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1. Introduction. Let G be a compact Lie group and X a G-CW complex. We are
interested in the calculation of the Borel cohomology of X

HE(X) = HXEG X X)

where EG is a universal free G-space and we use on the right hand side cellular
cohomology. For an introduction to G-CW complexes see Matumoto (4] and for a good
exposition on Borel cohomology see for instance tom Dieck [2]. We want to replace X
with an ordinary CW complex Y in order to find an ordinary CW structure on the Borel
construction EG X5 Y so we can use cellular chains to compute the Borel cohomology of
X. For every compact Lie group one has an extension

15 GyH>G B ny(G)—1,

where G is the identity component, so for our case G is isomorphic to the circle group T.
We are dealing with the case in which 7y(G) is isomorphic to C,, the cyclic group of order
2. Let us denote by T the circle group T<C with C, acting antipodally on it, and
analogously, denote Z. Thus we have the Hochschild cohomology group

H*(Co, T)=H(C, 2) = Z/2

which shows that the only possible extensions of T by C, where C, acts non-trivially on T
are O(2), the continuous dihedral group and Q = Ngy«)(T), the continuous quaternion
group. From now on G will mean either O(2) or Q. See Brown [1] for a good exposition
on Hochschild cohomology and group extensions.

The same we prove for the mentioned 1-dimensional groups is proved for the circle
group in Greenlees and May [3], Lemma 14.1. The point is that the circle group is abelian
and connected while O(2) and Q are not. The proof here was inspired by the proof in [3).

2. Preliminary observations. Let us denote by ¥(G) the set of closed subgroups of
G. If we write H ~ K meaning that H and K are conjugate subgroups of G, then we can
write 6(G) = $(G)/~. This provides a projection m: $(G)— €(G) given by n: H— (H).
The notation between conjugacy classes (H)<(K) means that the subgroup H is
subconjugate to K. The first observation is the following.

Lemma 1. Let G be either O(2) or Q. If there exists a section v : €(G)— F(G) such
that (H) <(K) then v((H)) < v((K)).

The existence of a section like the one in Lemma 1 for a general compact Lie group
is not clear for the author, furthermore, it is not even clear whether it exists for any finite
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group. It would be interesting to find necessary and sufficient conditions for the existence
of such a v. Now, if Ng(H) denotes the normalizer of the closed subgroup H in the group
G, we will write Wg(H) to denote the factor group Ng(H)/H. Next, the proof of the
substitution lemma rests upon the existence of the above v and the existence of the
ordinary CW structures guaranteed by the next observation.

Lemma 2. For G being either O(2) or Q, and H any closed subgroup of G, there exist
ordinary CW structures on G, G/H and Wg(H) such that the product on G is a cellular
map and for every H € Im(v):

(a) The action of G on G/H is cellular.

(b) (G/H)O = {Wg(H).

(c) The group operation in Wg(H) is cellular.

(d) For H <K the projection G/H — G /K is cellular.

(e) (G/K)" is a subcomplex of G/K.

For the sake of brevity, a CW structure like the one in Lemma 2 will be called a good
family CW structure in what follows. Also, for the sake of clarity, if Y is an ordinary CW
complex, as usual, we denote by Y® its ordinary k-skeleton while if X is a G-CW
complex, its equivariant k-skeleton will be written X' Section 3 is devoted to state and
prove the substitution lemma. In Sections 4 and 5, Lemmas 1 and 2 are proved.

3. The substitution lemma.

THEOREM 3. Let G be either O(2) or Q. Then for every G-CW complex X there exists
a G-CW complex Y which is G-homotopy equivalent to X and has a decomposition as an
ordinary CW complex with a cellular action by G and such that Y" is a subcomplex of Y
for every H € Im(v).

Proof. Let X! be the equivariant O-skeleton of X and define Y%= X1 By
regarding Y!®? as a disjoint union of G-orbits, the space Y'® has the structure of an
ordinary CW complex given by the CW structure on the homogeneous spaces G/K, for
K e Im(v). Moreover, according to (a) Lemma 2, G acts cellularly on the CW complex
Y%, Note that dim(Y™”)<1 and thanks to (¢) Lemma 2, (Y!”)¥ is a subcomplex of Y%
for every H e Im(v). Now, if we take

£o: X195 Y10

to be the identity map, we have that £ is a G-homeomorphism. Assume inductively that
we have constructed a CW complex Y"~! and a G-homotopy equivalence

§n~1 :X["—ll—') Y["-]]a

where Y~ has the structure of an ordinary CW complex with G acting cellularly on it
and such that (Y"~1)¥ is a subcomplex of Y!"~! for any H e Im(v). Let us take an
equivariant n-cell of X with domain (G/H) X E", and denote by ¢ the corresponding
attaching map and by ¢ its restriction to (G/H)® x §"~%. To carry on, we need to make
the following observation which will be proved in a final section.

LeEmma 4. The O-skeleton (G/H)® has a group structure making the sub-complex
(Y""YH g (G/H)-space.
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Using the equivariant cellular approximation theorem, let y be a (G/H)®-cellular
approximation to the following composite

(GIH)® x §n=1 £, (xln-1yH Ll (yin-1yH
The following two lemmas are also proved in the last section.

LemMA 5. The map T': (G/H) X §" ' — Y~V defined by T'(gH,x)=gy(H,x) is an
extension of vy and it is G-equivariant.

LeMMA 6. The map T defined in the above lemma is cellular.

Now that T is cellular, the mapping cone Y"""1U {(G/H) X E"} is an ordinary CW
compiex and also, given any K < G, we have

(Y"1 Ur{(G/H) x EMY¥ = (Y~ )X Urel(G/H)* X E7)

which is also a CW complex by the inductive hypothesis and Lemma 6. Taking this T as a
typical attaching map for the construction of Y"), we get an ordinary CW structure for
Y™, where the G-action is cellular and (Y")" is a subcomplex for every H < G.

