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Slip due to kink propagation at the liquid-solid
interface
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In Couette flow, the liquid atoms adjacent to a solid substrate may have a finite
average tangential velocity relative to the substrate. This so-called slip has been observed
frequently. However, the particular molecular-level mechanisms that give rise to liquid
slip are poorly understood. It is often assumed that liquid slip occurs by surface diffusion
whereby atoms independently move from one substrate equilibrium site to another.
We show that under certain conditions, liquid slip is due not to singular independent
molecular motion, but to localized nonlinear waves that propagate at speeds that are
orders of magnitude greater than the slip velocity at the liquid—solid interface. Using
non-equilibrium molecular dynamics simulations, we find the properties of these waves
and the conditions under which they are to be expected as the main progenitors of slip.
We also provide a theoretical guide to the properties of these nonlinear waves by using
an augmented Frenkel-Kontorova model. The new understanding provided by our results
may lead to enhanced capabilities of the liquid—solid interface, for heat transfer, mixing,
and surface-mediated catalysis.
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1. Introduction

Slip velocity can be defined as the average tangential velocity of the liquid atoms
adjacent to a solid surface. This average motion has been observed frequently (Barrat &
Bocquet 1999; Lauga, Brenner & Stone 2007). However, observations of and knowledge
about average motion conceal the episodic and short-lived events that constitute slip.
We report on transitory groups of atoms with rapid mobility over the solid surface.
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These localized groups can be the predominant source of slip, rendering the contribution
from surface diffusion negligible. In this paper, we investigate and characterize this
unheralded mechanism of slip.

We show that at any instant, most liquid atoms adjacent to the solid do not contribute
to the slip velocity. Rather, it is only a few groups of liquid atoms that coordinate
their motions into fast-moving localized nonlinear waves that convect mass. Under some
conditions, the slip velocity is due nearly entirely to the sum of the displacements accrued
by these localized waves. In these cases, slip is due not to surface diffusion, but to wave
propagation. In their review of slip, Lauga et al. (2007) emphasize the complexity of
phenomena that take place at the liquid—solid interface. With the results presented here,
we add another element to their array of interesting phenomena that contribute to slip.

There have been many elegant and artful numerical, analytical and experimental studies
of liquid slip, summarized in § 2, including molecular dynamic simulations similar to our
simulations, which are described in § 3. We find a previously unobserved phenomenon
of rapidly propagating waves at the liquid—solid interface. This finding is made possible
by the insight that the solitonic nature of localized disturbances produces a unique
signature. That signature is the doubly occupied lattice cell, made visible by measuring
the locations of the liquid atoms relative to the substrate lattice, as we describe in § 4.
We can then scan our data for the occurrence of a doubly occupied cell in order to
extract those events most meaningful for slip. In particular, the doubly occupied cell is
central to a localized nonlinear wave that transports mass and leads to slip, as described
in §5. Observations from our molecular dynamics (MD) simulations agree well with
the predictions of the Frenkel-Kontorova and sine-Gordon equations, lending analytical
support characterizing our observations as nonlinear waves akin to solitons, as further
discussed in § 5. We summarize the main points of our study and note their applicability
in the final § 6.

2. Prior research

The no-slip boundary condition remains a dependable boundary condition for many
macroscopic Newtonian flows. However, when liquids are confined to channels of a width
of only a few molecular diameters, the conventional hydrodynamic theories based on the
Navier—Stokes equations may fail, and the no-slip boundary condition may no longer
be valid (Travis, Todd & Evans 1997; Travis & Gubbins 2000; Zhu & Granick 2002).
Experimental, analytical and numerical studies showed the now well-known slip: that
liquids adjacent to a solid move with a finite velocity relative to the solid surface (Lauga
et al. 2007; Shu, Teo & Chan 2018; Wang et al. 2021). Recently, Hadjiconstantinou (2024)
presented a discussion of the state of the art of the theoretical understanding of slip. Here,
we further discuss prior works that are most relevant to our study.

Together with the equations that now bear his name, (Navier 1822) derived what became
known as the Navier slip condition:

du
EU+4+€e— =0, 2.1

dz
shown here for the tangential component of the liquid velocity U above a flat wall whose
normal is in the z-direction. Navier delegated constants E and € as sliding resistances: € as
the sliding resistance between fluid molecules in adjacent layers, the present-day dynamic
viscosity, and E as the sliding resistance between the molecules in the vicinal liquid layer
and the wall itself, the present-day liquid—solid friction coefficient. The ratio €¢/E is the
slip length. Navier’s presentation was in terms of molecules moving in layers, a point
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of view that we also use in defining the first liquid layer (FLL) in § 3. In fact, near a
wall, the liquid density is layered (Rowley, Nicholson & Parsonage 1976; Abraham 1978).
Careful formulations and analyses of the slip boundary condition can be found in Miksis
& Davis (1994), Brenner & Ganesan (2000) and Bolafios & Vernescu (2017), including
over textured and patterned surfaces (Priezjev & Troian 2006; Kamrin, Bazant & Stone
2010; Luchini 2013; Zampogna, Magnaudet & Bottaro 2019).

Koplik, Banavar & Willemsen (1989) provided an early yet thorough MD simulation
of liquid slip, including examination of Couette and Poiseuille flows, contact line motion,
and the trajectories of the individual liquid atoms. Our MD simulation methodology is
similar to theirs in that we make use of molecular trajectories to identify the atomic-level
mechanisms of liquid slip, as described in § 4.

