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1. Introduction. In this note rea l valued functions, 
defined on a l inear sublattice S of a l inear lattice R and 
satisfying the two order conditions (Ml) and (M2), are 
studied from the point of v iew of the ex i s tence and uniqueness 
of extens ions to R. The paper i s partly exposi tory and sup­
plements and extends §3 of [4] where S was a s s u m e d to be 
an i- ideal. 

A latt ice i s a set P partially ordered by a binary re lat ion 
< and such that every pair of e l ements x, y € P has a greates t 
lower bound or infimum x A y and a l eas t upper bound or supremum 
x V y in P. A set V that i s both a vector space and a latt ice i s 
ca l led a vec tor or l inear latt ice if the vec tor and latt ice operations 
are compatible as fo l lows. Writing the (commutative) group 
operation of V as addition 

x < y implie s x + a < y + a 

for every a € V. If V = [x € V:x > 0] , x < y i s equivalent 

to y - x € V . Multiplication by sca lars sat i s f i es 

x < y, \ > 0 impl i e s that \ x < \ y . 

It then fol lows that multipl ication by a negative sca lar r e v e r s e s 

the order . The set V sa t i s f i e s 

x, y € V = ^ x + y € V , 

x € V + , \ > 0 = » \ x € V + , 
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condi t ions tha t define a cone in a v e c t o r s p a c e . The se t V i s 
ca l led the pos i t ive cone of V. 

A l i n e a r la t t i ce V is ca l l ed u n i v e r s a l l y con t inuous if e v e r y 

co l l ec t ion of e l e m e n t s of V has an in f imum, sequen t i a l l y con­

t inuous if e v e r y countable subse t of V h a s an in f imum. (In [ l ] 

t h e s e a r e ca l l ed c o m p l e t e and cr - comple t e r e s p e c t i v e l y . ) 

A l i n e a r sub la t t i ce of a l i n e a r l a t t i ce R i s a l i n e a r sub-
space of R that i s a l s o c lo sed under A and V . Thus if S is 
a l i nea r sub la t t i ce of R and x, y € S, then x A y and x V y, 
a s defined in R, a r e in S. If R i s u n i v e r s a l l y con t inuous 
( sequen t ia l ly cont inuous) a l i n e a r sub l a t t i c e of R i s c a l l ed 
u n i v e r s a l l y cont inuous ( sequen t i a l ly cont inuous) if the in f imum 

in R of a r b i t r a r y (countable) s u b s e t s of S i s in S . 

A l i n e a r sub la t t i ce S of a l i n e a r l a t t i ce R i s an i - i d e a l 
( s e m i - n o r m a l manifold) of R if x * S, a € R, |a | < | x | i m p l i e s 
tha t a € S. An I - i d e a l of R i s a l w a y s u n i v e r s a l l y ( sequen t i a l ly ) 
cont inuous if R i s u n i v e r s a l l y ( sequen t ia l ly ) con t inuous . 

A function f(x), defined on the pos i t ive cone of a l i n e a r 
l a t t i ce wi th v a l u e s in the n o n - n e g a t i v e , ex tended r e a l s i s c a l l e d 
a monotone function if it s a t i s f i e s * 

(Ml) f(x) < f(y) if x < y ( o r d e r - p r e s e r v i n g ) , 

(M2) f(x.)T°° A f(x) if x .T 0 0
 A x . 

i i = l 1 1 = 1 

+ -f 
In [4] e x t e n s i o n s of mono tone funct ions f r o m S to R , 

w h e r e S is an i - i d e a l of R, w e r e s tudied . We i l l u s t r a t e the 
app l i ca t ion of an e l e m e n t a r y p a r t of t h i s t h e o r y by an e x a m p l e . 
Let (X, C{, u) denote an a r b i t r a r y m e a s u r e space with Ci a 
o--algebra of s u b s e t s of X. Let ()?(, <) denote the v e c t o r 
la t t i ce of finite r e a l ^ - m e a s u r a b l e funct ions unde r the n a t u r a l 
o r d e r i n g , S the l i n e a r sub la t t i ce of /?? of bounded funct ions 
van i sh ing outs ide s e t s of finite m e a s u r e . Then '//( i s s equen t i a l l y 

