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Abstract. We introduce the notion of upper and lower frequently universal
sequences and see that ‘most’ of the universal approximations are obtained by sets
of indices which have upper density 1 and lower density 0. We also show that a class
of universal series related to lower density is of first category.
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1. Introduction. In this paper, motivated by the interesting notion of frequent
hypercyclic operators introduced in [1] and continued in [3], we define and study the
notions of frequent universal series and obtain results that allow us to have a better
insight of what happens in general in all universal approximations, as we will see in the
sequel.

The first universal series was obtained by Fekete [8] before 1914. He proved the
existence of power series whose partial sums approximate uniformly every continuous
real valued function f defined on [−1, 1] with f (0) = 0. In 1945, Menchoff proved
the existence of universal trigonometric series, that is trigonometric series whose
subsequences of the sequence of its partial sums converge almost everywhere (or
equivalently in measure) with respect to the Lebesgue measure, to all measurable
complexed valued functions defined by T = {eit : t ∈ [0, 2π )} (see [6] and Example 1.4
in this paper). Since then a lot of results on universal series have appeared. A good
amount of references can be found in [2].

Typical cases are the universal Taylor series, which exhibit universal
approximations with respect to uniform limits. More precisely, a power series

∑∞
n=0 anzn

in � with finite radius of convergence, say 1, is universal if its partial sums are dense
in the space � = {f : K → � | f is continuous on K and f is holomorphic on K0},
endowed with the supremum norm, where K is a compact subset of C with connected
complement, which is also disjoint from the open unit disc. We note that it is necessary
for K to be as above to have such universal approximations (see [9]). Also, there are
power series which are universal simultaneously for all K (for details see [7]).

As in the previous paragraph, in all universal approximations we have the following
situation:

There is a topological vector space � over � = � or � (mainly a topological
vector space whose topology is induced by a metric invariant under translations) and
a sequence {xn} of elements of � (xn is the nth power function, xn(z) = zn, in the
previous paragraph), and by the term universal series we mean a series

∑∞
n=0 anxn,

an ∈ �, n = 1, 2, . . . such that its partial sums are dense in �.
(In Example 1.4, we study Menchoff’s trigonometric series according to the above

modelling).
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Hence, in order to study the universal series in general, we adopt the following
terminology [2]:

• � is a metrizable topological vector space over the field � = � or �, for which
we also assume that its topology is induced by a translation invariant metric ρ.

• � = {0, 1, 2, . . .}.
• � is a vector subspace of ��, which carries a complete metrizable vector space

topology induced by a translation-invariant metric d.

Moreover, we assume the following:
(A.1) The projections � → �, a = (αj) �→ αm are continuous for any m ∈ �.
(A.2) The set of ‘polynomials’

G = {a = (αj) ∈ ��|{j : αj �= 0} is finite}

is a dense subset of �.
Throughout this paper (�, ρ) and (�, d) will be as above. Also, xj, j = 0, 1, 2, . . .

will be a fixed sequence of elements of �.

DEFINITION 1.1 ([2]). (a) A series
∑∞

j=0 αjxj, where (αj) ∈ �� is called universal iff
the sequence (

∑n
j=0 αjxj) of its partial sums is dense in �. We set

U =
{

(αj) ∈ ��

∣∣∣∣∣
∞∑

j=0

αjxj is universal

}
.

(In other words, U is the set of unrestricted universal sequences with respect to the
fixed sequence x0, x1, . . . in �).

(b) A series
∑∞

j=0 αjxj, where a = (αj) ∈ �, is called restricted universal iff
∀ x ∈ � ∃ λ = {λ1 < λ2 < . . .} ⊆ �:

(i)
∑λn

j=0 αjxj → x, n → ∞,

(ii)
∑λn

j=0 αjej → α, n → ∞,

where as usual en, n = 0, 1, 2, . . ., denotes the canonical basis of ��. We set

U� =
⎧⎨⎩a = (αj) ∈ �

∣∣∣∣∣
∞∑

j=0

αjxj is restricted universal in �

⎫⎬⎭ .