Models of surface diffusion at the liquid—solid interface have presented the dependence
of slip on shear rate, temperature and molecular interaction parameters (Hsu & Patankar
2010; Shu et al. 2018; Wang & Hadjiconstantinou 2019; Wang et al. 2021; Shan et al.
2022). Hadjiconstantinou (2021) formulated and solved the Fokker—Planck dynamics of a
point particle moving in one dimension, driven by shear, slowed by friction with a periodic
substrate, and interacting with a thermal background. As shear force is increased, these
results reveal slip length at first insensitive to shear, then rapidly increasing to a higher
value that once again is invariant to shear. As pointed out by Hadjiconstantinou, these
general features of the slip length are consistent with those that were found by other means
(Martini et al. 2008b).

Motions more complex than simple diffusion have been anticipated to contribute to the
surface transport at the liquid—solid interface. In particular, several types of mechanisms
have been described, whereby atoms’ correlated motion with neighbouring atoms has
been described as gliding, reptation and dislocation motions (Oura et al. 2013). Studies
of monolayers range from numerical studies of atoms on atomically structured substrates
(Cam, Lichter & Goedde 2021) to micron-sized beads over a laser-generated interference
pattern (Reguzzoni et al. 2010; Brazda et al. 2018). These studies reveal that even at low
levels of forcing, patches of molecules will slip due to the incommensurate alignment
between the particles and the surface. In contrast, observations of coordinated motion
at the liquid—solid interface under macroscopic flows such as Couette or Poiseuille flow
are lacking. It is precisely to seek such coordinated motion that we undertook this
investigation.

3. The MD simulations of liquid slip

Our non-equilibrium MD simulations are performed using the nanoscale MD (NAMD)
programme (Phillips et al. 2005). We simulate a liquid confined between two thermal solid
walls, shown in figure 1. Each wall consists of six 20 x 20 layers of atoms in the x- and
y-directions. The solid atoms are maintained on a cubic lattice with lattice spacing A by
nearest-neighbour linear springs of stiffness 20 N m~!. Periodic boundary conditions are
implemented along the x- and y-directions of the square domain, which has dimensions
L, = L, = 20A. Periodic boundary conditions are also used in the z-direction, with the
periodic box size chosen to be large enough that the periodic images of the upper and lower
walls are always separated by a distance greater than the NAMD non-bonded interaction
cutoff distance 1.4 nm. The channel width A, equal to the z distance between the mean

positions of the innermost solid layers, is 18 liquid molecular diameters.
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Figure 1. Snapshot of the Couette flow set-up. Liquid and solid atoms are shown as cyan and yellow spheres,
respectively. Solid yellow lines indicate the linear bonds between the nearest-neighbour solid atoms. The
direction of motion of each solid wall is shown by a large yellow arrow. The channel width % is the z distance
between the mean positions of the innermost solid layers.

Atom type €;i/kp (K) ojj (nm) m; (amu)
Liquid (LL) 188 0.266 14
Solid (SS) 47 0.119-0.341 197
Liquid-solid (LS) 94 0.193-0.303 —

Table 1. Lennard-Jones energy €;; and length o;; parameters associated with the liquid-liquid (LL), solid—solid
(SS) and liquid-solid (LS) interactions as well as the masses of liquid and solid atoms. Here, kp is the
Boltzmann constant.

The non-bonded interaction potentials are given by

Gii(r) = dejl(oy/r)'? — (03/1°1, 3.1)

where ¢;; indicates the Lennard-Jones interaction strength between atoms of types i and
Jj. Indices i and j are chosen to indicate the atomic species, liquid (L) or solid (S).
The Lennard-Jones potential provides a simple model of atomic interaction, with only
an energy parameter €; and a length parameter 0. The energy and length parameters
associated with the interactions between the liquid and solid atoms are determined using
the Lorentz—Berthelot combining rules (Allen 2004):

orr + oss

> and €15 = \/€r1€ss. (3.2a,b)

oLs =
Table 1 summarizes the energy and length parameters, and the masses of the liquid and
solid atoms. In all simulations, the length parameter for the solid—solid interaction is
chosen such that the non-bonded equilibrium spacing of the solid atoms, rgS =205, is

equal to the solid lattice spacing A.
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In some MD simulations, the solid atoms bounding the liquid flow are fixed in their
lattice positions and not given the freedom to fluctuate, constituting a so-called rigid or
athermal wall. Martini et al. (2008a) have shown that at high shear rates, slip is more
accurately reproduced by allowing the wall atoms to possess their thermal energy and
fluctuate, as we do in this study. Furthermore, liquid atomic trajectories are most faithfully
simulated when the viscous heat generated by the sheared liquid is allowed to flow to
the solid boundaries and, only there, be thermostatted (Bernardi, Todd & Searles 2010;
Yong & Zhang 2013). Therefore, in this study, we thermostat neither the liquid itself nor
the adjacent solid layers, but thermostat only the outer solid layers most distant from the
liquid.

The simulation protocol consists of three stages. In the first stage, the walls are not yet
set into motion while the entire system is coupled to the Langevin thermostat. This first
stage allows the liquid atoms to diffuse into random positions. In the second stage, the
thermostat is restricted to the two outer solid layers in each wall. During this stage, the
top and bottom solid walls accelerate to their target velocities Uwarr in the x-direction,
as shown by the horizontal yellow arrows in figure 1. Target velocities of the top and
bottom solid walls are equal in magnitude but opposite in direction. In the third stage,
both solid walls move with constant velocity in the x-direction. We report only the results
obtained during the third stage, in which the average properties of the liquid and solid
remain constant.