OC 00 

a i m e a n s a < a < . . ; a T a i m p l i e s in addi t ion 
i i = 1 1 — 2 — i i = 1 

OC 

tha t a =V . a. 
l = 1 
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continuous, S an £-ideal of ?TJ. If X is cr-finite then to each 
-f -f 00 

x * hi corresponds a sequence {x.} € S with x.î. J x . 
l 1 1 = 1 

It follows from [4], Theorem 3. 2, that every monotone function 
then has a unique monotone extension to hni^. In part icular 
if X is cr-finite any length function, [3], and in part icular all 

length functions corresponding to àt norms , 1 < p < oo, a re 

completely determined on ?T\ by their values on S . 

Suppose that X is not or-finite. Then every monotone f 

on S has unique maximal and minimal extensions f and f 
M m 

to h\ . If d contains a purely infinite set, that is a set E 
with u(E) = oo such that JJL(E! ) = 0 or oo for every measurable 
subset E1 of E then, where f corresponds to aC norm, 

1 < p < oo on S , f ,(y^) = oo, f (y ) = 0 and the maxiinal and 
— — M E m ^E 

minimal extensions a re different. However if CI contains no 

purely infinite sets and 1 < p < oo then for each x€ ^ with 

no subsequence {x. } in S increasing to x, x majorizes 

elements of S on which f assumes arb i t rar i ly large values 
so that f (x) = oo = f (x) and f = f . For p = oo, however, 

m M m M 
again f 4 f . 

m M 

If X? denotes the universally continuous space of finite 
rea l valued functions on X, S a s defined above is a sequentially 

continuous linear sub lattice of /? but not an I- ideal unless X 
contains no non-measurable sets of finite outer measure . Thus 
the theory in [4] does not apply to extensions of monotone functions 

from S to /^ . However, if f corresponds to the integral 

on S , f can be extended as a mesure abstrai te ([2], p. 114) 

to a monotone function on /? . A s imilar extension from the 
positive cone of the space of continuous functions with compact 
supports occurs in the general Bourbaki theory [2]. 

In this note we assume given a vector sublattice S of a 
sequentially continuous linear lattice R and study the existence 
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and uniqueness proper t ies of extensions of monotone functions 

from S to R . Since the case where S is an l-ideal was 

studied in [4] we consider mainly extensions from S to T , 
where T is the smallest I - ideal containing S. We note that 
there is a smallest sequentially continuous sublattice S1 of R 
containing S and that each monotone function on S determines 
a unique monotone extension to S! . The smal les t i - i d e a l s 
containing S and Sf coincide. 

Given a monotone function f defined on S , minimal 
and maximal extensions f and f , satisfying (Ml) a re 

defined as in [4]. As in [4], f also satisfies (M2) and thus 

gives a unique maximal extension of f to T , and thus leads 

to a maximal extension to R . In contrast to the i - ideal case , 
f need not be monotone and, in fact, no minimal monotone 
m 

extension need exist. In order that f = fm , on T (which 
m M 

implies a unique monotone extension of f to T ) it is necessary 
and sufficient that to each x* T corresponds a pair s, s ! € S! 

with 

s < x < sf , f(s) =f(s ! ) . 

In order that f = f for T for every monotone function f 
m M 

+ 
on S it is necessary and sufficient that T = S! . 

