 2. Let us denote by \mathbb{T} the circle group $\mathbb{T} \subset \mathbb{C}$ with C_2 acting antipodally on it, and analogously, denote \mathbb{Z} . Thus we have the Hochschild cohomology group

$$H^2(C_2, \tilde{\mathbb{T}}) \cong H^3(C_2, \tilde{\mathbb{Z}}) \cong \mathbb{Z}/2$$

which shows that the only possible extensions of \mathbb{T} by C_2 where C_2 acts non-trivially on \mathbb{T} are O(2), the continuous dihedral group and $Q = N_{SU(2)}(\mathbb{T})$, the continuous quaternion group. From now on G will mean either O(2) or Q. See Brown [1] for a good exposition on Hochschild cohomology and group extensions.

The same we prove for the mentioned 1-dimensional groups is proved for the circle group in Greenlees and May [3], Lemma 14.1. The point is that the circle group is abelian and connected while O(2) and O are not. The proof here was inspired by the proof in [3].

2. Preliminary observations. Let us denote by $\mathcal{S}(G)$ the set of closed subgroups of G. If we write $H \sim K$ meaning that H and K are conjugate subgroups of G, then we can write $\mathscr{C}(G) = \mathscr{S}(G)/\sim$. This provides a projection $\pi : \mathscr{S}(G) \to \mathscr{C}(G)$ given by $\pi : H \mapsto (H)$. The notation between conjugacy classes (H) < (K) means that the subgroup H is subconjugate to K. The first observation is the following.

LEMMA 1. Let G be either O(2) or Q. If there exists a section $v : \mathcal{C}(G) \to \mathcal{G}(G)$ such that (H) < (K) then v((H)) < v((K)).

The existence of a section like the one in Lemma 1 for a general compact Lie group is not clear for the author, furthermore, it is not even clear whether it exists for any finite

Glasgow Math. J. 38 (1996) 215-220.

group. It would be interesting to find necessary and sufficient conditions for the existence of such a ν . Now, if $N_G(H)$ denotes the normalizer of the closed subgroup H in the group G, we will write $W_G(H)$ to denote the factor group $N_G(H)/H$. Next, the proof of the substitution lemma rests upon the existence of the above ν and the existence of the ordinary CW structures guaranteed by the next observation.

Lemma 2. For G being either O(2) or Q, and H any closed subgroup of G, there exist ordinary CW structures on G, G/H and $W_G(H)$ such that the product on G is a cellular map and for every $H \in Im(v)$:

- (a) The action of G on G/H is cellular.
- (b) $(G/H)^{(0)} = \{W_G(H)\}^{(0)}$.
- (c) The group operation in $W_G(H)$ is cellular.
- (d) For H < K the projection $G/H \rightarrow G/K$ is cellular.
- (e) $(G/K)^H$ is a subcomplex of G/K.

For the sake of brevity, a CW structure like the one in Lemma 2 will be called a *good* family CW structure in what follows. Also, for the sake of clarity, if Y is an ordinary CW complex, as usual, we denote by $Y^{(k)}$ its ordinary k-skeleton while if X is a G-CW complex, its equivariant k-skeleton will be written $X^{[k]}$. Section 3 is devoted to state and prove the substitution lemma. In Sections 4 and 5, Lemmas 1 and 2 are proved.

3. The substitution lemma.

THEOREM 3. Let G be either O(2) or Q. Then for every G-CW complex X there exists a G-CW complex Y which is G-homotopy equivalent to X and has a decomposition as an ordinary CW complex with a cellular action by G and such that Y^H is a subcomplex of Y for every $H \in Im(v)$.

Proof. Let $X^{[0]}$ be the equivariant 0-skeleton of X and define $Y^{[0]} = X^{[0]}$. By regarding $Y^{[0]}$ as a disjoint union of G-orbits, the space $Y^{[0]}$ has the structure of an ordinary CW complex given by the CW structure on the homogeneous spaces G/K, for $K \in Im(v)$. Moreover, according to (a) Lemma 2, G acts cellularly on the G complex G is a subcomplex of G for every G for every G is a subcomplex of G for every G is a subcomplex of G for every G for ever

$$\xi_0: X^{[0]} \to Y^{[0]}$$

to be the identity map, we have that ξ_0 is a G-homeomorphism. Assume inductively that we have constructed a CW complex $Y^{[n-1]}$ and a G-homotopy equivalence

$$\xi_{n-1}: X^{[n-1]} \to Y^{[n-1]},$$

where $Y^{[n-1]}$ has the structure of an ordinary CW complex with G acting cellularly on it and such that $(Y^{[n-1]})^H$ is a subcomplex of $Y^{[n-1]}$ for any $H \in \text{Im}(\nu)$. Let us take an equivariant n-cell of X with domain $(G/H) \times E^n$, and denote by φ the corresponding attaching map and by φ^0 its restriction to $(G/H)^{(0)} \times S^{n-1}$. To carry on, we need to make the following observation which will be proved in a final section.