As discussed in detail below, we carry out two parametric studies. In one, the wall
velocity Uwayrr is systematically varied from 0.2 to 220 m s~!. For these studies, we
present the slip velocity as a function of shear rate. We calculate the shear rate by finding
the slope of a straight-line fit to the liquid velocity profile in z-direction near the centre of
the channel.

In the second study, we present results where the Lennard-Jones size of the liquid
atoms r5F = 21/%0;, is kept constant while the lattice spacing A and the solid-solid length

parameter osg are varied, yielding the ratio r(L)L /A of the relative size of the liquid atoms to
the solid atoms as the control parameter.
For data collection at sampling rate 1 ps, the duration of the third stage is 4-26 ns,

depending on the shear rate. For each value of rél‘//l, we run four or five simulations
with distinct initial positions and velocities for the liquid atoms, while all other simulation
parameters remained the same. Sampling at 1 ps would be sufficient if our only objective is
to measure the average properties of the system such as temperature, density, slip velocity
and slip length. However, it typically takes less than a picosecond for a liquid atom to move
from one substrate equilibrium site to the next. Consequently, for our goal to resolve the
detailed trajectories of the coordinated motion of individual atoms, femtosecond resolution
in atomic positions is needed. In simulations where we gather data on these dynamics, we
use sampling rate 10 fs and run the simulations up to 2 ns.

A well-established observation of atomic-level structure is the variation in liquid density
near a solid (Rowley et al. 1976; Abraham 1978; Barrat & Bocquet 1999; Morciano et al.
2017). We too find this layering, and make use of it in our analysis. In particular, we define
the FLL as the volume between the mean positions of the innermost solid layer and the first
minima of the liquid density profile, as shown in figure 2. Liquid atoms whose positions
lie within this volume constitute the FLL. Far enough from the solid walls, the variations
disappear and the liquid density becomes constant. The total number of liquid atoms in
the channel is chosen such that the liquid density, denoted by p, has the constant value

0= 0.870L_L3 at the centre of the channel.
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Figure 2. The liquid density profiles pogL as functions of the z-position of the liquid atoms z/oyr. Here, z
is measured relative to the innermost solid layer. Blue, green and red solid lines indicate the liquid density
profiles of réL /A = 1.54, 1.00 and 0.84, respectively. The first minimum defining the upper boundary of the

FLL is nearly the same for all densities, and is shown by a dotted blue line for réL//l = 1.54. Far enough from
the solid walls, the liquid densities asymptote to a common value pcrL3L =0.87.

Averaging the velocities relative to the moving substrate of all FLL atoms in the
x-direction over a long enough interval of time yields the slip velocity Ugyr, shown in
figure 3. At lower shear rates, longer simulations are required to resolve the ever-decreasing
slip velocity. Simulations at zero shear rate yield zero slip velocity approximately

+1m s~!. Thus from zero shear rate to all but the largest shear rates shown in the
inset of figure 3, our data are consistent with the proportionality of shear rate and
slip velocity. The slopes of the straight-line fit to the data shown in figure 3 yield the
Navier slip lengths (6.47, 0.54, 0.84)0;,. for the three values of r§~/4, (1.54, 1.0, 0.84),
respectively.

As also shown in the figure, the slip length depends on the lattice spacing of the
substrate, with the slip length increasing as the lattice spacing of the substrate decreases.
Other researchers have shown the dependence of slip velocity (and slip length) on the
geometrical and chemical properties of the substrate (Thompson & Troian 1997; Barrat
& Bocquet 1999). In general, then, we find that slip velocity is not a universal value
independent of the spacing of the atoms along the surface, but is dependent on the atomic
type and the wavelength of the solid substrate.

Figure 4 shows the dependence of slip velocity on r(L)L//l for wall speed Uwarr =
180 m s~!. Ratios r(L)L//l < 1 indicate that the substrate lattice spacing is greater than

the equilibrium spacing of the liquid atoms. Conversely, ratios réL /A > 1 indicate that
the equilibrium spacing of the solid atoms is smaller than the equilibrium spacing of the
liquid atoms. Each data point represents the average of five simulations of duration 6 ns;
the error bars represent the standard deviations of each set of five simulations. A minimum
in the slip velocity occurs at réL /A =1, where the substrate wavelength is equal to the
equilibrium spacing of the liquid atoms.
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Figure 3. The slip velocity Uryy of the FLL, as a function of the shear rate y. Blue circles, green triangles
and red squares indicate the slip velocities as the substrate wavelength A increases relative to the size réL of the

liquid atoms, i.e. réL /A = 1.54, 1.00 and 0.84, respectively. The dashed lines are linear fits to Upy;, for shear
~1. The slopes of these lines yield Navier slip lengths (6.47, 0.54, 0.84)oy; for blue, green and

rates y < 1010
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Figure 4. A close-up of the slip velocity Uryy, of the FLL for réL /A near unity. The slip velocity has a minimum
at réL /A = 1. Error bars are the standard deviations of five simulations for each réL /A. Atomic positions and
velocities are sampled every 1 ps. Wall speed is Uyarr = 180 m s~!. The inset shows Upy; across a wider

range, 0.78 < rfl/1 < 2.22.
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Figure 5. Potential energy landscape as a function of the x- and y-positions of a liquid atom at a fixed height
above the substrate. The strength of the potential energy is colour-coded as dark blue for low and bright yellow
for high potential energy locations. White cross markers indicate the substrate equilibrium sites. Horizontal
and vertical white dashed lines indicate low-energy corridors connecting neighbouring equilibrium sites. Filled
black circles indicate the lattice positions of the solid substrate atoms. Solid vertical and horizontal black lines
indicate the boundaries of substrate cells, as defined in the text. A patch of only 9 cells of 400 is shown here.

