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Abstract

Additional convergence results are given for the approximate solution
in the space L2(a,b) of Fredholm integral equations of the second kind,
y = / + Ky, by the degenerate-kernel methods of Sloan, Burn and Datyner.
Convergence to the exact solution is proved for a class of these methods
(including 'method 2'), under suitable conditions on the kernel K, and error
bounds are obtained. In every case the convergence is faster than that of the
best approximate solution of the form yn = X" an,u» where u,,•••, un are the
appropriate functions used in the rank-n degenerate-kernel approximation.
In addition, the error for method 2 is shown to be relatively unaffected if the
integral equation has an eigenvalue near 1.

1. Introduction

This paper obtains convergence results for a recently proposed family of
degenerate-kernel methods [8], for the approximate solution in the Hilbert
space L2(a, b) of the Fredholm integral equation of the second kind,

y(<) = /(')+ f K(t,s)y(s)ds, aSt^b, (1.1)
Ja

or
y=f+Ky, (1.2)

where y and / are real or complex functions in L2(a,b), K is a compact
kernel, and 1 is a regular value of the equation, so that the solution y is
unique.

The methods of [8] are described below. In a previous paper [7], it has
been shown that the simplest of these methods, 'method 1', always converges
to the exact result, and furthermore that the rate of convergence is always
faster than that of the Galerkin method, even though the computational
requirements of the two methods are almost identical. But the arguments of
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[2] Degenerate-kernel methods 423

[7] do not apply to 'method 2', numerically the most accurate of the methods
tested in [8]. In the present paper, convergence results and error bounds are
now obtained for method 2 and other variants of the methods of [8], under
suitable conditions on the kernel K. Moreover, the error bound for method 2
confirms a property first observed numerically in [8], that method 2 is
relatively unaffected if the integral equation has an eigenvalue near 1.

In the general method of [8], the exact equation (1.2) is approximated by

yn=f+Knyn, (1.3)

where Kn is a degenerate kernel of rank n, defined by

KKx=JlKu.D,,(vl,x), xeL2(a,b). (1.4)

Here both {«,} and {v,} are linearly independent sets in L2(a, b) which have
yet to be specified, and the inner product is defined by

rb

(v, x)= I v(s)x(s)ds, v, x €E L2(a, b).
J a

Furthermore, D is an n x n matrix, whose inverse is given by

(D-) , . = («„«.), j,i = l,...,n.

The solution of (1.3) is then easily found to be

yn=f+ibn,Kut, (1.5)
i= 1

where the coefficients bn, satisfy

t [(vnu,)-(vl,KUl)]bK,=(vl,f), 7 = l , . . . , n .
1 = 1

In the present work, we consider several possible choices for the set {v,},
assuming that {«,} is a given linearly independent set which generates the
whole space L2(a, b); i.e. the linear envelope of {u,} is assumed to be dense in
L2(a, b). (The qualitative criterion given in [8] for choosing the set {«,} is that
it should be a good basis set for approximating the exact solution y. The error
estimates obtained below provide a firm foundation for that criterion.)

The following three particular choices of {v,}, listed here in order of
increasing complexity, are discussed in this paper:

choice 1: v, = w,,
choice 2: v, = K*u,,
choice 3: v, = K*Ku,,
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where K* is the adjoint of K, an integral operator with kernel defined by
K *(s, t) = K(t, s). The first and second choices correspond to methods 1 and 2
of [8]. The first, included here for completeness, is equivalent in its effect to a
single iteration of the Galerkin method [3, §16.1]. The second choice has the
advantage mentioned above, that it is relatively unaffected by an eigenvalue
of the equation near 1, and though it is harder to use than choice 1, can still be
a practical method in some circumstances. [The essential problem in imple-
menting method 2 is the evaluation of the inner products (v,,Ku,) =
(K*u,, Ku,). If K is symmetric, and if the quantities Ku,(t,) have already been
evaluated at a set of quadrature points /„ for use in say the Galerkin method,
then with good organization it will often be possible for the required inner
products to be evaluated with little extra cost.] The third choice will usually be
too cumbersome for practical calculations, but it is of theoretical interest,
because as n —» °° the corresponding error approaches the least possible error
for an approximate solution of the form (1.5).

