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Abstract

Cloud computing refers to maximizing efficiency by sharing computational and storage

resources, while data-parallel systems exploit the resources available in the cloud to perform

parallel transformations over large amounts of data. In the same line, considerable emphasis

has been recently given to two apparently disjoint research topics: data-parallel, and eventually

consistent, distributed systems. Declarative networking has been recently proposed to ease the

task of programming in the cloud, by allowing the programmer to express only the desired

result and leave the implementation details to the responsibility of the run-time system.

In this context, we deem it appropriate to propose a study on a logic-programming-based

computational model for eventually consistent, data-parallel systems, the keystone of which

is provided by the recent finding that the class of programs that can be computed in an

eventually consistent, coordination-free way is that of monotonic programs. This principle is

called Consistency and Logical Monotonicity (CALM) and has been proven by Ameloot et al.

for distributed, asynchronous settings. We advocate that CALM should be employed as a

basic theoretical tool also for data-parallel systems, wherein computation usually proceeds

synchronously in rounds and where communication is assumed to be reliable. We deem this

problem relevant and interesting, especially for what concerns parallel dataflow optimizations.

Nowadays, we are in fact witnessing an increasing concern about understanding which

properties distinguish synchronous from asynchronous parallel processing, and when the

latter can replace the former. It is general opinion that coordination-freedom can be seen as

a major discriminant factor. In this work, we make the case that the current form of CALM

does not hold in general for data-parallel systems, and show how, using novel techniques, the

satisfiability of the CALM principle can still be obtained although just for the subclass of

programs called connected monotonic queries. We complete the study with considerations on

the relationships between our model and the one employed by Ameloot et al., showing that our

techniques subsume the latter when the synchronization constraints imposed on the system are

loosened.

� Work partially done while at University of California, Los Angeles.
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1 Introduction

Recent research has explored ways to exploit different levels of consistency in

order to improve the performance of distributed systems w.r.t.specific tasks and

network configurations while preserving correctness (Brewer 2000; DeCandia et al.

2007; Vogels 2009). A topic strictly related to consistency is coordination, usually

informally interpreted as a mechanism to accomplish a distributed agreement on

some system property (Fagin et al. 2003). Indeed, coordination can be used to enforce

consistency when, in the natural execution of a system, the latter is not guaranteed.

In this paper, we set forth a logic-programming-based framework to express

database queries and study some theoretical problems springing from the use of

eventually consistent, coordination-free computation over synchronous systems with

reliable communication (rsync in short). Rsync is a common setting in modern

data-parallel frameworks such as MapReduce (Dean and Ghemawat 2008), Pregel

(Malewicz et al. 2010), and Apache Spark (Zaharia et al. 2012), where computation

is commonly performed in rounds, and each task is blocked and cannot start the new

round until a synchronization barrier is reached, i.e., every other task has completed

its local computation. Identifying under what circumstances eventually consistent,

coordination-free computation can be performed over rsync systems would enable

the introduction of novel execution plans, no longer restricted by predefined

(synchronous) patterns. For example, coordination-free programs can be divided

into independent sub-units that can be run concurrently: a property known as

decomposability (Wolfson and Silberschatz 1988). While our recent work (Shkapsky

et al. 2016) implements the generalized pivoting technique (Seib and Lausen 1991)

by which a decomposable plan can be identified from simple syntactic analysis of

the program(s), still no semantics study exists on the matter.

Our aim is therefore to understand in what generic circumstances a synchronous

“blocking” computation is actually required by the program semantics – and therefore

must be strictly enforced by the system – and when, instead, an asynchronous execution

can be performed as optimization. Recently, the class of programs that can be

computed in an eventually consistent, coordination-free way has been identified:

monotonic programs (Hellerstein 2010); this property is called CALM (Consistency

and Logical Monotonicity) and has been proven in Ameloot et al. (2013). While

CALM was originally proposed to simplify the specification of distributed (asyn-

chronous) data management systems, in this paper, we advocate that CALM should

be employed as a basic theoretical tool also for the declarative specification of

data-parallel (synchronous) systems. As a matter of fact, CALM permits to link

a property of the execution (coordination-freedom) to a class of programs, i.e.,

monotonic queries. But to which extent does CALM hold over data-parallel systems?

Surprisingly enough, with the communication model and the notion of coordination

as defined in Ameloot et al. (2013), the CALM principle does not hold in general in
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rsync settings, the main reason being that the proposed definition of coordination

is too weak to capture the type of coordination “baked” into the synchronization

barrier of rsync systems (cf . Example 5). In this paper, we first characterize such

type of coordination, then we study to which extent the “synchronization barrier”

creates coordination, and finally we devise additional forms of coordination patterns.