(c) Let μ = {μ1 < μ2 < · · · } and a = (αj) ∈ �. A series
∑∞

j=0 αjxj is restricted
universal in � with respect to μ iff

∀ x ∈ � ∃ λ = {λ1 < λ2 < · · · } ⊆ μ :

(i) and (ii) are satisfied.
We set

Uμ

� =
⎧⎨⎩a = (αj) ∈ �

∣∣∣∣∣
∞∑

j=0

αjxj is restricted universal in � with respect toμ

⎫⎬⎭ .
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Obviously,

Uμ

� ⊆ U� ⊆ U ∩ �.

If for every a ∈ � we have
∑n

j=0 αjej → a, n → ∞. (This happens in Examples 1.3
and 1.4.) Then U� = U ∩ �, but in general U� � U ∩ � (see [2]). The main theorem
regarding these classes is as follows.

THEOREM 1.2 ([2]). The following are equivalent.

(1) U� �= ∅.
(2) ∀ p ∈ � ∀ x ∈ � ∀ ε > 0 ∃ n ≥ p ∃ αp, αp+1, . . . , αn ∈ �:

ρ

⎛⎝ n∑
j=p

αjxj, x

⎞⎠ < ε and d

⎛⎝ n∑
j=p

αjej, 0

⎞⎠ < ε.

(3) ∀ x ∈ � ∀ ε > 0 ∃ n ≥ 0 ∃ α0, α1, . . . , αn ∈ �:

ρ

⎛⎝ n∑
j=0

αjxj, x

⎞⎠ < ε and d

⎛⎝ n∑
j=0

αjej, 0

⎞⎠ < ε.

(4) ∀ μ ⊆ �, μ infinite:

Uμ

� is a dense Gδ subset of �.

(5) ∀ μ ⊆ �, μ infinite:

Uμ

� contains, except 0, a dense subspace of �.

(For the proof of this theorem see [2]).
To make the above notions more concrete, we briefly consider the next examples.

EXAMPLE 1.3 ([7]). Let D = {z ∈ � : |z| < 1} and K be a compact subset of � such
that K ∩ Dc = ∅ and Kc is connected. We set,

� � = {f : K → �| f is continuous on K , and f is holomorphic on K0}.
� ρ(f, g) = supz∈K |f (z) − g(z)|, f, g ∈ �.
� xn(z) = zn, n ∈ �.

� � =
{

a = (αj)

∣∣∣∣ f (z) =
∞∑

j=0

αjzj ∈ H(D)
}

=
{(

f (j)(0)
j !

) ∣∣∣∣ f ∈ H(D)
}

.

� d(a, b) = ∑∞
ν=0

1
2ν

‖f −g‖ν

1+‖f −g‖ν
, where

a = (αj) =
(

f (j)(0)
j!

)
, b = (βj) =

(
g(j)(0)

j!

)
, f, g ∈ H(D)
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and

‖f − g‖ν = sup
|z|≤1− 1

ν+1

|f (z) − g(z)|, ν ∈ �.

It is easy to check that the above spaces (�, ρ) and (�, d) satisfy all requirements
of our framework, and that

∑n
j=0 αjej → a, n → ∞ for all a∈�. It turns out that (2)

of Theorem 1.2 is satisfied and hence Uμ

� is a dense-Gδ subset of � and contains, except
0, a dense subspace of � (for details see [2, 7]).

EXAMPLE 1.4 ([2, 6]). Let

T = {eit : t ∈ [0, 2π )} = �/2π�.

We set,
� � = L0(T) = The space of equivalence classes of the 2π -periodic Lebesgue

measurable functions (f ∼ g ⇔ f = g λ − a · e, where λ is the Lebesgue
measure).

� ρ(f, g) = inf{r + λ({|f − g| ≥ r}) : r > 0}, or ρ(f, g) = ∫ 2π

0
|f −g|

1+|f −g|dλ.

(As it is well known, ρ is the metric of convergence in measure).
� xn(t) = eint, n ∈ �.
� � = 
p, p > 2.
� d(a, b) = ‖a − b‖p = (

∑∞
j=0 |αj − βj|p)1/p, where a = (αj), b = (βj) ∈ �. As in the

previous example, it turns out that U�, Uμ

� are dense subsets of � and contain,
except 0, a dense subspace of �.