2. The sequentially continuous linear sublattice of R 
— I •• » — 

generated by S. Let S1 ~r be the extension of S obtained 

by adding to S the collection of all lower envelopes of 

countable collections of elements of S . Thus if s. € S , 
l 

00 + 

i = 1, 2 , . . . ; A s. c S! . 
i = l i 

It is easy to verify that Sf is a cone and S' = S' - S' 
a linear sublattice of R containing S. Suppose that 

x € S' , 1 = 1, 2, . . . . Then x = A x. exists in R. 
1 i = i a 
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00 T + 
If x. = A. A s . . , s . .€S , i = 1, 2, . . . , x = A. . s . . 6S ' . 

Thus S* is sequentially continuous. Since every sequentially 

continuous linear lattice containing S must contain Sf and 
therefore S' , S' is the smallest sequentially continuous linear 
sub lattice of R containing S. We call S' the sequentially 
continuous sublattice of R generated by S. 

We note that if x € S' there exists a sequence {s.}* S 
00 + 

with s i x. îf x c S we take s =x, i = l , 2 , . . . . 
i i = 1 i 

+ 00 
If not, there exist s! € S with x = A m s\, and if 

l i = l i 
i + o o 

s. = A # s . , s. € S , s.J». J x. We show that there also exists 
l j = l j l l i = l 

+ 00 

a sequence {s'}€ S with s ' t x . We write x€ Sf if 
i i i = l 

x € S' , x < 0. If x € S1 , -x € S1 and there exists a sequence 
+ °° ^°° 

s. € S with s . i . J - x. Then -s.T. x . Now suppose that 
i i i = l i i = l 

x€ S' . There then exists s € S with s > x, x - s € S' and 
00 

thus a sequence s', in S with s'T (x-s). Then s + s! € S, 
i i i = l i 

i = 1, 2, . .. , and 

oo 
(s + s|)T. s + (x - s) = x . 

i i = l 

There is no loss of generality in assuming each s + s! € S 

since they could be replaced by (s + sf.) V 0 € S . 

If f is a monotone function on S and x € S1 then 

there is a sequence {s. } in S with x= V s and if f is 
i i = l i 

Jx> be an extension of f to S! satisfying (M2), we must have 
f(x) = lim . f(s.). That the limit does not depend on the actual 

i i 

sequence s. is shown by the argument of [4, Lemma 3. 1]. 

Thus 
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E v e r y monotone function f on the pos i t ive cone of a line a.] 
sub l a t t i ce S of R h a s a unique monotone ex tens ion f to the 
pos i t ive cone of the sequen t i a l ly con t inuous l i n e a r sub l a t t i ce of 
R g e n e r a t e d by S given by 

f(x) = l im f(s.) , 
i 

1~**00 

yhere { s.} is any sequence of e l e m e n t s of S with s . î . s 

3. The s e m i - n o r m a l mani fo ld of R g e n e r a t e d by S. 

Let T = (x € R; jxj < S for some s € S ). D i r e c t ve r i f i c a t i on 
shows tha t T i s a s e m i - n o r m a l mani fo ld of R con ta in ing S 
and is the s m a l l e s t one. Since e v e r y x € S1 + i s m a j o r i z e d by 

-f -f -f 
an e l e m e n t of S , S1 C T , Sf C T and S and 3 ' g e n e r a t e 
the s a m e s e m i - n o r m a l mani fo ld T of R. 

In the r e m a i n d e r of t h i s note the no ta t ion S* , T r e f e r s 
to the sequen t ia l ly con t inuous and s e m i - n o r m a l man i fo lds 
g e n e r a t e d by S. 

+ + 
If f i s a mono tone ex tens ion of f f r om S to T , 

e 
(Mi) i m p l i e s tha t 

sup f(s) < f (x) < inf f(s? ) 
— e — , 

s < x s' > x 
+ 4-

S € S S' € S 

+ + 
for e v e r y x £ T . We define funct ions f , f , on T a s 

m M 
fol lows: 

+ oc 
f (x) = f (x) = l im f(s.) if x € S1 and s .T . J x ; 
m M . i i i = l 

f (x) = s u p f ( s ) , f (x) = inf f ( s ) , x ^ S 5 " " . 
m M 

s < x s > x 
+ ^+ 

s e S s c S 
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Clearly f < f and f < f < f for every monotone extension 
m — M m — e — M 

+ + 
from S to T . 