To reach our goal, we develop a new generic parallel computation model, leveraging

previous works on logic-based relational transducers (Abiteboul et al. 2000) and

transducer networks (Ameloot et al. 2013), and grounding rsync computation on

the well-known Bulk Synchronous Parallel (BSP) model (Valiant 1990). With BSP,

computation proceeds in a series of global rounds, each comprising three phases: (i)

a computation phase, in which nodes concurrently perform local computations; (ii)

a communication phase, in which data is exchanged among the nodes; and (iii) the

synchronization barrier. Exploiting this new type of transducer network, equipped

with a content-based addressing model, we then show that the CALM principle

is in general satisfied for BSP-style systems under a new definition of coordination-

freedom, although, surprisingly enough, just for a subclass of monotonic queries,

i.e., the connected monotonic queries (cf . Definition 10). When defining coordination-

freedom, we will take advantage of recent results describing how knowledge can be

acquired in synchronous systems (Ben-Zvi and Moses 2014). As a final outcome,

a series of coordination patterns – and related classes of characteristic queries – is

identified, and we will discuss how these coordination patterns behave under BSP

and weaker synchronous settings. As a corollary, we show that the new definition of

coordination-freedom subsumes the one employed in Ameloot et al. (2013).

Contributions: Summarizing, the contributions of the paper are as follows:

(1) The only-if direction of the CALM principle (namely that only monotonic

queries can be computed in a coordination-free way) is proven not to hold in

general for rsync systems (cf . Example 5 in Section 3.6).

(2) A novel, logic-programming-based computational model is introduced that em-

ulates common patterns found in modern data-parallel frameworks (Section 4).

(3) A new definition of coordination is proposed, leveraging recent results on

knowledge acquisition in rsync systems (Section 5).

(4) Exploiting the new techniques, the CALM principle is proven to hold for con-

nected monotonic queries in rsync systems with bounded delay and deterministic

data delivery (Theorem 1 in Section 6).

(5) A complete taxonomy of queries is provided that permits the identification of

different types of coordination patterns (Section 6).

(6) The definition of coordination previously introduced in Ameloot et al. (2013) is

shown to collapse into the one we propose, when the synchronization constraints

assumed on the system model are loosened (Section 6.3).

Applications: Data-parallel programs such as the one implemented on top of

MapReduce and Apache Spark relies on the assumption that computation is

executed in rounds. This assumption makes the implementation of distributed

programs easier because hides to the developers details on coordination and on

how tasks are executed by the systems. Nevertheless, coordination-free execution is

shown to be faster when allowed. In fact, certain algorithms are shown to converge
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faster when (a bounded amount of) asynchrony is permitted (Niu et al. 2011;

Cui et al. 2014). In general, it is well known that coordination-free (asynchronous)

computations are amenable to pipelining, i.e., one-record-at-a-time executions of

sequences of computations requiring no intermediate materialization of data; overall

pipelining is highly desirable in the Big Data context, where full materialization is

often problematic because of the limits on the available main memory. Finally, as

previously mentioned, coordination-free programs are decomposable (Wolfson and

Silberschatz 1988).

Currently, all high-level data-parallel languages are compiled into synchronous

(blocking) plans; for instance, both Hive (Thusoo et al. 2009) and Pig (Olston et al.

2008) sacrifice efficiency in order to fit query plans into rounds of MapReduce

jobs. Similarly, Spark SQL statically splits programs into stages separated by ad-hoc

coordination logic. Other more sophisticated systems such as Hyracks (Borkar et al.

2011) and Apache Flink (Alexandrov et al. 2014) do provide the ability to pipeline

operators, but it is the programmer’s task to manually select the proper strategy.

To our knowledge, only BigDatalog (Shkapsky et al. 2016) and few other systems

(Niu et al. 2011; Cui et al. 2014; Han and Daudjee 2015; Xie et al. 2015) have

started to explore when asynchronous executions can be delivered as optimizations

of parallel, synchronous programs, and these are mainly in the graph-processing and

machine-learning domain.

Organization: The rest of the paper is organized as follows: Section 2 introduces

some preliminary notation. Section 3 defines our model of synchronous and reliable

parallel system, and shows that the CALM principle is not satisfied for systems

of this type. Section 4 proposes a new computational model based on hashing,

while Section 5 introduces the new definition of coordination. Finally, Section 6

discusses CALM under the new setting. The paper ends with a comparison with

other work and concluding remarks. The extended version of this paper (Interlandi

and Tanca 2017) contains some additional material: (i) result on the decidability of

independent specifications; and (ii) a complete study on the expressive power of the

bulk synchronous transducer network model.

2 Preliminaries

The ultimate goal of this paper is to understand to which extent the execution

of high-level data-parallel SQL-like languages such as Hive (Thusoo et al. 2009),

Pig (Olston et al. 2008), and Spark SQL (Armbrust et al. 2015) can be optimized

by understanding coordination patterns. In this section, we therefore recall the

basic notions of database theory whereby queries (expressed as logic programs) are

evaluated in a bottom-up fashion. We also set forth our notation, which is close to

that of Abiteboul et al. (1995) and Ameloot et al. (2013).