Now we recall the definitions of densities of subsets of � that we will
need.

DEFINITION 1.5. Let λ ⊆ �. The upper and lower density of λ is defined respectively
as

D(λ) = lim sup
N

|{n ∈ λ : n ≤ N}|
N

,

D(λ) = lim inf
N

|{n ∈ λ : n ≤ N}|
N

.

If D(λ) = D(λ), we define the density of λ to be the limit,

D(λ) = lim
N → ∞

|{n ∈ λ : n ≤ N}|
N

,

where as usual | · | denotes the cardinality of the corresponding set.

Let a = (αj) ∈ U� or a ∈ Uμ

� or a ∈ U . To each x ∈ �, it corresponds the family of
those λ ⊆ � which realize the approximations of Definition 1.1. We denote by �x this
family. A question that arises naturally is the following: What can be said about the
densities of the sets λ ∈ �x?
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Firstly, in Section 2 we prove that if U� �= ∅, then the set of those a ∈ U�, such
that for each x ∈ � there exists λ ∈ �x with D(λ) = 1, is a Gδ-dense subset of �, which
contains, except 0, a dense subspace of �. (In fact, we prove the above result in a more
general setting by considering the class Uμ

� and relative densities in Section 2.) Also,
by Example 2.4, we see that it may happen that D(λ) < 1 for all λ ∈ �x, for all x ∈ �

and for some a ∈ U�.
In Section 3 we see that there is no a ∈ U (hence, a ∈ U�) such that to each x ∈ �

there exists λ ∈ �x with D(λ) > 0, but it may exist a = (αj) ∈ U such that to each x ∈ �

and for every neighbourhood V of x we have D({n ∈ � :
∑n

j=0 αjxj ∈ V}) > 0. The set
of these a’s is of first category in (�, d), provided U� �= ∅.

Summing up, for all a ∈ U� (or Uμ

� ), except a set of first category, the
approximations (apart at most countable x’s in �) are realized with subsets λ of �

with D(λ) = 1 and D(λ) = D.

2. Upper frequently universal series. We remind that if λ ⊆ μ ⊆ � are infinite
sets, then the relative upper density of λ with respect to μ, Dμ(λ), is the following by
definition:

Dμ(λ) = lim sup
N

|{n ≤ N|n ∈ λ}|
|{n ≤ N|n ∈ μ}| .

DEFINITION 2.1. Let μ ⊆ � with D(μ) = c ≥ 0. A sequence a = (αj) is said to be
upper frequently universal with respect to μ if and only if

∀ x ∈ � ∃ λ = {λ1 < λ2 < . . .} ⊆ μ with D(λ) = c, Dμ(λ) = 1 :
λn∑

j=0

αjxj → x, n → ∞.

Moreover, if

λn∑
j=0

αjej → a, n → ∞,

then we say that a = (αj) is upper frequently restricted universal in � with respect
to μ. (Obviously a ∈ �). We respectively denote by Ũμ and Ũμ

� these two classes of
sequences. If μ = �, we write Ũ , Ũ� for the classes. Of course, Ũμ

� � Ũμ ∩ � � Ũ ∩ �.

REMARK 2.2. If 0 < c ≤ 1, λ ⊂ μ and D(λ) = c, then it automatically follows that
Dμ(λ) = 1. Indeed, if Dμ(λ) < 1 and lim supN

|{n≤�:n∈λ}|
|{n≤�:n∈μ}| = ξ < 1, then there exists

N0 ∈ � such that |{n≤N:n∈λ}|
|{n≤N:n∈μ}| < ξ for N ≥ N0.

Hence,

lim sup
N

|{n ≤ N : n ∈ λ}|
N

= c ≤ ξ · lim sup
N

|{n ≤ N : n ∈ μ}|
N

= ξ · c,

which is a contradiction.
So the requirement Dμ(λ) = 1 in Definition 2.1 is needed only for the

case c = 0.
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THEOREM 2.3. Let μ be an infinite subset of � with D(μ) = c ≥ 0. If U� �= ∅, then
Ũμ

� is a Gδ-dense subset of � and contains, except 0, a dense subspace of �.