A monotone function f is convex (concave) if 

i(ax + py) < t*f(x) + pf(y) (f(ax + py) > crf(x) + pf(y» 

for <* + p = 1. a,p > 0 ; linear if f(x + y) = f(x) + f(y) ; 

sub linear if f(x + y) < f(x) + f(y) ; superlinear if 

f(x + y) _> f(x) + f(y) ; homogeneous if £(ax) = ai(x) for a > 0 ; 

and additive if x J_ y implies that f(x + y) = f(x) + f(y). 

THEOREM 3.1. Let S be a linear sublattice of a 

sequentially continuous linear lattice R, f a monotone function 

on S. Then (i) f is monotone, (ii) f satisfies (Ml) 
— IA m _ 
but is not necessarily monotone, (iii) f is sublinear if f is 

— — — — • • — — - M ——• • — 

linear or sublinear, (iv) f is superlinear if f is linear or 
m 

superlinear, (v) f and f are homogeneous if f is homo-
—— m M 
geneous, (vi) f is convex if f is convex, (vii) f is con-

J2 Ml m 

cave if f is concave and (viii) f or f need not be additive 
— M — • m 
if f is additive. 

Proof. Standard arguments show that (Ml) holds for 

f and f . To prove (i) we note that (Ml) implies that if 
m M 

+ *°° 
x, x. e T and x T x , then 

i i i = l 

f (x.)t00 and f (x) > lim f (x.) . 
M i i = l M — . M i 

The opposite inequality is trivial if lim f (x.) = + oo 
M i 

Assume that this limit is finite. Given € > 0, there exist 

s. > x. with 
i — i 

f ( s . ) < f (x . ) + € , i = l , 2 , . . . 
i — M i 
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+ + 
S i n c e x € T , t h e r e e x i s t s s € S w i t h s > x . S i n c e 
x . < s A s . < s . , i t f o l l o w s f r o m ( M l ) t h a t w e c a n a s s u m e 

l — l — i 

e a c h s . < s. 
l — 

A S. € S ! N o w x1 = A s € S' a n d x ' < s , n = 1 , 2 , . . . . 
n . i n — 

l =n 
W e n o t e t h a t t h e f a c t t h a t S1 i s s e q u e n t i a l l y c o n t i n u o u s i m p l i e s 
t h a t if y , x1 € Sf a n d x ' < y , n = 1, 2 , . . . , t h e n 

n n — 
00 4 , 00 -f 

V x ' € S ! . T h u s if x ! = V x ! , x* € S? a n d 
n = 1 n n = l n 

x f t ° ° x ! w h e n c e f (x1 )T°° , f w ( * ' > , 
n n = l M n n = l M 

s i n c e (M2) h o l d s f o r f on Sf . N o w xf > x ' > x , 
M — n — n 

n = 1 , 2 , . . . . T h u s x ' > x =V t x , 
— n = 1 n 

f (x) < f (x ' ) = l i m f (x ' ) < l i m f ( x ) + € . 
M — M M n — M n 

n->oo n-*-oo 

S i n c e € i s a r b i t r a r y (M2) h o l d s in T a n d f i s m o n o t o n e 
M 

+ 
on T . 

P r o o f s of ( i i i ) - (v i i ) a r e r o u t i n e a n d d o n o t u s e ( M 2 ) . 

T h e l i m i t a t i o n s on m o n o t o n e e x t e n s i o n s a r e i l l u s t r a t e d b y t h e 

f o l l o w i n g s i n n p l e e x a m p l e . 

L e t /f7 d e n o t e t h e r e a l n u m b e r s , l e t X = ( 0 , 1) a n d l e t 

X 
K=fi * T h e n S = (a\ , - 0 0 < a < oo) i s a s e q u e n t i a l l y c o n t i n u o u s 

l i n e a r s u b l a t t i c e of R a n d T d e n o t e s t h e b o u n d e d f u n c t i o n s on X. 