2.1 Basic database notation

We denote by D an arbitrary database schema composed by a non-empty set of

relation schemas (or simply relations). In the following, we will use the notation

https://doi.org/10.1017/S147106841800042X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800042X


878 M. Interlandi and L. Tanca

R(a) to denote a relation name together with its arity a. With dom, we indicate a

countably infinite set of constants. Given a relation R(a), a fact R(ū) is an ordered

a-tuple over R composed by constants only. A relation instance IR is a set of facts

defined over R ∈ D, while a database instance I is the union
⋃
R∈D IR . In general, we

write ID′ to denote an instance over the relations D′ ⊆ D. The set adom(I) ⊆ dom

of all constants appearing in a given database instance I is called active domain

of I, while inst(D) denotes the set of all the possible database instances defined

over D. Given a database schema D and a relation R ∈ D, a query qR is a total

function such that qR : inst(D) → inst(R) and adom(q(I)) ⊆ adom(I). In practice,

we will only consider generic queries, i.e., if p is a permutation of dom, and I an

input instance, then q(p(I)) = p(q(I)). Finally, we say that a query is monotonic

when given two instances I, J, if J ⊆ I, then q(J) ⊆ q(I). Note that in the above

definitions, we have considered queries with a single output relation; this is not a

limitation since queries with multiple output relations can be expressed as collections

thereof: Given an input and output schema Din and Dout, respectively, we will write

Q = {qR | R ∈ Dout}. In this paper, we will consider the following query languages

all expressible using a rule-based formalism: Unions of conjunctive queries ucq, first

order queries fo, datalog, and datalog with negation datalog
¬. Next, we briefly

introduce the syntax of the above query languages.

2.2 Query languages

Let var be an infinite set of variables ranging over the elements of dom. Given

a relation R, an atom R(ū) is a tuple in which both constants and variables are

permitted as terms. A literal is an atom – in this case, we refer to it as positive – or

the negation of an atom.

A conjunctive query with negation, is an expression in the form of

H(w̄)← B1(ū1), . . . , Bn(ūn),¬C1(v̄1), . . . ,¬Cm(v̄m), (1)

where H(w̄), Bi(ūi), and Cj(v̄j) are atoms. As usual, H(w̄) is referred to as the head,

and B1(ū1), . . . , ¬Cm(v̄m) as the body. If m = 0, the rule is called positive while if

m = n = 0 the rule is expressing a fact. For simplicity, in this paper, we assume each

query to be safe, i.e., every variable, occurring either in a rule head or in a negative

literal, appears in at least one positive literal of the rule body.

A ucq query is a union of positive conjunctive queries, represented as a set

of positive rules. In a datalog query, all predicates appearing in the body of a

rule must be positive, and can also be used in the heads of rules to eventually

produce recursive computation. A datalog
¬ query is a set of safe rules where both

recursion and negation are allowed. For datalog
¬, we will assume the stratified

semantics1. Finally, since non-recursive datalog
¬ queries are equivalent to first-

order logic (Abiteboul et al. 1995), we will use fo to denote such class of queries. In

1 A datalog
¬ program is said stratifiable if it can be partitioned into sub-programs (i.e., strata),

each defining one or more negated predicates, and where no cycle of recursion contains a negated
predicate (Abiteboul et al. 1995). According to the stratified semantics, these sub-program are
then evaluated in order, following the dependencies among the negated predicates: Initially, the
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this paper, we will only consider languages belonging to the above introduced set,

with Datalog
¬ being the most expressive. Therefore, for each language L, unless

otherwise specified, we will assume L ⊆ Datalog
¬.

We will sometimes employ the function sch to return from a query its schema, i.e.,

D = sch(Q). The intensional (idb) part of the database schema is the subset of the

database schema containing all the relations that appear in at least one non-fact

rule head, while we refer to all the other relations in sch(Q)\ idb as extensional (edb).

2.3 Distributed systems

We define a distributed system as a fully connected graph of communicating nodes

N = {1, . . . , n}. We assign to each node i a node configuration denoted by the pair

(N, i). We will in general assume all nodes to share the same global database schema.

We will use the notation IiR to denote a local instance for node i over a relation R,

while a global instance over R is defined as IR =
⋃
i∈N I

i
R . Given an initial database

instance I ∈ inst(D′) defined over a subset of the global schema D, we assume that

a distribution function D exists mapping each node i to a (potentially overlapping)

portion of the initial instance, this is D : inst(D′) × N → inst(D′). For correctness,

we assume that D is such that each fact composing the input instance is mapped to

at least one node, i.e.,
⋃
i∈N D(I, i) = I. Finally, a network configuration is identified

with the pair (N,D).

3 Computation in rsync

Query computability is usually defined using the classical model of computation:

the Turing machine. However, in this paper, we are interested in the meaning of

computing a query in parallel settings. To this end, in the following, we introduce

a novel kind of transducer network (Ameloot et al. 2013), where computation is

synchronous and communication is reliable, thus obtaining an abstract computational

model for distributed data-parallel systems. As a first step, next we describe how

relational transducers (Abiteboul et al. 2000; Ameloot et al. 2013) (hereafter, simply

transducer) can be used to model local computations.