4. Mechanisms of liquid slip

The simple cubic arrangement of the substrate atoms creates a square-symmetric potential
energy landscape through which the liquid atoms move, as illustrated in figure 5. On a
plane at a small height above the substrate, the largest values of the potential energy
are found directly above the substrate atoms. Conversely, the minimum values of the
potential energy are located equidistant from four neighbouring solid atoms. We denote
these locations, shown as white crosses in the figure, as substrate equilibrium sites. Due
to this pattern in the potential energy landscape, the atoms in the FLL are most likely to
be found near the substrate equilibrium sites, and they are least likely to be found directly
over the locations of the solid atoms. As a result, it is unusual to find more than one liquid
atom crowded into the neighbourhood of an equilibrium site. Indeed, a doubly occupied
neighbourhood of an equilibrium site is the critical event for localized slip, as we will
show.

Using the pattern shown in figure 5, we divide the FLL into 400 cuboidal substrate
cells, each centred over a substrate equilibrium site. The base of each cell is bounded
by four substrate atoms (the black circles in figure 5) and the (black) lines connecting
them. The height of the cells is equal to the height of the FLL. In figure 5, we show a top
view of a patch of 9 neighbouring cells (out of 400 total for our 20 x 20 periodic lattice)
superimposed on the substrate potential energy landscape.

Using the data from simulations sampled every 10 fs, we label and identify all the liquid
atoms in the FLL, and track the position of each uniquely labelled atom in time, paying
particular attention to the cell that each liquid atom occupies. This allows us to follow
each atom in the FLL as it moves between substrate cells. Figure 6 shows a schematic
view of a typical event as an atom in the FLL hops from one cell to the next. In figure 6(a),
each cell is occupied by a single liquid atom, which is a common configuration of atomic
positions in the FLL. However, a liquid atom can spontaneously move from its current
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Figure 6. Schematic representation of liquid atoms (blue circles) on a small square grid of cells at two
consecutive instants of time, shown in (a,b), respectively. Due to the x-motion of a liquid atom, shown by
the horizontal blue arrow from cell A to cell B, cell A becomes vacant, and cell B becomes doubly occupied.
In (a), each cell is occupied by a single liquid atom. In (b), cell A is not occupied by any liquid atom and is a
vacant cell, and cell B, occupied by two liquid atoms (each coloured red), is designated as a doubly occupied
cell. (The diameter of the liquid atoms is chosen for clarity and does not represent their characteristic size.)

cell into an already-occupied cell, creating a doubly occupied cell. Figure 6 shows an
example in which a liquid atom moves from the cell labelled A to the cell labelled B in the
time between Figures 6(a,b), creating doubly occupied cell B, and leaving behind vacant
cell A.

After an atom moves into an already-occupied cell, the original occupant of the
now doubly occupied cell can become dislodged and move forward, so the double
occupancy moves onwards into the adjacent cell. This process can repeat itself, as shown
schematically in figure 7. As the doubly occupied cell propagates, atoms advance by one
cell forwards. Therefore, the mean motion of the entire layer can be produced by the few
atoms moving quickly and sequentially from one doubly occupied cell to the next, in a
coordinated fashion.

The motion of a liquid atom into a vacant (unoccupied) cell is quite different from
the motion of an atom into an already-occupied cell. When a liquid atom moves into a
vacant cell, nearby liquid atoms are nearly unaffected. Therefore, such motion represents
an uncoordinated, independent atomic motion over the substrate, which is the typical
description of surface diffusion as a mechanism of slip.

We identify and distinguish every instance of an atomic hop either into an
already-occupied cell or into a vacant cell. We track the motion in both the x- and
y-directions. However, as there is no net motion in the transverse y-direction, we restrict
our analysis here to the x-direction only.

Using the data from simulations sampled at 10 fs, we separately calculate the net liquid
displacement in the x-direction due to (i) atomic motion involving doubly occupied cells,
and (ii) atomic motion into vacant cells. When divided by the duration of the simulation
and the time-averaged number of atoms in the FLL, these displacements provide the
fractional contributions to slip due to atomic motion into doubly occupied or vacant cells.

In figure 8, we show the slip velocity of the FLL over the range 0.78 < réL /A < 2.22 for
wall speed Uwarr = 180m s~ L. For each value of r(%L /A, we run a single simulation with
sampling rate 10 fs and simulation duration 2 ns. The blue circles show the slip velocity for
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Figure 7. Schematic representation of a doubly occupied cell moving in the x-direction. A horizontal strip
of seven neighbouring cells in the x-direction is shown, sampled at four consecutive instants, from (a) to (d).
As the doubly occupied cell moves, atoms advance by one cell in the x-direction, and the pair of atoms in the
doubly occupied cell (coloured red) evolves sequentially. Horizontal red arrows indicate the atoms that advance
into the next cell. Also shown by the horizontal blue arrow, in the time between (c¢) and (d), is the motion of
a liquid atom from a singly occupied cell into a vacant cell, resulting in the vacant cell moving one cell to the
left.

the layer as calculated directly from the atomic velocities. (This is the same range of data
as shown in figure 4.) The red squares show the slip velocity due only to motion involving
doubly occupied cells. The cyan diamonds show only the slip due to atomic motion into
vacant cells. Taken together, the sum of these two contributions accounts for the totality
of the slip. Liquid slip due to doubly occupied cells becomes increasingly predominant
as réL /A decreases. The cross-over value of réL /A at which the contributions to slip are
equally divided between doubly occupied cells and atoms hopping into vacant cells occurs
near réL /A > 1. Slip is overwhelmingly due to doubly-occupied cells for r(L)L /A <1, and
continues to contribute significantly to slip even for values of réL /A above unity.