Proof. Assume first that 0 < c ≤ 1.
It follows from Theorem 1.2 that � is separable. Let {y
 : 
 = 1, 2, . . .} be a dense

subset of �. For each n ∈ � and p, 
, s ∈ � − {0} we set

En,
,s,p = {a = (αj) ∈ �|∃ {λ1 < λ2 < · · · < λn} ⊆ μ with λ1 > p

such that ρ(
∑λk

j=0 αjxj, y
) < 1
s , d(

∑λk
j=0 αjej, α) < 1

s for k = 1, 2, . . . , n and n
λn

>

c − 1
s }.
Firstly, the following holds

Ũμ

� =
∞⋂

p,
,s=1

∞⋃
n=0

En,
,s,p (I).

[If a ∈ Ũμ

� and p, s, 
 ∈ � − {0}, then by Definition 2.1 for x = y
 we take that

∃ λ′ = {λ′
1 < λ′

2 < · · · < λ′
n < · · · } ⊆ μ with D(λ′) = c ∃ n′

0 ∈ � :

ρ

⎛⎝ λ′
k∑

j=0

αjxj, y


⎞⎠ <
1
s

for k ≥ n′
0

and

d

⎛⎝⎧⎨⎩
λ′

k∑
j=0

αjej, a

⎞⎠ <
1
s

⎫⎬⎭ for k ≥ n′
0.

Since the upper density of a set does not change if we omit a finite part of it, we have:

D({λ′
k ∈ λ′ : λ′

k ≥ max(n′
0, p)}) = c.

Hence, there exists {λ1 < λ2 < · · · < λn} ⊆ λ′ with λ1 > max(n′
0, p) such that the

defining conditions of En,
,s,p are all satisfied.
Conversely, let a ∈ ⋂∞


,sp=1

⋃∞
n=0 En,
,s,p and x ∈ �. We have to construct a subset

λ of μ with D(λ) = c (see Remark 2.2) such that the conditions of Definition 2.1 are
satisfied. First, let {k1 <k2 < · · · }⊆� − {0} with ykn → x, as n → ∞. By hypothesis
for a = (αj), setting 
 = s = kn, it follows that there exist consecutive blocks Bn =
{λ(n)

1 < λ
(n)
2 < · · · < λ

(n)
Nkn

} for n = 1, 2, . . . such that

maxBn < minBn+1, n = 1, 2, . . . ,

ρ

⎛⎝λ
(n)
k∑

j=0
αjxj, ykn

⎞⎠ < 1
kn

d

⎛⎝λ
(n)
k∑

j=0
αjεj, a

⎞⎠ < 1
kn

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
for k = 1, 2, . . . , Nkn (2.1)
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and

Nkn

λ
(n)
nkn

> c − 1
kn

, n = 1, 2, . . . . (2.2)

We set

λ =
∞⋃

n=1

Bn := {λ1 < λ2 < . . .}.

Then by (2.2) we get that

D(λ) = c,

and by (2.1) that,

λn∑
j=0

αjxj → x, n → ∞ and
λn∑

j=0

αjεj → a, n → ∞.

Hence, a ∈ Ũμ

� ].
Secondly, we have that, for each n ∈ �, 
, s, p ∈ � − {0}:

the set En,
,s,p is open (II).

[Indeed, it is easy to check that the sets

Uk =
⎧⎨⎩a ∈ �

∣∣∣∣∣ρ
⎛⎝ λk∑

j=0

αjxj, y


⎞⎠ <
1
s

and d

⎛⎝{
λk∑

j=0

αjej, a

⎞⎠ <
1
s

⎫⎬⎭
are open for k = 1, 2, . . . , n. Also,

En,
,s,p =
⋃ (

n⋂
k=1

Uk

)
,

where the union is taken over all {λ1 < · · · < λn} ⊆ μ with λ1 > p and n
λn

> c − 1
s ].

Note: If for one particular n ∈ � there is no {λ1 < · · · < λn} ⊆ μ satisfying n
λn

> c − 1
s ,

then En,
,s,p is empty. But since D(μ) = c > 0, for each p ∈ � − {0} there is n ∈ � and
{λ1 < · · · < λn} ⊆ μ satisfying the above inequality.