Finally, by comparison of cofiber sequences as shown in the following diagram

G/HxSn—l [ Y[n—l] = Y["_”Ur{(G/H)XEn}
1”1 !,.-nn € ;,,_,ur“g,,_,ul
G/HXS"_IL) Yl"_l]i) Yl"_lIUr{(G/H)XE"}

we see that §,_; and its homotopy inverse {,-; extend cell by cell to a G-homotopy
equivalence

£, - Xl yinl
and its inverse {, respectively. This completes the induction and proves the theorem.
4. The group O(2). Throughout this section G will mean O(2). It is not difficult to
prove that a proper closed subgroup H <G is conjugate to either T, C, or D,,, the

dihedral group of order 2n. Here, we identify the circle group T with the identity
component SO(2) of O(2), C, <T and D,, has underlying set C, U rC, for

r= [(1) _(1)] e 0(2).

Therefore, for this case, the diagram of conjugacy classes of subgroups looks as follows

.y

e (DZII) (DZH—Z) v {DZ)
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and to define the required good section v it is enough to give its image
Im(v) ={G,T}U{D,, |n e ZYU{C, | n € Z}.

The G-orbits are either a discrete space having at most two points or a collection of at
most two circles. Let us give to G a CW structure with G©@ = {1, r} and two 1-cells in the
obvious way, which makes cellular the operation in G. Since if H is not a non-trivial finite
cyclic subgroup then W5 (H) is a finite set, so define (G/H)® = Ws(H). If H is cyclic then
Ws(H) = G/H, for this case define (G/H)® = [Ws(H)|® ={H, rH}.

O O

5. The group Q. The continuous quaternion group Q = Ngy5y(T) may be seen as
consisting of the matrices of SU(2) having the forms

e’ 0 0 e
[0 o] ma [ )
We have seen that Q = Ngy2)(T), where T means now the maximal torus U(1) c SU(2).
The group Q is generated by T and the element

. [ 0 0]

7l-1 0
which clearly satisfies j> = —1 and je’%j ™! = e *. Using the equality e"™? =i we introduce
the symbol k =ij. After that, we can recognize the quaternion group Qg with underlying
set {x1, £i, +j, £k} as a subgroup of Q. Now, a generalized quaternion group (see [1],
p- 98), denoted Q,, is defined to be the subgroup of Q generated by the normal subgroup
C,, <T and the element j, for n=1. The group Q,, has order 4n and we note that
i,keQ, ifniseven and i,k € Q — Q., for n odd. For a start, we need to characterize

the closed subgroups of Q. It is easy to check that a closed proper subgroup H < Q is
isomorphic to either T, C, or Q,,, so we get the following diagram of conjugacy classes.

.

e (Qdm) (Q4m—4) te (Q4)
F\
T CZIN C2m—2 T C2
‘Cm Cm—l T {1}

Again, in order to define the good section v it suffices to give its image

Im(v) ={Q, T}U{Q4, |n € ZYU{C, | n e Z}.
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As in the case of O(2) the Q-orbits are either discrete with at most two points or a
collection of at most two circles. Let us give to Q a CW structure with Q©@ ={+1, +j} and
four 1-cells in the obvious way, so the operation in O becomes cellular. If H is not a
non-trivial finite cyclic subgroup then Wy(H) is a finite set, so we may define
(G/H)® = Wy(H). If H is nontrivial finite cyclic having even order, since —1 e H, this
shows that we need to make (G/H)® ={H, jH}; alternatively, if H has odd order, we
need (G/H)® = {tH, +jH}.

O O

6. Remaining proofs. In this section, G will mean either O(2) or Q. It is
straightforward to verify that the CW structures given in the last two sections satisfy
(a)-(d) in Lemma 2. To verify (e) we just need to observe that for H <K one has
(G/K)¥ =Map®(G/H, G/K)=Z/2 for the case in which neither H nor K are normal in
G. If one of them is normal then (G/K)"” = G/K. Next we give here proofs of some facts
that were used in the proof of the substitution lemma. It is worth remarking that the
above cell structures make the O-skeleton of G/H into a subgroup of Wgs(H). All the
references in the following proofs are related to Lemma 2.

Proof of Lemma 4. From (d), the projection G — G/H is cellular, so H e (G/H)©,
and also H € W5(H)© by (b). By (c) we have Ws(H)© < W5 (H) so (G/H)©® < Wg(H).

Proof of Lemma 5. First of all, it is clear that T extends v, since for gH e (G/H)©®
we have
I'(gH,x)=gy(H,x)=gHy(H,x)=v(gH, x)
recalling that y is a (G/H)®-map. Now, for any g € G we have

I'(gH,x)=gy(H,x)
and also, since H e (G/H)©,

[(gH,x)=gy(H,x)=gl'(H,x)
which proves G-equivariance.

Proof of Lemma 6. Recall that we want to prove the cellularity of our new I'. It is
enough to do it for (G/H)®X(§" )"V and for (G/H)V X ($"" "), since by
dimensional reasons the other products take care of themselves.

First, the restriction of T to (G/H)® x (§" )"~V is y, and it was chosen to be
cellular, so the given product is mapped by T to the ordinary (n — 1)-skeleton of Y"1,

By our definition of T, the product (G/H)® x (§")© is mapped by T to the orbit
G(T'(H, *)) = G(y(H, *)). We have that y(H, *) maps into the ordinary 0-skeleton of Y%
and this clearly means G(y(H, *)) < Y%, Use now the cellularity of the projections.
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