3.1 Relational transducers

We employ transducers as an abstraction modeling the behavior of each single

computing node composing a computer cluster: This abstract computational model

permits us to make our results as general as possible without having to rely on

a specific framework, since transducers and transducer networks (introduced in the

next section) can be easily used to describe any modern data-parallel system.

We consider each node to be equipped with an immutable database, and a

memory-store used to maintain useful data between consecutive computation steps.

sub-programs having no dependency on negated predicates are fired, followed then by the strata
depending on those that have just been executed, and so forth.
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In addition, a node can produce an output for the user and can also communicate

some data with other nodes (data communication will be clarified in Section 3.2

with the concept of transducer network). An internal time, and system data are kept

mainly for configuration purposes. Every node executes a program that translates

a set of input instances (from the database, the memory and the communication

channel), to a new set of instances that are either saved to memory, or directly

output to the user, or addressed to other nodes. Programs are expressed in one of

the languages of Section 2.1.

Formally, each node is modeled as a transducerT defined by the pair (P,Υ) where

P and Υ, respectively, denote the transducer program and the transducer schema. A

transducer schema is a 6-tuple (Υdb, Υmem, Υcom, Υout, Υtime, and Υsys) of disjoint

relational schemas, respectively, called database, memory, communication, output, time,

and system schemas. As default, we consider Υsys to contain two unary relations Id,

All, while Υtime includes just the unary relation Time, employed to store the current

transducer local clock value2. A transducer local state over the schema Υ is then an

instance I over Υdb ∪Υmem ∪Υout ∪Υsys. The transducer program P is composed by

a collection of insertion, deletion, output, and send queries Qins = {qins
R |R ∈ Υmem},

Qdel = {qdel
R |R ∈ Υmem}, Qout = {qout

R |R ∈ Υout}, and Qsnd = {qsnd
R |R ∈ Υcom}, all

taking as input an instance over the schema Υ.

Starting from a relational transducer T = (P,Υ) and a node configuration (N, i),

we can construct a configured transducer, denoted by Ti
N , by setting IId = {Id(i)}

and IAll = {All(j)|j ∈ N}. Given a configured transducer and an instance I defined

over Υdb, we can create a transducer initial local state by setting Idb = I. This

basically models the starting status of a computing node, before the actual program

execution starts: A node has received a program and a read-only instance (e.g.,

stored in a distributed file system such as HDFS where data is immutable) over

which the computation must be performed, and has global knowledge of the other

nodes composing the network. Indeed, this is exactly how working nodes are set up,

for instance, in MapReduce or Spark.

Now, given a configured transducer Ti
N , let Ircv, Jsnd denote two instances over

Υcom – and hence disjoint from I – with the former identifying a set of facts that

have been previously sent toTi
N . If I is a local state, a transducer transition, denoted

by I, Ircv⇒J, Jsnd is such that J is the updated local state, while Jsnd contains a set of

facts that must be addressed to other transducers. The semantics for updates leaves

the database and the system instances unchanged, while the facts produced by the

insertion query Qins are inserted into the memory relations and all the facts returned

by the deletion query Qdel are removed from them. In case of conflicts – i.e., a fact

is simultaneously added and removed – we adopt the no-op semantics. As a result

for the user, the set of tuples derived by the query Qout are output. As regards Jsnd,

this is the set of facts returned by query Qsnd and sent by the transducer toward the

other nodes. We assume that, once sent or output, facts cannot be retracted.

2 The semantics of Υtime will become clearer in Section 3.3 when we will describe the synchronous
model.
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If I ′ = I ∪ Ircv, a transducer transition I, Ircv⇒J, Jsnd is formally defined by the

laws as follows:

• J and I agree on Υdb and Υsys.

• Jmem = (Imem ∪ I+
ins) \ I−del, where I+

ins = Qins(I
′) \ Qdel(I

′) and I−del = Qdel(I
′) \

Qins(I
′).

• Jout = Iout ∪ Qout(I
′).

• Jsnd = Qsnd(I
′).

Finally, note that transitions are deterministic, i.e., if I, Ircv⇒J, Jsnd, and I, Ircv⇒J ′,
J ′snd, then J = J ′ and Jsnd = J ′snd.

Many different versions of transducers can be obtained by constraining the type

of queries or the transducer schema. A transducer is oblivious if its queries do not

use any system and time relations. Intuitively, this means that each query is unaware

of the configuration, because independent of (i) the node it is running on, (ii) the

other nodes in the network, and (iii) the time point at which the computation is. A

transducer is called monotonic if all its queries are monotonic. Finally, we say that

a transducer is inflationary if memory facts are never deleted – i.e., Qdel is empty.

Remark: The relational transducer model we have just defined is general, however

it can be instantiated using a specific query language L. We shall then write

L-transducer to denote that the program is actually implemented in L.

Example 1

A first example of single-node relational transducer is the ucq-transducer T below,

computing an equi-join3 between relations R and T 4.