Finally, we show that

the set
∞⋃

n=0

En,
,s,p is dense in � for each 
, s, p ∈ � − {0} (III).

Let 
, s, p be fixed. Since G is a dense subset of � (Section 1, A2), it is enough for
b = (β0, β1, . . . , βm, 0, 0, . . .) ∈ G and ε > 0 with ε < 1

s to find a ∈ ⋃∞
n=0 	n,
,s,p such

that d(a, b) < ε.
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By Theorem 1.2 we have that

∃ n0 ∈� ∃ α′
0, α

′
1, . . . , α

′
n0

∈ � :

ρ

( n0∑
j=0

α′
jxj, y
 −

m∑
j=0

βjxj

)
< ε and d

( n0∑
j=0

α′
jej, 0

)
< ε.

If we set a = (α′
0, . . . α

′
n0

, 0, 0, . . .) + b := (αj) and since D(μ) = c > 0, we can find
{λ1 < · · · < λn} ⊆ μ with λ1 > max(n0, p, m) and n

λn
> c − 1

s . Then we have

ρ

( λk∑
j=0

αjxj, y


)
= ρ

( n0∑
j=0

α′
jxj, y
 −

m∑
j=0

βjxj

)
< ε <

1
s

and

d
( λk∑

j=0

αjej, a
)

= 0

for k = 1, 2, . . . , n. Hence, a ∈ ⋃∞
n=0 En,
,s,p and d(a, b) = d(

∑n0
j=0 α′

jej, 0) < ε].
Now by (II) and (III) it follows that

⋃∞
n=0 En,
,s,p is a dense open subset of �.

Hence, by (I) and the Baire category theorem we take that Ũμ

� is a dense Gδ subset in
the complete metric space �.

The case where c = 0 is treated similarly. We need only to change the inequalities
of the form n

λn
> c − 1

s by n
|{m≤λn:m∈μ}| > 1 − 1

s and we replace the upper density D by

the relative upper density Dμ and c by 1 throughout the proof.
To complete the proof, it remains to show that Ũμ

� ∪ {0} contains a dense subspace
of �. Let {c(
) : 
 = 1, 2, . . .} be a dense subset of �. We have already proved that Ũ ν

� is
dense in � for each infinite subset ν of �. By induction we get that

∃(μ(
))
=1,2,..., μ(
) = {μ(
)
1 < μ

(
)
2 < · · · } ⊆ μ ∃ (a(
))
=1,2,... in � :

(I)′ D(μ(
) = c and μ(
) ⊆ μ(
−1), 
 = 1, 2, . . .

and

(II)′ a(
) ∈ Ũμ(
−1)

� , 
 = 1, 2, . . .

(III)′d(a(
), c(
)) <
1


, 
 = 1, 2, . . .

(IV)′
μ

(
)
n∑

j=0

α
(
)
j xj → 0, n → ∞ and

μ
(
)
n∑

j=0

α
(
)
j ej → a(
), n → ∞.

(In case that c = 0, we set Dμ(μ(
)) = 1 in (I)′ above. Also μ(0) = μ).
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We set B to be the linear span generated by {a(
) : 
 = 1, 2, . . .}, which is
dense according to (III)′. All we have to prove is that B ⊆ Ũμ

� ∪ {0}. Indeed, let

a′ = ∑m
k=1 rka(k), where rm �= 0. By (II)′, a(m) ∈ Ũμ(m−1)

� , so for each x ∈ �,

∃ λ = {λ1 < λ2 < · · · } ⊆ μ(m−1) ⊆ μ with D(λ) = c (or Dμ(λ) = 1, in case c = 0):

rm

λn∑
j=0

α
(m)
j xj → x, n → ∞

and

λn∑
j=0

α
(m)
j ej → a(m), n → ∞. (2.3)

(We remind the notation a(m) = (α(m)
j ), a′ = (αj)).

We observe that

λn∑
j=0

α′
jxj =

λn∑
j=0

( m∑
k=1

rkα
(k)
j

)
xj =

m∑
k=1

rk

λn∑
j=0

α
(k)
j xj.