An attractive feature of the degenerate-kernel methods of [8] is their
good rate of convergence: it turns out that the approximate solution yn always
converges to y faster than the best possible linear combination of the form

yi=i«, (1.6)
1 = 1

provided only that \\K - Kn ||—*0. The best approximation of the form (1.6),
i.e. the particular y'n that minimises ||y -y i | | , is (see [1])

y'.= P»y, ' - (1.7)

where Pn is the orthogonal projection operator onto the span Un of
u,, • • •, un; thus the least possible error for an approximation of the form (1.6)
is || y - Pny ||. On the other hand, it is shown in [7] (see also section 3) that if
||K — Kn||—»0 then the error from the degenerate-kernel methods satisfies

I) y - y. N j3. || y -P B y ||, (1.8)

where, with / denoting the identity,

fin=\\{I-Knr\\\\K-Kn\\

—> 0 as n —> ».

Thus yn converges faster than Pny to the exact solution y (unless both Pny and
yn become exact for large n).

The first task with any particular choice of {«,-} is therefore to prove that
\\K — Kn ||—»0, so that (1.8) applies. In the present paper this is accomplished,
under suitable conditions on the kernel K, for a rather general choice of the
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{vt}, which under suitable conditions includes each of the above three choices
of {v,} as a special case. The principal results are stated in the following
section, and proved in section 3.

Useful reviews of other methods for solving (1.1) are given by [2] and [5].

2. Principal results

CHOICE 1: v, = u,

This choice corresponds to method 1 of [8], which is equivalent to a single
iteration of the Galerkin method. For this choice the convergence has been
proved previously in [7], with no restriction (other than compactness) on K.
The error bound (1.8) applies.

CHOICE 2: v, = K*u,

This choice corresponds to method 2 of [8]. A sufficient condition for
convergence in this case is that K be symmetric and positive. In that case
|| K - Kn || -> 0, and the error norm satisfies (1.8), and also the stronger bound

where

yn=\W-Knr\\\\Kn-KnPn\\

—>0 as n -»°o.

CHOICE 3: v, = K*Ku,

In this case it is sufficient that neither Kx = 0 nor K*x=0 has a
non-trivial solution x £ L2(a, b). Then Kn = QnK, where Qn is the orthogonal
projection operator onto the span of Kit,,- • •, Kun, and || K - Kn || —* 0. The
error norm satisfies (1.8), and also the stronger bounds

\\yy\\ QnKy\\ (2.2)

*(\ + &H)\\K-Kn\\\\y-PKy\\, (2.3)

where

8»=\\{I-KnT
l\\\\Ka-KHQ4

—> 0 as n —* oo.

It may be noted that for sufficiently large n, the error bound (2.2) approxi-
mates with arbitrary accuracy \\Ky - QnKy ||, which is the least possible value
of II y — y« II if y« is of the form (1.5).
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GENERAL CHOICE: V, = A *SAu,
Here A is a bounded linear operator, with the property that neither

Ax = 0 nor A *x = 0 has a non-trivial solution in L2(a, b); S is a regular linear
operator [3, §16.6]; and K is assumed to be expressible as

K = BA,

where B is a bounded linear operator, and at least one of A and B is
compact.

3. Proofs

We first prove the results for choice 2, that is v, = K*u,, for the case in
which K is a symmetric, positive operator.

Since K is positive and compact, there exists a positive, compact
operator A = A*, such that

K = AA. (3.1)

Hence equation (1.4) denning Kn can be written as

Knx = 2) AAu,D,,(AAul,x)
i.i = i

= A ^ AM,D,,(AM,, AX)

= / i r ,Ax, x£L 2 (a ,b) , (3.2)

where Fn is the operator defined by

Tnjc = 2 *v,D,;(»v,,x), x e L2(a, ft), (3.3)

with

w, = AM,, I = 1, • • •, n.

Furthermore, the n x n matrix D is defined by

(D-),, = (AAu(, «,) = (Au,, Au,)= (w,, w,). (3.4)

The functions vv,,---,wn are necessarily linearly independent, because
there is no non-trivial solution of Ax = 0, since A is positive. Hence the
matrix D~l in (3.4), being a Gram matrix [4, page 59], is non-singular. The
operator Vn given by (3.3) is therefore well-defined, and is easily seen to be
simply the orthogonal projection onto the n-dimensional subspace AUn

spanned by w,, • • •, wn. [To prove this, it is only necessary to express Fn in
terms of an orthonormal basis w,', • • •, w^of AUn, in which case (3.3) becomes
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Moreover, the subspaces {AUn} form an ultimately dense sequence [3,
page 201] in L2(a,b). [For if the contrary is supposed, then there exists a
non-zero x G L2 such that 0 = (x, w,) = (x, Au.) = (Ax, u,) for all i § 1, which
implies the contradiction Ax = 0.] Since Fn is an orthogonal projection onto a
member of an ultimately dense sequence, and since A is compact, it follows
[6, page 204] that \\A -VnA | |-»0. Therefore