LEMMA 4. The 0-skeleton $(G/H)^{(0)}$ has a group structure making the sub-complex $(Y^{[n-1]})^H$ a $(G/H)^{(0)}$ -space.

Using the equivariant cellular approximation theorem, let γ be a $(G/H)^{(0)}$ -cellular approximation to the following composite

$$(G/H)^{(0)} \times S^{n-1} \xrightarrow{\varphi^0} (X^{[n-1]})^H \xrightarrow{\xi_{n-1}^H} (Y^{[n-1]})^H$$

The following two lemmas are also proved in the last section.

LEMMA 5. The map $\Gamma: (G/H) \times S^{n-1} \to Y^{[n-1]}$ defined by $\Gamma(gH, x) = g\gamma(H, x)$ is an extension of γ and it is G-equivariant.

Lemma 6. The map Γ defined in the above lemma is cellular.

Now that Γ is cellular, the mapping cone $Y^{[n-1]} \cup_{\Gamma} \{ (G/H) \times E^n \}$ is an ordinary CW complex and also, given any K < G, we have

$$[Y^{[n-1]} \cup_{\Gamma} \{ (G/H) \times E^n \}]^K = (Y^{[n-1]})^K \cup_{\Gamma^K} \{ (G/H)^K \times E^n \}$$

which is also a CW complex by the inductive hypothesis and Lemma 6. Taking this Γ as a typical attaching map for the construction of $Y^{[n]}$, we get an ordinary CW structure for $Y^{[n]}$, where the G-action is cellular and $(Y^{[n]})^H$ is a subcomplex for every H < G.

Finally, by comparison of cofiber sequences as shown in the following diagram

$$G/H \times S^{n-1} \xrightarrow{\varphi} Y^{[n-1]} \xrightarrow{c} Y^{[n-1]} \cup_{\Gamma} \{ (G/H) \times E^n \}$$

$$\downarrow \downarrow \uparrow_1 \qquad \zeta_{n-1} \downarrow \uparrow_{\xi_{n-1}} \qquad \zeta_{n-1} \cup \downarrow \uparrow_{\xi_{n-1}} \cup \downarrow_{\Gamma} \{ (G/H) \times E^n \}$$

$$G/H \times S^{n-1} \xrightarrow{\Gamma} Y^{[n-1]} \xrightarrow{c} Y^{[n-1]} \cup_{\Gamma} \{ (G/H) \times E^n \}$$

we see that ξ_{n-1} and its homotopy inverse ζ_{n-1} extend cell by cell to a G-homotopy equivalence

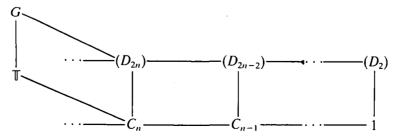
$$\xi_n: X^{[n]} \to Y^{[n]}$$

and its inverse ζ_n respectively. This completes the induction and proves the theorem.

4. The group O(2). Throughout this section G will mean O(2). It is not difficult to prove that a proper closed subgroup H < G is conjugate to either \mathbb{T} , C_n or D_{2n} , the dihedral group of order 2n. Here, we identify the circle group \mathbb{T} with the identity component SO(2) of O(2), $C_n < \mathbb{T}$ and D_{2n} has underlying set $C_n \cup rC_n$ for

$$r = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in O(2).$$

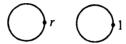
Therefore, for this case, the diagram of conjugacy classes of subgroups looks as follows



and to define the required good section v it is enough to give its image

$$\operatorname{Im}(v) = \{G, \mathbb{T}\} \cup \{D_{2n} \mid n \in \mathbb{Z}\} \cup \{C_n \mid n \in \mathbb{Z}\}.$$

The G-orbits are either a discrete space having at most two points or a collection of at most two circles. Let us give to G a CW structure with $G^{(0)} = \{1, r\}$ and two 1-cells in the obvious way, which makes cellular the operation in G. Since if H is not a non-trivial finite cyclic subgroup then $W_G(H)$ is a finite set, so define $(G/H)^{(0)} = W_G(H)$. If H is cyclic then $W_G(H) = G/H$, for this case define $(G/H)^{(0)} = \{W_G(H)\}^{(0)} = \{H, rH\}$.



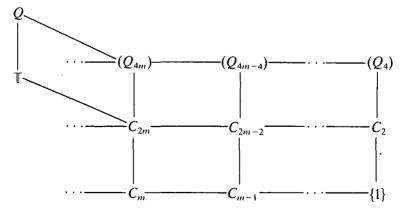
5. The group Q. The continuous quaternion group $Q = N_{SU(2)}(\mathbb{T})$ may be seen as consisting of the matrices of SU(2) having the forms

$$\begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix} \text{ and } \begin{bmatrix} 0 & e^{i\theta} \\ -e^{-i\theta} & 0 \end{bmatrix}.$$