D e f i n e f ( a ^ ) = a on S . T h e n f i s a l i n e a r m o n o t o n e 
.X. 

f u n c t i o n on S a n d 

f (x) = inf x ( t ) , f (x) = s u p x ( t ) 
m M 

0 < t < l 0 < t < l 

on T . 
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I^et x.(t) = 1, 2 " 1 < t < l ; = 0 elsewhere, i = 1, 2, . . . . Then 
l 

each x .«T +
f f ( x . )=0 , x . î * x but f (x ) = % ) = 1 showing 

l m i l i = l * X m *X X 

that f is not monotone on T . If x(t) = y , y(t) = v , 
(0,1. [1.1, 

f (x + y) = 1 4 f (x) + f (y) = 0 . 
m m m 

Thus linearity need not pers is t for f . Since x I y this also 
m "** 

gives an example whv rr £ is additive on S but f is not 
m 

additive on T . The same example shows that linearity or 
additivity need not pers is t for f . 

M 
If f is additive on S , x, y € T with x J_ y then 

3.1 f ( x + y ) > f ( x ) + f (y) . 
m — m m 

Given € > 0, there exist s, s ! € S with s <̂ x, s* < y, 
f (x) + f (y) < f(s) + f(sf ) + € = f(s + s ! ) + c < f (x +"y) + 6 , 
m m — — m 

since s i-' 
If f is additive on S then f is additive on T if and —- m 

only if for each x, y € T with x J_ y , 

sup f(s) = sup f(s ! + sM) . 
s < x + y s ! < x, sn < y 

S € S S f , S f ! € S 

When S is semi-normal both a maximal and a minimal 
monotone extension always exist as is shown in [4]. When S 
is not semi-normal a maximal monotone extension exists but 
not necessar i ly a minimal one. For S and R as in the 
example, let t . , i = 1, 2, . . . be distinct points of (0,1). Let 

f.(x) = minimum x(t.) 
J i 

i = 1, 2, . . . , j 
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in T . Then f is a monotone extension of f to T . 
j 

Let x (t) = 0, t = t , i > j ; x ( t ) = l elsewhere in X. 
J i - J 

Then 

If f is a minimal monotone extension of f from S to T 
then f(x) < f.(x) for every x € T* and all j . Then 

i ( x . ) < f . ( x . ) *Q, j = 1 , 2, . . . ; f ( X v ) = l . 

contradicting the assumption that f is monotone on T . 

When f = f ̂  , on T it is clear that all of the additional 
m M 

propert ies of f except perhaps additivity are preserved . 
From 3. 1 above 

If f is additive and sublinear on S and f = f , then 
— — — — . . . -.-...., u- m 2vl ——-

f =f is additive on T . 
m M —— 

Note that on (0, 1) S -cC » with the natural order , is a 
sequentially continuous linear lattice with f(x) = N (x) 

1 £ 
= j [x(t)]"'dt monotone and additive but superl inear and not 

0 
sublinear on S . Since f lias a \3nique additive extension to 
Jj\ (§1) the additional conditio^ of sublinearity is not necessary . 

4. The extensions f and f 
- " — — m M 

THEOREM 4 . 1 . Let S be a linear sublattice of R, 

f a monotone function Q n S . Then in order that f =f 
. ^— ___ m ^ 
+ + 

on T it is necessa ry and sufficient that to each x * T and 
c > 0 corresponds s < x, s ! > x, s, s' € S with 
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(4. 1) f ( s ! ) - f(s) <€ . 

The proof i s rou t ine . We show tha t if S i s s equen t i a l ly 
cont inuous then we can r e p l a c e (4. 1) by 

(4 .2 ) f(s) = f ( s ' ) . 