\\K - Kn\\ = \\AA - ATnA ||=g||A || \\A ~TnA | | - 0

as n —* oo. This completes the first part of the proof for the case of choice 2.
Since Kn converges in norm to K, it follows by a standard argument (see

for example [2, page 15, Theorem 5]) that for n sufficiently large, a bounded
inverse (/ - Kn)~' exists, which converges in norm to (/ - K)~'. Consequently,
the solution of (1.3) can be written explicitly as

if n is sufficiently large. Together with the analogous expression for y, namely

y = (/ - K)~lf,
this yields

y - yn = (/ - Kny (K - Kn)(I - K)"1/

= (I-Kn)-\K-Kn)y, (3.5)

which leads to an obvious error bound,

thus proving the convergence of yn to y.
The much smaller error bound (1.8) is obtained, as in [7], by exploiting

the relation
Knu, = Ku,, i = 1, • • •, n,

which is easily seen from the definition (1.4) to be valid for any choice of the
{v,} for which D"' is non-singular. An equivalent relation is

KnPn = KPn, (3.6)

where Pn is the orthogonal projection operator onto the span Un of M,, • • •, «„.
It follows that (3.5) can be rewritten as

y - yn = (/ - JC)-(JC - Kn)(y - Pny), (3.7)

thus the error norm also satisfies

| | y - y n | | g | | ( / - / C n r | | | | K - K n | | | | y - P n y | | , (3.8)

which is equivalent to (1.8).
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The argument in the previous paragraph is not restricted to a particular
choice of {v,}. A stronger error bound can be obtained for the case v, = K*Uj
by taking into account a special property of Kn, namely

PnKn = PnK, (3.9)

which holds in addition to (3.6), and which follows easily from (1.4) in this
case. Thus the operator K - Kn can be written as

K - Kn = (I - Pn)(K - Kn).

To profit from this relation, we use it in (3.7), together with the identity

(I - K.)-1 = I + (I - Kn)-1 Km (3.10)
to obtain

y - yn = [/ + ( / - *„)- (K, - KJ>n)](K - K.)\y - Pny).

This leads immediately to the error bound

||y - y B | | S (1 + yn)\\K - Kn \\\\y - Pny ||, (3.11)

where
yK=Ml-KH)-l\\\\KH-KnP4. (3.12)

The first factor in (3.12) has a finite limit, since

and the second factor approaches zero, since

in which each term approaches zero. Thus yn —» 0 as n -»°°, and the results
stated in the previous section for choice 2 are now proved.

The results stated for choice 3 can be proved by a similar argument.
Indeed, all but the last part of the above proof can be generalized to the case
introduced at the end of the previous section, in which K = BA, where A and
B are bounded operators, at least one of which is compact, and v, = A *SAu,,
where S is a regular operator. In this case Kn can be written as Kn = BYnA,
where T'„ is a projection (uniformly bounded, but not necessarily orthogonal)
onto A Um and the limit || K - Kn || -» 0 follows from either \\A - FnA || —> 0 or
|| B — BTn ||—»0, depending on whether A or B is compact; we omit the
details. The three special choices 1, 2 and 3 can be obtained by taking
respectively B = K, A = I for choice 1, B = A = K"2 for choice 2, and B = I,
A = K for choice 3, together with S = 7 in each case.
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4. Numerical example

The various choices of {v,} are tested in this section on the integral
equation

y(f)= / 2 + A f K(t,s)y(s)ds,
Jo

where

(t(2-s), t^s,
K(t,s)=\

U(2-0, s^t.

The exact solution of this equation is known analytically from the equivalent
boundary-value problem

y"+2Ay=2, y(0) = 0, y( l )+y ' ( l )= 3.

The set {u,} is chosen (as in [7]) to be the complete orthogonal set

where P, is the Legendre polynomial of degree /.
Results are given here for two values of A, the first of which is A = — Ai,

where A, is the smallest characteristic value of the kernel, A, =
2.057929 This choice is considered a fair one, as in [7], in that the
kernel is neither very large nor very small — in fact | |K|| = 1. (As is evident
from the numerical results of [8], smaller values of | A | are more favourable to
the degenerate-kernel methods, and larger values of j A | less favourable.)