To provide a sense of the role played by vacant and doubly occupied cells in the
generation of slip, figure 9 shows an annotated view of the entire FLL obtained from
the simulation with réL /A =1 at wall speed Uparr = 20 m s~ and sampling rate 10 fs.
Approximately 5 % of the liquid atoms are in a doubly occupied cell, while approximately
95 % of the atoms merely fluctuate around their equilibrium sites. Also shown are the
trajectories of doubly occupied cells as they were tracked moving over several cells; for
these parameter values, the lifetime of the motion involving a doubly occupied cell is
typically a few picoseconds.

To highlight the sequential nature of the atomic motion involving doubly occupied cells,
we show in figure 10 the x-positions of six neighbouring liquid atoms as a function of time
as the atoms hop in the x-direction between doubly-occupied sites. The atomic positions
shown are obtained from the same simulation that is used to generate figure 9. The actual
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Figure 8. The slip velocity Uryy, of the FLL, as a function of rgL /4, at the wall speed Uwarz = 180 m s~
Blue circles indicate the slip velocity as determined by the direct measurement of the atomic velocities. Red
squares indicate the slip velocity due to the mass propagation involving doubly occupied cells alone. Cyan
diamonds indicate the slip velocity due to the mass propagation by atoms hopping into vacant cells. Atomic
positions and velocities are sampled every 10 fs.

x/A

Figure 9. Portrait of the FLL constructed from the MD data. The blue translucent circles indicate the
instantaneous positions of the liquid atoms. Liquid atoms in doubly occupied cells are coloured red. The thick
green lines indicate the trajectories over time of doubly occupied cells. The open green squares indicate vacant
cells. The black dots indicate the lattice positions of the solid substrate atoms. The mean slip direction is to the
right. Here, the wall speed is Upaz, =20 ms™!, réL /A =1, and the atomic positions are sampled every 10 fs.

atomic trajectories are shown in figure 10(a); a schematic representation of the motion is
shown in figure 10(b) for clarity.

In this example, atom 1 starts in cell A and hops to cell B near t = 5 ps, creating a doubly
occupied cell, which is indicated by highlighting the trajectories for atoms 1 and 2 in red.
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Figure 10. Atomic trajectories illustrating coordinated atomic motion into or out of doubly occupied cells.
(a) Excerpt from our MD data, simplified in (b) to highlight the advance of each liquid atom 1-5 from
one equilibrium site to the downstream site. Each atom 1-5 is advanced one substrate lattice spacing in the
x-direction by the passage of the doubly occupied cell, instantaneously located at the thickened red portion
of the atomic trajectories. The thin vertical orange lines mark the first and final times of the occurrence of
the doubly occupied cell. The x-boundaries between cells are marked by dashed grey lines. Note that the
liquid atoms tend to remain near the substrate minima located halfway between adjacent dashed lines. Magenta
portions of the atomic trajectories mark when the atom has drifted out of the FLL. Here, the wall speed is
Uwarr = 20 m sl réL /A =1, and the atomic positions are sampled at every 10 fs.

2 C

The interaction of atoms 1 and 2 results in atom 2 hopping from cell B to cell C (already
occupied by atom 3). In this manner, the doubly occupied site propagates from cell B to
cell F. The sequence terminates when atom 6 moves into the unoccupied cell G at the
top of the diagram. The sequence of doubly occupied cells exists during the time interval
between the two vertical orange lines, for approximately 0.5 ps. During this period, the
doubly occupied cell translates by five substrate wavelengths, and five atoms propagate by
one lattice spacing forwards.

5. Frenkel-Kontorova model of slip

The two atoms in doubly occupied cells are part of a larger number of atoms whose motion
is correlated. When properly visualized, this group of atoms is seen to take on a shape that
is characteristic of nonlinear waves in the sine-Gordon equation and Frenkel-Kontorova
(FK) model (Braun & Kivshar 1998).

We define an offset for each atom near the doubly occupied cell,

xi () — kA
[offset of atom k] = — 6.
where x;(¢) is the x-coordinate of atom k, and kA is the position of the atom’s initial
substrate equilibrium site.
Figure 11 shows the offsets of the atoms in the neighbourhood of a propagating doubly
occupied cell. Downstream of the doubly occupied cell, atoms gradually move away from

their equilibrium sites as they are swept into the doubly occupied cell. As the doubly
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Figure 11. Time-averaged kink profiles derived from atomic positions in the FLL of the MD simulations.
Data points of blue triangles, green circles and red squares are the mean values of atomic offsets from MD
simulations with réL /A for 1.08, 1.00 and 0.87, respectively. The wave profiles are well described by (5.2),
shown as solid curves, with steepnesses A = 0.27 (blue triangles), A = 0.44 (green circles) and A = 0.85 (red
squares). The location of the doubly occupied cell that marks the centre of the propagating kink is shown by
the diamond at the top of the figure.