If f (x) =oo any s ! m a j o r i z i n g x wi l l do. If f (x) < oo, 
M M 

t h e r e ex i s t s. 6 S with s > x, f(s.) < f (x) + 1/i, 
l i — l — M 

A °° + 
i = 1 ,2 , . . . . By hypo thes i s s1 = A s. € S . Since 

i = l l 
s ! > x , f(s f ) > f (x). Since s1 < s. , 

— — M — i 

f ( s ' ) < f ( s . ) < f ( x ) + 1/i , i = l , 2 , . . . , 
— l — M 

and f ( s ' ) =f (x). A s i m i l a r a r g u m e n t shows tha t t h e r e e x i s t s 
M 

s < x wi th f(s) =f (x). 
— m 

THEOREM 4. 2. Le t S be a l i n e a r sub l a t t i ce of R. 

Then in o r d e r tha t f = f on T for e v e r y monotone function 
m M — 

f jon S it i s n e c e s s a r y and sufficient tha t T = S' . 

Proof . By defini t ion f and f a lways co inc ide on 
m M 

S! C T so tha t the condi t ion is sufficient . 

Le t x € T and define f(s) = 0 if s < x , f(s) = 1 

o t h e r w i s e . If s < s' and s1 < x^ then s < s' < x r t and 
- - 0 - - 0 

f ( s ) = f ( s ' ). If f ( s ' ) = l , f ( s ) < f ( s ' ) t r i v i a l l y . Thus f 

s a t i s f i e s (Ml) on S*. If s . t ! ° A s then f ( s . ) = 0 , 
i i = l l 

i = l , 2 , . . . if f ( s ) = 0 . I f f ( s ) = l , then if f(s.) = 0 , 
l 

i = 1, 2 , . . ., s. < x . V . M s. < x^ c o n t r a d i c t i n g V s = s. 
i — 0 i = l î — O i = l i 

Thus (M2) ho lds and f i s monotone on S . 

If x € S' t h e r e e x i s t s a sequence { s.} with 
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s T x and 
i i = l 0 

f (x ) - f (x ) - 0 . 
M O m 0 

Always 

f ( x j = sup f(s) = 0 , inf f (s ' ) = 1 , 
m 0 

s < x^ s ! > xr t 

- 0 - 0 
~+ ~+ 

S € S S' € S 
showing tha t the Last e x p r e s s i o n need not co inc ide wi th f (x ) 

in S , + . If x * S , + , f ( x j = 1 ^ f ( x j for the f d e t e r m i n e d 
0 M O m 0 

by th i s x . Thus the condi t ion is n e c e s s a r y . 

THEOREM 4 . 3 . Le t S be a l i nea r sub la t t i ce of R. 

Then in o r d e r that e v e r y mono tone function f on S ex tend 

to a monotone function f on T it i s n e c e s s a r y and suff icient 
— — • • ! — - m — • — • — — — • - — 

+ + oo 
tha t x. € T , s € S , x T . s imp ly the e x i s t e n c e of a s equence 

—- i l i = l - • — • — — 
+ oo 

s € S , s T s wi th e a c h s m a j o r i z e d by s o m e x . 
j j j = l j ~ — — — — i 

Proof. Sufficiency. F o r x, x in T a s s u m e tha t 
l 

oc 
x T x . F i r s t a s s u m e tha t f (x) < oo . T h e r e then e x i s t s 

l i = 1 m 
+ 

s € S , s > x , writh 

f (x) < f(s) + € , € > 0 a r b i t r a r y . 
m — 

Now x| = x. A s e T and x'. T. t s . By h y p o t h e s i s 
i l i i = l 

00 

t h e r e e x i s t s s .T . s wi th each s m a j o r i z e d by s o m e x! . 