TABLE 1

Error norms || y - yn||, with A = - A, = -2.057929- • •

n

1

2

3

4

5

6

7

8

lly-f-yll

2.2-1

9 0-2

8.6-3

1.9-3

1.1-4

1.6-5

6.6-7

7.5-8

choice 1

('method 1')

4.9-2

1.1-2

5.0-4

6.6-5

2.4-6

2.6-7

7.7-9

6.7-10

choice 2

('method 2')

3.59-2

5.22-3

2.64-4

3 39-5

1.32-6

1.38-7

4.24-9

3.68-10

choice 3

3.573-2

5.082-3

2.532-4

3.141-5

1.202-6

1.224-7

3.732-9

3.168-10

least

possible

3.573-2

5.082-3

2.532-4

3.141-5

1.202-6

1.224-7

3.732-9

3.168-10
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Table 1 gives error norms for A = - A,, for each of the three choices of
{v,} considered in this paper, and for values of n from 1 to 8. Also given are
the values of || y - Pny ||, which is the least possible error norm for an
approximation of the form (1.6). The choice 1 error norms in Table 1, as
known already from [7], are much smaller than \\y - Pny ||, and approach zero
much faster as n—>°°, in conformity with condition (1.8).

The present interest in Table 1 is mainly in choices 2 and 3. The first point
of note is that their error norms are smaller than those for choice 1, by
roughly a factor of two.

In the last column of Tabje 1 are given the least possible values of
| | y - y n | | for yn of the form (1.5), namely \\Ky - QnKy\\, where Qn is the
orthogonal projection onto the span of Kit,, • • •, Kun. It is evident that the
error norms for choice 3 are very close indeed to these optimal error norms,
even for small values of n: indeed, the last two columns agree to four
significant figures. The close agreement for larger values of n is of course
expected, in that the choice 3 error bound given by (2.2) approximates the
optimal error norm with arbitrary accuracy, if n is sufficiently large. The error
norms for the more practical method 2 are seen to be only about 10% larger
than the optimal norms.

TABLE 2

Error norms||y-yn ||, with A = A,+0.001 = 2.058929-••

n

1

2

3

4

5

6

7

8

\\y-K

3.2 + 2

1.3 +

1.4 +

2.9

1.9-

2 .5-

1.2-

1.2-

2

1

1

2

3

4

choice 1

('method 1')

8.2 + 2

8.4 + 2

1.2 + 3

2.1 + 1

8.6-2

1.6-3

1.4-5

1.1-6

choice 2

('method 2")

8.5 +2

1.3 +3

1.1 + 1

3.23-1

2.26-3

2.18-4

7.15-6

5.87-7

choice 3

1.2 +3

1.6 +2

4.64 - 1

4.869 - 2

1.873-3

1.922-4

6.138-6

5.033-7

least

possible

3.64 +1

7.50

3.53 - 1

4.835-2

1.873-3

1.922-4

6.138-6

5.033 - 7

Table 2 contains the error norms for a second value of A, this one chosen
to be very close to a characteristic value; specifically, A=Ai + 10~3 =
2.058929 The equation in this case corresponds physically to a forced
vibration at a frequency very close to a natural frequency of the system, thus
the amplitude is large — in fact ||y || = 821. Such a situation is unfavourable for
any numerical method. Nevertheless, for choices 2 and 3 the error bounds
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(2.1) and (2.3) indicate that the relative errors should still be similar to those in
Table 1, if n is sufficiently large.

It is evident from Table 2 that when n is small all three of the methods
show the large errors to be expected from the near instability of the system.
However, in conformity with (2.2), the choice 3 error norms recover very
rapidly as n increases, and agree qualitatively with the optimal error norms
for n § 3 , and to four significant figures for n i? 5. The similar recovery of the
choice 2 error norms, anticipated from (2.1), is slightly less rapid, but the
pattern observed in Table 1 is fully established for n a 6.

An interesting observation from Table 2 is that even the choice 1 error
norms recover in a similar (though slower) manner as n increases, so that for
large n the observed error norms are far smaller than the theoretical bounds
given by (1.8). However, it is believed that the good behaviour of the error
norms for choice 1 in this example is a consequence of the particular choice of
the subspaces {Un}, and therefore that it may not extend to all other choices
of the subspaces, whereas the good behaviour for choice 2, if K is symmetric
and positive, is guaranteed by (2.1).
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