occupied cell propagates onwards, upstream atoms relax into new equilibrium sites after
being transported one cell forward. These profiles, such as shown in figure 11, thereby refer
to the distribution of atomic offsets relative to the atoms’ initial equilibrium positions. So
offset 0 shows that atom k has not moved away from its initial site, while offset 1 indicates
that the atom has been transported forwards by the distance of one substrate cell. Thus the
doubly occupied cell marks a larger propagating structure of displaced atoms that we call
a kink.
The profiles seen in figure 11 can be fitted to the sigmoid function

[offset of atom k] = % tan~! {exp[—A(k — ko)1}, (5.2)

where the parameters A and ko describe the steepness of the profile and the location of
its centre, respectively. This function is the discrete version of the soliton solution to the
sine-Gordon equation, which is the continuum limit of the standard FK model (Braun &
Kivshar 1998).

For each of the three curves shown in figure 11, the data points are the time-averaged
atomic positions over the lifetime of one kink. All frames are centred by aligning the
location of the doubly occupied cell. The curves are then generated by fitting the averaged
atomic positions to the sigmoidal (5.2) to find A and kg for each profile.

To understand the shape and behaviour of the kinks observed in the MD simulations,
we model the FLL using a modified version of the one-dimensional FK model. The FK
model describes N particles along the x-axis at positions xx(f), k = 1,2, ..., N, that are
interacting through a linear spring force with their neighbouring particles, and are also
interacting with a sinusoidal force that arises from the periodic potential of the adjacent
substrate (Braun & Kivshar 1998). If the spacing between the particles is precisely equal
to the wavelength of the potential, then the particles achieve their lowest energy state with
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each particle at the periodically located potential minima. When an additional particle is
present, such that there are one too few minima to host each of the particles, the FK model
predicts that the spacing between particles is no longer uniform. While most particles
remain periodically placed close to substrate potential minima, a few particles within a
narrow spatial interval are crowded together. Thus the FK model can be used to understand
the profiles shown in figure 11.

For our application, the particles of the FK model are the liquid atoms, and the
potential is due to the substrate of solid atoms. Prior work showed that the FK model
provides a description of the dependence of slip on shear rate (Lichter, Roxin & Mandre
2004; Martini et al. 2008b). Furthermore, predictions of the FK model agree with the
observations that slip is bounded in the limit of large shear rates over thermalized
solid substrates (Martini et al. 2008a). Though these studies gave evidence that the FK
model could describe certain aspects of mean slip, there was little comparison with
the observations at the molecular scale. This was due to the lack of data on molecular
trajectories and the absence of a conceptual framework that permitted the localized
propagating structures to be identified and extracted from the noisy MD data. These
deficiencies have been overcome in the present work through the recognition of the doubly
occupied cell.

To more realistically model the interactions between neighbouring atoms in a liquid,
we replace the linear nearest-neighbour coupling of the classical FK equation with a
nearest-neighbour force arising from the 12-6 Lennard-Jones potential. In addition, the
liquid atoms are forced into motion by a shear force of the form 5,7 (V — xi), where V is
the constant velocity of the liquid layer above, and 5y is the friction coefficient between
the adjacent liquid layers. As the liquid atoms move with speed x; over the substrate, they
are also subject to a frictional force proportional to their speed nsx, where nrs is the
liquid—solid friction coefficient.

With these modifications, the FK model becomes

X = —sin (xg)
o 7 o 13 o 7 . 13
+g|(——) -2(——) -(——) +2(———
X1 — Xk Xf+1 — Xk Xk — Xg—1 X — Xg—1
+ L (V — xk) — nLsi, (5.3)
where
12¢r1.1 2
= S hd o = 2RO (5.4a,b)
ToLLPO A

and where the particle positions and time have been non-dimensionalized in the usual way
(Braun & Kivshar 1998). The non-dimensional parameter g signifies the strength of the
liquid-liquid interaction relative to that of the liquid—substrate interaction. The ratio of the
characteristic size of the liquid atoms relative to the lattice spacing, o, plays an important
role in setting the ground state and the dynamics of the solutions to the FK equation (Aubry
1983; Braun & Kivshar 1998).

The dimensionless parameters defined in (5.4a,b) depend on the dimensional
liquid—liquid Lennard-Jones energy ey, the length parameter of the liquid-liquid
interaction oyy, the substrate wavelength A, and the dimensional amplitude of the
sinusoidal substrate potential energy ¢o. While the first three can be taken directly from
the input parameters for the MD simulations, the substrate potential amplitude used in the
FK model must be estimated from the MD interaction potential between all the substrate
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Figure 12. Numerical results from the FK model. (a) The propagation of a single FK kink through 52
contiguous atoms is shown at intervals of 0.7 ps. The two atoms instantaneously inside a doubly occupied
cell are highlighted in red, and the locations of their centres of mass are shown by diamonds at the top of
the figure. The dotted lines at the initial and final frames are the nearly identical sine-Gordon soliton profiles,
fitted with A = 0.27 for réL /A = 1. (b) Time-averaged FK kink profiles for three different values of r(L)L /4,

showing the steepening profile as réL /A decreases: blue triangles for réL /A =1.08, A = 0.17; green circles for
r(’)‘L /A =1.00, A = 0.27; red squares for r(’)‘L//l = (.87, A = 0.56. Data points are from numerical solutions to
the FK model, and correspondingly coloured curves are best fits from the sigmoid function (5.2).