Schema: Υdb = {R(2), T (2)},Υmem = ∅,Υcom = ∅,Υout = {Q(3)}
Program: Qout(u, v, w)← R(u, v), T (v, w).

Let Ti
N be a configured version of T, and I an initial instance over which we want

to compute the join. Then, let Idb = I. A transition for Ti
N is defined by setting

I = Idb∪Isys, Ircv = Jsnd = ∅ (no communication query exists), and J = Idb∪Iout∪Isys,

where Iout is the result of the query on Q, i.e., the join between R and T .

Remark: Note that, to simplify the notation, in the example above, we omitted

the schemas Υsys and Υtime because they are always the same; for the same reason,

henceforth we will also omit all the empty schemas, as in the case of Υmem and Υcom

in the example.

3 The readers who are not familiar with database notation should consider that an equi-join operation
between two relations is specified by sharing one or more variables. For example, in our case, the
variable v, shared by R and T , indicates that the Q relation is obtained by imposing that the second
term of R be equal to the first term of T .

4 Note that, throughout the paper, we add a subscript to the relations in the rule heads to denote
to which query – among the queries Qins, Qdel, Qout, and Qsnd of the transducer program – the rule
belongs.
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3.2 Transducer networks

We have already defined how local computations can be expressed by introducing

the notion of relational transducer. In this section, we will model the behavior

of a networked set of computing nodes by means of specifications. A transducer

network specification (henceforth, simply transducer network, or specification)N is a

tuple (T,Te, γ), where T = (P,Υ) is a transducer, Te is a transducer defining the

environment, and γ : N → inst(Υcom) is a communication function mapping each node

to a set of received facts. Transducer networks are defined such that all the nodes

employ the same transducer T, while the only thing that can be different from

node to node is their state. Such an abstraction is thus appropriate for modeling

data-parallel computation, where each node applies the same set of transformations

in parallel over a portion of the initial data5.

For the moment we will consider two types of specifications: broadcasting and

communication-free. The former are specifications in which the communication

function γ is such that every fact emitted by a transducer is sent to all the other

transducers composing the network. In the latter, instead, every fact is delivered just

locally to the sending node. In the remainder of this section, we will assume the

network to be broadcasting.

The environment Te is a “special” relational transducer. To give an intuition,

following a common practice of multi-agent systems (Fagin et al. 2003), we use the

environment for modeling all the non-functional concerns related to the system;

in our specific case, data communication and synchronization. More precisely, we

defineTe = (Pe,Υe) as a transducer, where Υe is composed only by the memory and

communication relation schemas, where Υe
com = Υcom and Υe

mem is the primed copy

of Υe
com (i.e., ∀R ∈ Υe

com, ∃R′ s.t. R′ ∈ Υe
mem). The transducer program Pe contains,

for each R ∈ Υcom, a set of queries of the form:

R′ins(ū)← R(ū),

Rsnd(ū)← R(ū),
(2)

the first used to store into memory a copy of each tuple sent by each node of the

network; the second to emit every received fact. The use of Te will be further

clarified in Section 3.3 when we introduce the operational semantics of transducer

networks.

Given a network configuration (N,D), we denote byNN,D a configured transducer

network, i.e., a specification where all the transducers have been configured, and

where each node i holds a database assigned according to the distribution function

D. When |N| = 1 D returns the full instance, we call this the trivial configuration6.

Thus, a configured transducer network can be used to model a cluster with a

parallel system set up, and that is ready to run the user-submitted program; the

trivial configuration represents a program that is run in local mode.

5 Homogeneous transducers model what is known in the parallel computing world as Single Program,
Multiple Data (SPMD) computations.

6 Note that this follows from the previously introduced assumption on D that no facts from the database
instance are ignored.
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A transducer network global state is a tuple (Ie, I1, . . . , In) where, for each j ∈ N
∪ {e}, the jth element is the related relational transducer state Ij . The definitions

of oblivious, monotonic, and inflationary transducers provided at the end of Section

3.1 are naturally generalized over transducer networks. Now, given a specification

N, many possible executions may exist, each of them representing one possible

evolution of the global state. We describe how network global states may change

over time through the notion of run ρ, which binds logical time values to global

states7. Then, if ρ(t) = (Ie, I1, . . . , In) is the network global state at time t, a point

(ρi, t) is the transducer state of node i ∈ N. We assume that the initial global state

ρ(0) is such that (i) the database local to each node contains the related partition

of the initial instance; (ii) the local system relations are properly initialized with the

node identifier and with the information about the other nodes; and (iii) all the

other relations are empty.

Recall that a distributed system may have many possible runs, indicating all the

possible ways the global state can evolve. In order to capture this, starting from a

configured transducer networkNN,D and an initial instance I ∈ inst(Υdb), we define

a system SN(N,D, I) as a set of runs, where N,D, and I are the parameters shaping

the system. Given a system SN(N,D, I), if its settings are irrelevant or clear from

the domain, we will often denote it simply by S.