We have seen that $Q = N_{SU(2)}(\mathbb{T})$, where \mathbb{T} means now the maximal torus $U(1) \subset SU(2)$. The group Q is generated by \mathbb{T} and the element

$$j = \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix}$$

which clearly satisfies $j^2 = -1$ and $je^{i\theta}j^{-1} = e^{-i\theta}$. Using the equality $e^{i(\pi/2)} = i$ we introduce the symbol k = ij. After that, we can recognize the quaternion group Q_8 with underlying set $\{\pm 1, \pm i, \pm j, \pm k\}$ as a subgroup of Q. Now, a generalized quaternion group (see [1], p. 98), denoted Q_{4n} is defined to be the subgroup of Q generated by the normal subgroup $C_{2n} < \mathbb{T}$ and the element j, for $n \ge 1$. The group Q_{4n} has order 4n and we note that $i, k \in Q_{4n}$ if n is even and $i, k \in Q - Q_{4n}$ for n odd. For a start, we need to characterize the closed subgroups of Q. It is easy to check that a closed proper subgroup H < Q is isomorphic to either \mathbb{T} , C_n or Q_{4n} , so we get the following diagram of conjugacy classes.



Again, in order to define the good section v it suffices to give its image

$$\operatorname{Im}(v) = \{Q, \mathbb{T}\} \cup \{Q_{4n} \mid n \in \mathbb{Z}\} \cup \{C_n \mid n \in \mathbb{Z}\}.$$

As in the case of O(2) the Q-orbits are either discrete with at most two points or a collection of at most two circles. Let us give to Q a CW structure with $Q^{(0)} = \{\pm 1, \pm j\}$ and four 1-cells in the obvious way, so the operation in Q becomes cellular. If H is not a non-trivial finite cyclic subgroup then $W_Q(H)$ is a finite set, so we may define $(G/H)^{(0)} = W_Q(H)$. If H is nontrivial finite cyclic having even order, since $-1 \in H$, this shows that we need to make $(G/H)^{(0)} = \{H, jH\}$; alternatively, if H has odd order, we need $(G/H)^{(0)} = \{\pm H, \pm jH\}$.

$$-j \bigcirc j -1 \bigcirc 1$$

6. Remaining proofs. In this section, G will mean either O(2) or Q. It is straightforward to verify that the CW structures given in the last two sections satisfy (a)-(d) in Lemma 2. To verify (e) we just need to observe that for H < K one has $(G/K)^H = \operatorname{Map}^G(G/H, G/K) \cong \mathbb{Z}/2$ for the case in which neither H nor K are normal in G. If one of them is normal then $(G/K)^H = G/K$. Next we give here proofs of some facts that were used in the proof of the substitution lemma. It is worth remarking that the above cell structures make the 0-skeleton of G/H into a subgroup of $W_G(H)$. All the references in the following proofs are related to Lemma 2.

Proof of Lemma 4. From (d), the projection $G \to G/H$ is cellular, so $H \in (G/H)^{(0)}$, and also $H \in W_G(H)^{(0)}$ by (b). By (c) we have $W_G(H)^{(0)} < W_G(H)$ so $(G/H)^{(0)} < W_G(H)$.

Proof of Lemma 5. First of all, it is clear that Γ extends γ , since for $gH \in (G/H)^{(0)}$ we have

$$\Gamma(gH, x) = g\gamma(H, x) = gH\gamma(H, x) = \gamma(gH, x)$$

recalling that γ is a $(G/H)^{(0)}$ -map. Now, for any $g \in G$ we have

$$\Gamma(gH,x)=g\gamma(H,x)$$

and also, since $H \in (G/H)^{(0)}$,

$$\Gamma(gH, x) = g\gamma(H, x) = g\Gamma(H, x)$$

which proves G-equivariance.

Proof of Lemma 6. Recall that we want to prove the cellularity of our new Γ . It is enough to do it for $(G/H)^{(0)} \times (S^{n-1})^{(n-1)}$ and for $(G/H)^{(1)} \times (S^{n-1})^{(0)}$, since by dimensional reasons the other products take care of themselves.

First, the restriction of Γ to $(G/H)^{(0)} \times (S^{n-1})^{(n-1)}$ is γ , and it was chosen to be cellular, so the given product is mapped by Γ to the ordinary (n-1)-skeleton of $Y^{[n-1]}$.

By our definition of Γ , the product $(G/H)^{(1)} \times (S^{n-1})^{(0)}$ is mapped by Γ to the orbit $G(\Gamma(H,*)) = G(\gamma(H,*))$. We have that $\gamma(H,*)$ maps into the ordinary 0-skeleton of $Y^{[0]}$ and this clearly means $G(\gamma(H,*)) \subseteq Y^{[0]}$. Use now the cellularity of the projections.

REFERENCES

- 1. K. S. Brown, Cohomology of groups (Springer Verlag, 1982).
- 2. T. tom Dieck, Transformation groups. (Walter de Gruyter, 1987).

- 3. J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. (to appear).
- 4. T. Matumoto, On G-CW complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokio 18 (1971) 363-374.

CENTRO REGIONAL DE ESTUDIOS NUCLEARES UNIVERSIDAD AUTÓNOMA DE ZACATECAS APARTADO POSTAL 495 98068 ZACATECAS, ZAC. MÉXICO email; japerez@bufa.cantera