atoms and an atom in the FLL. We do this by calculating the potential energy above two
(x, y)-locations in the MD simulations: (i) a substrate equilibrium site, yielding ¢egp(2);
and (ii) halfway between two neighbouring equilibrium sites, yielding ¢y (z). Atoms in
the FLL of the MD simulations are expected to tend towards heights at which the potentials
are at a minimum. We therefore take the substrate potential amplitude for the modified
FK model to be one-half of the difference between the minimum values of ¢.,,(z) and
¢jump (2), yielding

. min [Djump(2)] — min [Deqn(2)]

2

This results in a substrate potential amplitude for the modified FK model ¢o/kp =~
35.5(1.1 — rbt/2) + 66 K.

We use the modified FK model to describe the dynamics of the atoms near a doubly
occupied substrate cell. As in our MD simulations, we use periodic boundary conditions
in the modified FK model, with periodic domain length (N — 1)4, where N is the number
of particles. This assures that there is an extra particle in the FK chain relative to the
number of substrate potential minima. Figure 12(a) shows numerical solutions of the FK
equations (5.3) at multiple instants of time. We call these nonlinear wave solutions to the
FK model ‘FK kinks’. FK kinks propagate at a constant speed with an invariant profile.
The FK kink profiles are closely approximated by the sine-Gordon soliton solution (dotted
curves) from the sigmoid function (5.2). The profile can be characterized succinctly by its
steepness parameter A, which indicates the narrowness of the FK kink profiles, three of
which are shown in figure 12(b).

To compare the wave properties of MD kinks to FK kinks, we compare their velocities
and narrowness. Figure 13(a) shows the velocity of the kinks, v, in both the MD and FK
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Figure 13. Results from the MD simulations compared with those from the FK model. (a) The kink velocity vy
as a function of r(L)L /A. Filled red circles indicate the average MD kink velocities. The thick green line indicates
the velocities of the FK kinks obtained from the FK simulations. (b) The steepness parameter A of the kinks
as a function of r(L)L /A. The MD data (filled red circles) were averaged over all kinks that propagated at least
four substrate wavelengths. Error bars are the standard deviations of all those kinks for each réL /A. For the
green line of the FK model, we set V = 1, and use values €77 /kp = 188K, o711 = 2m)2- Ve, ¢o/kp ~ 710K,
identical to those of the MD simulation. The friction factors were chosen to comply with the high shear rate
limit of the FK equation, nrr/nrs = O(1); see Appendix A.

simulations as a function of réL//l. We calculate kink velocities in the MD simulations
by dividing the kink displacements in the x-direction by their lifetimes. It is observed
that the kink velocities in MD simulations increase as réL /A increases. This trend is also
observed in our FK simulations. The agreement between the kink velocities from MD
and FK simulations gets better as rél‘ /A decreases, where we can sample a larger number
of propagating kinks, which is signified by smaller error bars. Figure 13(b) shows the
steepness parameter A of the kinks of both the MD and FK simulations as a function of
réL /A. Kinks get narrower as r(L)L /A decreases.

When compared with the predictions of the modified FK model, both the profile shape,
as measured by A, and the velocity of the kinks seen in the MD simulations, show similar
trends and comparable values as a function of réL /A. In assessing the agreement between
the two sets of data, the extreme simplicity of the FK model should be recalled. In the
FK model, particles move in only one dimension and the system is closed. This is to be
contrasted with the three-dimensional motion of atoms in the MD simulations in which
atoms continually move into and out of the FLL. In the FK model, the particles experience
the substrate through a potential with a simple sinusoidal variation. This is to be compared
with a substrate potential due to the summation of the Lennard-Jones potentials of the solid
substrate atoms. Not only is the Lennard-Jones potential itself more complex than that of
the sinusoidal FK potential, but the potential experienced by the liquid atoms further varies
as they fluctuate along their y and z degrees of freedom. Additionally, the MD simulation
incorporates finite temperature and heat fluxes that are absent in the FK model. Given these
differences, the rather striking degree of similarity delivered by the FK model can be taken
as evidence of the importance of geometry, particularly the ratio réL /4, in governing the
dynamics.
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Finally, we note that unlike the coordinated kink motion described above, atomic motion
into an unoccupied cell does not create the same extended atomic profile as seen in
figure 12 and is not described by an FK kink. This difference is due to the asymmetry of
the Lennard-Jones potential in the modified FK model (5.3). The Lennard-Jones potential
produces the nonlinear wave profile of a kink because its nonlinear repulsive force is
huge for liquid atoms brought close together. In contrast, it produces no such profile in
the neighbourhood of a vacant cell, because it is only slightly attractive for liquid atoms
separated across a vacant cell.

6. Conclusions

When sheared, liquid atoms move across a solid substrate in a motion known as slip.
Slip has often been assumed to be diffusive, as liquid atoms move from one low-energy
substrate site to another, independent of each other. However, there are conditions when
slip takes place differently. Groups of atoms form into localized nonlinear waves that
propagate at great speeds over the substrate — orders of magnitude faster than the slip
velocity.