In the following, we will also be interested in investigating classes of systems, i.e.,

sets of systems having identical specification but different configurations. Thus, if

a system is defined starting from a configured transducer network and an instance,

a class of systems is defined starting from a simple specification N, by adding

an instance and a partial configuration: i.e., a configuration having some unfixed

parameter. Intuitively, if all the parameters are bound, we obtain a specific system

SN(N,D, I). Partial configurations and classes of systems are important because,

in the next sections, we will study with particular attention which (instantiated)

specifications are able to obtain a unique final outcome, independently of the provided

configuration.

3.3 Synchronous and reliable systems

We are mainly interested in synchronous systems with reliable communication.

Informally, a distributed system is synchronous when all processing node’s clocks

run at the same rate and both the difference between two nodes clocks and the latency

of data communication is bounded. One can construct a synchronous system by

providing as input to each node an external reference global clock, and assuming

that difference between the global clock received as input by each node is bounded 8.

A similar bound on data communication also have to exists, otherwise nodes will

7 In this paper, we will consider logical time and physical time to be two different entities: the former
is used to reason about the computation progress of a distributed system; the second can be thought
as the time in seconds returned by a local call to the operating system.

8 In fact, synchronization cannot be achieved if by the time the global clock reaches a node, the reference
clock has changed significantly.
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be unable to reason about distributed property of the system. The next definition

summarizes the above considerations.

Definition 1

A synchronous system Ssync is a set of runs fulfilling the following conditions:

S1 A global clock is defined and accessible by every node.

S2 The relative difference between the time clock values of any two nodes is

bounded.

S3 Emitted tuples arrive at destination at most after a certain bounded physical

time Δ.

In our framework, the first property can be expressed by linking the time value

stored in the Time relation of each node with the external logical time used to

reason about system runs. This is accomplished by defining a timed local transition

I , Ircv
t⇒ J , Jsnd as a local transition where, at each time instant t, Itime = {Time(t)}.

In this enriched setting, we have that each transducer accepts as input also the clock

value, and the environment can be employed to directly provide the clock driving

the computation for all the transducers9. Under this perspective, each timed local

transition is basically labeled with the time value in which it is performed.

The second property of Definition 1 can be added to our framework by assuming

that programs proceed in rounds, and that each round, operationally speaking, lasts

enough to permit the computation at each node to reach the fixpoint10. In the

following, w.l.o.g. we will use the round number to refer to the time of the clock

stored in the Time relation. Finally, in order to express the third property, we assume

that emitted facts are first buffered locally, and then, once the node has completed

its local transition, delivered in batch to destination.

The above properties imply that a remote tuple is either received after a bounded

amount of time or never received. Recall that initially, however, we have required

each system to be reliable, i.e., all emitted tuples arrive at destination:

Definition 2

To be reliable, a synchronous system must satisfy properties S1–S3 along with the

following additional conditions:

R1 In every run, for every received fact for node i at round t′, there exists a node

j and a round t s.t. t < t′ and a send query derived the same fact on node j in

round t.

R2 In every run, if a fact has been emitted by a node i at round t, there exists a

time t′ s. t. t < t′ and the same fact belongs to the input instance state of a node

j at round t′.

9 We assume that the environment is the only transducer allowed to modify the time-related instances,
which are then sent to the rest of the network to achieve synchronization.

10 Note that, because of the considered languages, we are assured that local transitions always terminate
in at most PTIME.

https://doi.org/10.1017/S147106841800042X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800042X


A datalog-based computational model for coordination-free, data-parallel systems 885

Fig. 1. bsp system computation model. Each node’s computation is independent but bounded

by the global end of the round (condition S2). Communication is reliable and takes exactly Δ

time (conditions S3 and S3′). The next round starts when Δ time since the end of the previous

round has elapsed (conditions S1 and S3′).

Informally, properties R1 and R2 specify that if an emitted fact exists in an instance

at a given round, then it has been generated by a send query in a previous round,

and vice-versa, if a send query derives a new fact, then that fact must appear in

a successive round in the local state of a node. We denote by Srsync the systems

satisfying conditions S1–S3 and R1–R2.

To further simplify the model, we can add to S3 an extra condition forcing emitted

tuples not only to be eventually received after at most Δ physical time, but to be

delivered exactly after Δ:

S3′ Every tuple sent at round t is delivered exactly after Δ physical time.

We name this condition deterministic delivery: Without S3′, tuples may be non-

deterministically delivered inside the bounded range defined by Δ and, as we will

see in Section 6.2, this situation creates different coordination patterns. We can then

assume that, between the end of one round and the start of the consecutive one,

precisely Δ physical time elapses, so that all emitted tuples are received at the start

of the new round. In other words, we can safely shift the beginning of each new

round t+1 so that every tuple emitted at round t is precisely delivered at the start of

the new round. We will use the signature Sbsp to denote a synchronous and reliable

system with deterministic delivery. Figure 1 gives a pictorial representation of bsp

systems. Note that this type of systems simulate how real-world BSP frameworks

behave.