Because of (IV)′ it holds that

λn∑
j=0

α
(k)
j xj → 0, n → ∞, for k = 1, 2, . . . , m − 1.

Hence,

lim
n → ∞

λn∑
j=0

α′
jxj = lim

n → ∞ rm

λn∑
j=0

α
(m)
j xj = x.

Also,

lim
n → ∞

λn∑
j=0

α′
jej = lim

n → ∞

m∑
k=1

rk

λn∑
j=0

α
(k)
j ej =

m∑
k=1

rka(k) = a′.

(The last equality follows from (IV)′ and (2.3) above). Hence, a′ ∈ Ũμ

� and the
proof is completed. �

A profound question arises: Is Ũμ

� = Uμ

� ? By the next example, we see that this is
not the case in general.

EXAMPLE 2.4. Let � = �, ρ be the usual metric and xj = 1, j = 0, 1, 2, . . . . Also,
let � = �� and d be the product metric,

d(a, b) =
∞∑

n=0

|αn − βn|
1 + |αn − βn| .
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We consider the following partition of � − {0}. Let {Ak : k = 0, 1, 2, . . .}, where
Ak = {2k · m : m is odd}. Since the terms of each Ak form an arithmetic progression
with difference 2k+1, it holds that

D(Ak) = 1
2k+1

, k = 0, 1, 2, . . . .

Let {rk : k = 0, 1, 2, . . .} be an enumeration of rationals. We set tn = rk for n ∈ Ak,
αj = tj − tj−1 for j = 1, 2, . . . (t0 = 0) and α0 = 0. Then we can easily check that a =
(αj) ∈ U�. Let x ∈ � and let λ = {λ1 < λ2 < . . .} ⊆ � be such that

tλn =
λn∑

j=0

αjxj → x, n → ∞.

But there exists x0 ∈ � such that rk0 �= x. Therefore, λ ⊆ � � Ak0 (except perhaps of a
finite part of λ).

Hence,

D(λ) ≤ D(� � Ak0 ) = D(� − Ak0 ) = 1 − 1
2k0

< 1.

Then, a /∈ Ũ� and so Ũ� � Ũ�.

3. Lower frequently universal sequences. In this section we study what happens
with the lower densities of the sets of indices which realize universal approximations.
First by the next proposition we see that we cannot have universal approximations
with positive lower density even in the class Ũ (which is larger than Uμ

� ).

PROPOSITION 3.1. It holds that{
a = (αj) ∈ U |∀ x ∈ � ∃ λ = {λ1 <λ2 < · · · } ⊆ � with D(λ) > 0 :

λn∑
j=0

αjxj → x, n → ∞
}

= ∅.

Proof. Suppose the contrary, and let a = (αj) be a sequence in this set. If for
n ∈ � − {0},

Xn =
{

x ∈ �|∃ λx = {λ1 < λ2 < · · · } ⊆ � :

D(λx) ∈
(

1
n + 1

,
1
n

]
and lim

n → ∞

λn∑
j=0

αjxj = x
}
,

then, since � is uncountable, there is n0 ∈ � such that Xn0 is uncountable. Obviously,
if x1, x2 ∈ � and x1 �= x2 then λx1 ∩ λx2 is at most finite and we may assume that
λx1 ∩ λx2 = ∅. Then,

|{n ∈ λx1 ∪ λx2 : n ≤ N}|
N

= |{n ∈ λx1 : n ≤ N}|
N

+ |{n ∈ λx2 : n ≤ N}|
N

,
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hence

D(λx1 ∪ λx2 ) ≥ D(λx1 ) + D(λx2 ).

Apparently the same holds for x1, x2, . . . , xn0+1 mutually disjoint elements in Xn0 , that
is,

D(λx1 ∪ · · · ∪ λxn0+1 ) ≥ D(λx1 ) + · · · + D(λxn0+1 ) > (n0 + 1)
1

n0 + 1
= 1,

which is a contradiction. �

REMARK 3.2.
(a) It follows from the proof of Proposition 3.1 that for each a = (αj) ∈ U we can

have D(λx) > 0, for at most countably many x ∈ �. This may happen, as we see in
Example 3.3.