Thus 

f(s.) < f (x!) < l im f (x!) , 
j — m i — . m i 
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f(s) = lim f(s ) < lim f (xf) 
j — . m i 

J-*O0 1-KJO 

f (x) < f(s) + € < lim f (xl) + e < lim f(x.) + € 
m — — . m i — . l 

By (Ml) f (x) > lim f (x.) . Since € is a rb i t ra ry 
m — . m i 

l - W D O 

f (x.)T* f (x) 
m l i = l m 

and f is monotone on T . A similar argument applies if 
m 

f (x) = + oo . 
m 

Necessity. To prove necessi ty we show that if the condition 
is violated we can construct a monotone function on S+ with f 

m 
not monotone. Suppose that there exists s„ € S and x. € T , 

^ 0 i 
00 , . 

x.T . t s^ and that there exists no sequence {s.} , 
l i = l 0 l 

s T s with each s majorized by some x . 
i i= l 0 i i 

Define f(s) =0 if s < x. for some i ( i . e . if s is 
— i 

^oo 
maiorized by some x.) or if s < s„ and there exists s.T. s J y l 0 l i = l 

with each s. majorized by some x. . Define f(s) = 1 

elsewhere in S . 
We first verify that f is a monotone function on S . 

Assume that s < s' . Then f(s) < f(s ' ) trivially if f(sf ) = 1. 
If f(s' ) = 0 and~~s? < x., s < sf <~x. and f(s) =0. If f(s' ) =0 

— i — — l 
^ 0 0 * A + 

and s.T. s, with each s. majorized by some x., s. A s s S , 
i i = l l j i 

i = l , 2, . . . , s. A s i s , with each s. A s majorized by 
l i = l i 

some x. and again f(s) =0 . Thus (Ml) holds for f on S . 

00 00 
Assume that s.T. m s . Then f (s . ) t . , f(s) tr ivially if 

i i = l i i = l 
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f(s) =0. Assume that s = s . If each x = V s with 
0 i j = l ij 

each s majorized by some x , s = V s and the s 
ij l 0 i , j ij ij 

can be combined to form a sequence increasing to s with 

each t e rm majorized by some x., giving a contradiction. 

Thus for some i, f(s.) = 1 and, by (Ml), f(s.)T f(s ) . 
l l i = l 0 

Assume s 4 s , s V s > s . If ail f(s.) = 0, 

V._ s. = s < s contrary to hypothesis. Thus in this case 

lim. f(s.) = 1 =f(s). Finally assume s < s . If for each i 

there exists s . with V s . = s and each s . is majorized 

by some x , then f(s) =0. If this is false for some i, 

f(s) = lim f(s ) = 1 . Thus (M2) is satisfied and f is monotone 
i l 

on S . 

Now in T + , f ( s j = f ( s j = l , f (x.) = sup f ( s ) = 0 , 
m 0 0 m i 

s < x. 
— l 

S € S 
i = 1, 2, . . . showing that f is not montone on T . 

m 

We observe that when S is semi-normal the condition of 
Theorem 4. 3. is tr ivial ly satisfied since each x. is then 

necessar i ly in S . 

Suppose that f is monotone on S , f monotone on T . 
m 

Let f and f denote the minimum and maximum extensions 
m M 

of f and f respectively from T to R . Then f and 
m M m 

+ , + 
f are monotone on R and in R , 
M 

f (x) = sup f (y) = sup f(s) ; 
m m 

y < x s < x 
y € T s € S 
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f (s) = lim f(s.) if there exist s. € S, s. I\ x ; 
M . 1 i i i = l 

inf f(s) , if no such sequence exists and x 
s > x . . . . c+ 

— is majorized in S ; 
s € S 

+ oo if there is no s € S , s >̂ x and no sequence 

s.T. a x , s. € S 
i i = l l 

For every monotone extension f from S to R and all 
e 

X€ R , 

f ( s ) < f ( x ) < f (x) 
m — e — M 

Addendum. The referee has pointed out that the third 
sentence on page 227 in [4] is incorrect without the additional 

hypothesis that f(0) = 0 and that p € R , \ € A should be 

added to the hypotheses of Lemma 4. 2. 
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