Next, we will show how the properties for bsp systems are enforced during global

transitions.

3.4 Global transitions

Given a transducer network (T,Te, γ) and two global states F = (Ie, I1, . . . , In),

G = (Je, J1, . . . , Jn), let t be the clock value and σ be a state function mapping each

node i and global state F to the corresponding local state Ii; i.e., ∀i ∈ N, Ii = σ(F)(i).
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Moreover, let Iircv = γ(i), and Iidb = D(I)(i). A global transition for a bsp system,

denoted by F ⇒ G, is such that the following conditions hold:

• (Ii, Iircv
t⇒ Ji, Jisnd) is a timed local transition for transducer Ti

N .

• (Ie, Iercv⇒Je, Jesnd) is a local transition for the environment, where Iercv =⋃
i∈N J

i
snd.

Informally, during a global transition all the nodes composing the network make

simultaneously a local transition taking as input the associated tuples. A local

transition for the environment is then executed, whose input is the set of tuples

emitted by all the transducers. In addition, in order to satisfy property S3′, we

assume that a global transition can start only when a certain amount Δ of physical

time has elapsed after the end of the previous transition. As a final remark note that,

since a global transition is composed by |N| deterministic local transitions, and the

communication is assumed to be reliable, also global transitions are deterministic.

From this follows that any bsp system Sbsp is defined by just one run. We refer to

the specifications defining bsp systems as synchronous.

3.5 Query computability

Given a run ρ describing the execution of a synchronous transducer network,

we use the notation out(t) for the set of facts output by all nodes at time t,

i.e., out(t) =
⋃
i∈N I

i
out such that Iiout ∈ (ρi, t). This definition models how parallel

data-processing frameworks work in practice: The output remains distributed on

each node composing a cluster and can be eventually collected by invoking a

proper function, or written to a distributed file system (e.g., HDFS). Now, let us

assume that for a synchronous transducer network a time value t′ exists such that

∀t′′ > t′, out(t′) = out(t′′); that is, a quiescence state is reachable so that the output is

stable and not changing any more. We define the output for a synchronous network

to be the output up to network quiescence, denoted by out(∗), where we use ∗
to denote the time value in which the quiescence state is reached. In practice, a

transducer network initial state identifies also its output. This is because the system

Sbsp
N (N,D, I) is constituted by one and only one run, therefore, given an initial

instance and a configuration, the output is uniquely determined. As a signature, we

useNN,D(I) to denote the output of the transducer networkNN,D on input database

instance I , and over a bsp system.

We are now able to state what we mean for a query to be computable by a

transducer network N:

Definition 3

Given an input and an output schema, respectively, Din and Dout, a total mapping

Q : inst(Din) → inst(Dout) is computable by a synchronous transducer network if a

configured transducer network NN,D exists such that Din = Υdb, Dout = Υout and

NN,D(I) = Q(I), for every initial database instance I over Din.
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Because we assumed generic queries as building blocks of transducers, we have that:

Proposition 1

The function NN,D is generic for each oblivious synchronous transducer network.

Some specification might have the property that a unique final result is obtained

independently of the chosen configuration; on the other hand, not all specifications

have this property. Note that this property is a common requirement in parallel

systems: the same job must return consistent results, whichever the cluster size and

partitioning scheme.

Definition 4

Given a specificationN, an input instance I ∈ inst(Υdb), and a partial configuration

ψ, we say that the class Sbsp
N (ψ, I) is convergent if for all pairs ρ, ρ′ ∈ Sbsp

N (ψ, I), the

respective final outputs out(∗), out′(∗) coincide, i.e., out(∗) = out′(∗).

Informally, a class of systems is convergent if, at the quiescence state, all its runs

have the same output. Note that – in order for the convergence property to hold –

each pair of runs are required to agree just on the initial instance I and on the final

output state, and not necessarily on the entire execution. Again, this means that,

whichever configuration we select, we are assured that the same final outcome will be

eventually returned. We will then say that a specification N is network-independent

if, once fixed a distribution function D, the class Sbsp
N (D, I) is convergent for all

possible I ∈ inst(Υdb), or, in other words, NN,D computes the same query Q for all

networks N and instances I11. A similar definition applies for distribution-independent

specifications. Finally, if a specification N is network-distribution-independent, the

class Sbsp
N is convergent, i.e., for any instance I, all the possible runs in Sbsp

N (I)

compute the same query result Q(I). This is because, whichever configuration is

selected, Sbsp
N (I) has a unique output. In this case, Q is said to be distributively

computable, while N is said to be independent (or convergent). Note that similar

definitions have been used also in Ameloot et al. (2013), where it was also shown

that independence is an undecidable property of specifications12.

Example 2

Assume we want to compute a distributed version of the program of Example 1. This

can be implemented using a broadcasting and inflationary synchronous transducer

network in which every node emits one of the two relations, let us say T , and then

joins R with the facts over T received from the other nodes. Note that the sent facts

will be used just starting from the successive round. This program will then employ

11 Recall that we only consider fully connected networks, i.e., networks are only distinguished by their
cardinality. This too is a common assumption in modern data-parallel distributed systems.