(b) If λ ⊆ μ ⊆ � are infinite sets and we define the lower relative density of λ with
respect to μ, Dμ(λ), as follows

Dμ(λ) = lim inf
N

|{n ∈ λ : n ≤ N}|
|{n ∈ μ : n ≤ N}| ,

then with the same reasoning as in the proof of Proposition 3.1 we can see that{
a = (αj) ∈ U |∀ x ∈ � ∃ λx = {λ1 <λ2 < · · · } ⊆ μ with Dμ(λx) > 0 :

λn∑
j=0

αjxj → x, n → ∞
}

= ∅.

(c) For every λ ⊆ � it is easy to see that

D(λ) = 1 − D(� − λ).

EXAMPLE 3.3. Let �, � and a = (αj) ∈ U� be as in Example 2.4. Then for n ∈ Ak =
{2km : m is odd} it holds that

n∑
j=0

aj =
n∑

j=0

αjxj = tn = rk.

Since D(Ak) = 1
2k+1 (k = 0, 1, 2, . . .), it follows that for x = rk and λx = λrk = Ak

we have D(λrk ) > 0 for k = 1, 2, . . . and the corresponding partial sums are equal to
rk. Thus, we have D(λk) > 0 for denumerably many n’s.

Although universality with positive lower density has no meaning as we showed
in Proposition 3.1, universality with positive lower densities on every neighbourhood
of a point x ∈ � has a meaning and this is what we are going to examine in the sequel.
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DEFINITION 3.4. A sequence a = (αj) ∈ U is said to be lower frequently universal
if and only if ∀ x ∈ �, ∀ ε > 0

D
({

n ∈ � : ρ

( n∑
j=0

αjxj, x
)

< ε

})
> 0.

We denote by U∼ the class of these sequences. Regarding the class U∼ we have the

following proposition.

PROPOSITION 3.5. Suppose that U� �= ∅. Then U∼ ∩ � is of first category in (�, d).

Proof. By Theorem 2.3 it is enough to show that U∼ ∩ Ũ ∩ � = ∅ (as Ũμ

� ⊆ Ũ ∩ �).

Assume the opposite and let a = (αj) ∈ U∼ ∩ Ũ ∩ �. If x �= 0, x ∈ � and ε = ρ(x,0)
2 , then

∃ λ = {λ1 < λ2 < · · · } ⊆ � with D(λ) = 1 :
λn∑

j=0

αjxj → x, n → ∞.

It follows that the set {n ∈ � : ρ(
∑λn

j=0 αjxj, 0) < ε} is finite. Hence, there exists n0 ∈ �

such that

λ ∩ [n0,∞) ⊆ � −
{

n ∈ � : ρ

( n∑
j=0

αjxj, 0
)

< ε

}
. (4)

By Remark 3.2(c), we take

D
({

n ∈ � : ρ

( n∑
j=0

αjxj, 0
)

< ε

})
=1 − D

(
� −

{
n ∈ � : ρ

( n∑
j=0

αjxj, 0
)

<ε

})
=0

(because of (4) and the fact that D(λ) = 1), which is a contradiction since a ∈ U∼ . �

QUESTION 3.6. In Example 2.4 if x ∈ � and ε > 0, then there exists k ∈ � such
that ρ(x, rk) = |x − rk| < ε. Since

∑n
j=0 αjxj = tn and tn = rk for n ∈ Ak, it follows that

Ak ⊆
⎧⎨⎩n ∈ � : ρ

⎛⎝ n∑
j=0

αixj, x

⎞⎠ < ε

⎫⎬⎭ .

Hence, U∼ ∩ � = U∼ �= ∅ (U∼ ∩ � = U∼ since � = �N). But we do not know if there are

universal Taylor series (Example 1.3) or universal trigonometric series (Example 1.4)
in the class U∼ ∩ �. An interesting question is whether U∼ ∩ � can be empty?

REMARK 3.6. An obvious question is, whether � ∩ U∼ is of 1st category in (�, d)

under the weaker assumption � ∩ U �= ∅ and not U� �= ∅? A combination of the
methods of the present paper with the methods of [4] yields a positive answer to
this question. This is the content of a future paper in preparation [5].
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