In this work, we focused on the atomic-level mechanisms by which liquid slip occurs,
by systematically varying substrate lattice spacing A and characterizing the mechanisms
of slip as a function of the parameter réL /A. We have shown that there is a slip velocity

minimum at réL//l = 1. Furthermore, under certain conditions, such as for r(L)L /A <1,
slip occurs predominantly due to wave propagation. That is, the mass transport due to
slip is conveyed predominantly by localized nonlinear waves, and not through surface
diffusion. We have further shown that the observed waves are well described in their speed
and profile by solutions to a modified Frenkel-Kontorova (FK) model and its continuum
approximation, the sine-Gordon equation. Conversely, when réL /A > 1, liquid slip occurs
predominantly due to mass propagation by individual atoms moving into unoccupied
substrate sites, i.e. through surface diffusion. Slip under all circumstances is due to the sum
of the contributions from these waves and the isolated motions of atoms into unoccupied
substrate sites.

We have developed a novel conceptual framework to arrive at these conclusions. Using
the doubly occupied cell as a numerical marker, we could identify individual localized
propagating kinks in the noisy MD data. Fast 10 fs sampling was used to track kinks,
revealing their well-defined profiles and fast speeds, which are comparable to predictions
from the FK equation modified to use Lennard-Jones interactions between the liquid
atoms.

The limitations of this work should be noted. The MD simulations utilize simple
spherically symmetric Lennard-Jones atoms whose potential does not represent the
complex potentials of even simple diatomic molecules. The substrate chosen for this
research is also simple in structure and symmetric in its potential. Other crystal structures
and real surfaces with defects present a complexity of substrate potential which is not
modelled adequately here. The success of kinks to make their way through these more
complex and realistic conditions remains to be investigated. Furthermore, as seen in
figure 8, kinks are most prominent for r(%L /A < 1. Very low values of réL /A are problematic
as the spacing, as measured by A, of the substrate atoms can become so large as to
allow for interpenetration of the liquid atoms. For neon over graphene, FCC gold, and
diamond—cubic silicon substrates, réL//l is equal to 1.27, 1.08 and 0.81, respectively
(Martini et al. 2006; Kannam et al. 2011; Celebi & Beskok 2018). Whether conditions
that favour kinks will be easy to achieve in practice remains a question.
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Solid-on-solid friction has been modelled using two opposing periodic lattices. As one
lattice is forced over the other, strain deforms the lattices, leading to a misfit between
the wavelengths of the two lattices that propagates as a kink (Braun et al. 2001; Woods
et al. 2014). Sisan & Lichter (2014) considered a nanotube composed of hexagonal rings
of carbon atoms containing a single file of TIP3P water molecules. With an applied
pressure gradient, episodic pulses of flow occurred due to FK solitons that propagated
along the length of the nanotube. These very different scenarios share with the present
work two unequal length scales whose competition yields propagating kinks. These
related researches with different materials and with various substrate potentials suggest
that FK-type kinks may contribute to slip in settings more general than the cubic lattice
structure studied here.

Perhaps there are practical applications of the new understanding of the slip presented
here. Patterning the substrate to promote kinks may enhance slip or facilitate mixing at
small scales. At a moving contact line, the inherent non-uniformity of relative atomic
positions and speed of motion might be a meaningful missing contribution in treating
the microscopic origins of contact line motion, microbubbles, and the nucleation of
cavitation. The inhomogeneous distribution of momentum transfer at the small scales
investigated here may also produce variations of heat transfer rate at the surface that could
be exploited usefully. As a final speculation, we note that liquid—solid interfaces are home
to commercially important catalysis. The kinetics of some reactions are found to confound
typical descriptions in terms of surface diffusion. Furthermore, the catalytic dynamics
on substrates that are densely populated by reactants and products is poorly understood.
Perhaps the new understanding of atomic motion at the liquid-solid interface will provide
a useful point of view to help to explain the complex cooperative events observed during
catalysis on surfaces (HenB et al. 2019).
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Appendix A
For the results of the FK model shown by the green lines in figure 13, we set V =1,
nrr = 0.60, nrs = 0.60 and use values €77 /kp = 188K, o = (21)2~ 16 and ¢o/kp ~
70K, identical to those of the MD simulation. The non-dimensional friction coefficients
nrs and nrr were chosen to comply with the high shear rate limit of the FK equation,
nrL/nLs = O(1), as follows.

The friction coefficients of the FK equation are related to, but not equivalent to, the
liquid viscosity.
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The equations for the slip length

p= L (AD)

14

the dimensional liquid—solid friction coefficient

frs = -5 (A2)

where 75 is the shear stress measured at the wall, and the shear rate

. TLS
y=—, (A3)

7

where u is the bulk viscosity, can be combined as
i
Jrs = 3 (A4)

In a similar manner, combining the three equations,

. Usip — UrLr
y=—"", (A5)
d
LT
y=—, (A6)
"
L = fre(Usie — UrpLL), (AT)

where d is the atomic spacing between the first and second liquid layers, and Ugyy, is the
dimensional velocity of the second liquid layer, yields

u

fiL = 'k (A8)
Hence from (A4) and (AS),
Jis s d
fi b W (49

Furthermore, in the high shear rate limit of the non-dimensional FK equation,

NLL

=—V. (A10)
nLL + nLs

X

Hence for a given shear rate, the soliton speed depends only on the ratio nzr/nrs = O(1).
Finally, non-dimensionalizing 175 = ubA/(2m/dom) using ;1 = 2.96 x 10~* kgms~!

(Meier, Laesecke & Kabelac 2004), b ~2 x 107" mand 1 = 3 x 107!9 m, we have
nLs = 0.60. (All)
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