12 Note that we could have added the initial round number to the network configuration parameters.
Instead we chose to fix to 0 the initial round value not to make our model too complex. Because of this,
we implicitly assume each query to be time-independent: the value stored in the Time relation does not
influence the result of the query. A (conservative) syntactical condition to achieve time-independence
is to not have the Time relation in any query-rule.
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two rounds to compute the distributed join. ucq is again expressive enough. The

transducer can be written as follows:

Schema: Υdb = {R(2), T (2)},Υcom = {S (2)},Υout = {Q(3)}
Program: Ssnd(u, v)← T (u, v).

Qout(u, v, w)← R(u, v), S(u, w).

The specification is clearly independent since the same output is obtained whichever

configuration is selected.

Synchronous specifications have the required expressive power:

Lemma 1

Let L be a language containing ucq and such that L ⊆datalog
¬. Every query

expressible in L can be distributively computed in two rounds by a broadcasting,

inflationary, and oblivious L-transducer network.

Proof

This is an adaptation to our context of Theorems 4.9–4.10 of Ameloot et al. (2013).

Let Q be a query expressed in L having input schema Din and output schema Dout.

We have two cases: (i) Q is monotonic or (ii) Q is non-monotonic. In case (i), we

can program a transducer T so that initially all nodes send out their local database

facts. In the next round, all nodes will have received all database facts because

communication is synchronous and reliable. Relations Id and All are not needed.

Q is evaluated over the union of the local input with the received facts.

Formally, the transducer schema will have Υdb = Din, Υcom = {R ′(a) | R(a) ∈ Υdb},
Υout = Dout, while the system and time schemas are as usual. Denote with Q′ the

version of the query Q where all the edb relations are primed. The transducer

program P is composed by the queries Qsnd and Qout, where Qsnd is composed by

one rule in the form: R′snd(ū) ← R(ū) for each R ∈ Υdb, while Qout simply contains

Q′. The specification is monotonic and oblivious.

In case (ii), we follow the same approach as before, but this time the query Q,

being non-monotonic, cannot be applied immediately because wrong results could

be derived. To avoid this, we use the transducer T of case (i), in which we add to

Υmem the nullary relation Ready, and to Qins the query: Readyins() ← ¬Ready(). In

addition, we modify the rules in Q′ by adding the literal Ready to their body. In this

way, the query Q will be evaluated just starting from the second round since at the

first one Ready is false. We therefore reach our goal. �

Examples 3 and 4 below show two transducers, each computing a query of one

of the two categories used in the proof of Lemma 1.

Example 3

Let Q be the following ucq-query:

T (u, v)← P (u, v), R(u).

Q can be computed by the following ucq-transducer:
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Schema: Υdb = {R(1), P (2)},Υsnd = {R′(1), (P ′(2)},
Υout = {T (2)}

Program: R′snd(u)← R(u).

P ′snd(u, v)← P (u, v).

Tout(u, v)← P ′(u, v), R′(u).

Example 4

Let Q be the following (non-monotonic) fo-query:

T (u, z)← R(u, v), P (v, z),

Q(u, z)← S(u, v),¬T (v, z), P (w, z),

with Din = {R(2), P (2), S (2)} and Dout = Q(2). An fo-transducer computing the same

query is

Schema: Υdb = {R(2), P (2), S (2)},Υmem = {Ready(0)},
Υsnd = {R′(2), P ′(2), S ′(2)},Υout = {Q(2)}

Program: R′snd(u, v)← R(u, v).

P ′snd(u, v)← P (u, v).

S ′snd(u, v)← S(u, v).

Readyins()← ¬Ready().
T (u, z)← R′(u, v), P ′(v, z), Ready().

Q(u, z)out ← S ′(u, v),¬T (v, z), P ′(w, z), Ready().

Lemma 1 permits us to draw the following conclusion: Under the bsp semantics,

monotonic and non-monotonic queries behave in the same way; two rounds are

needed in both cases. This is due to the fact that, contrary to what happens in the

asynchronous case (Ameloot et al. 2013), we are guaranteed by the reliability of

the communication and the synchronous assumption that, starting from the second

round on, every node will compute the query over every emitted instance. Conversely,

in the asynchronous case, as a result of the non-determinism of the communication,

we are never guaranteed, without coordination, when every sent fact will be actually

received. As a consequence, under this latter model, we do not know – without

coordination – when negation can be safely applied, because it could be applied

“too early”, i.e., before all facts over the negated literal are received (or deduced).

3.6 The CALM conjecture

The CALM conjecture (Hellerstein 2010) specifies that the class of monotonic

programs can be distributively computed in an eventually consistent, coordination-

free way. CALM has been proven in this (revisited) form for asynchronous systems

(Ameloot et al. 2013):
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Conjecture 1

A query can be distributively computed by a coordination-free transducer network

if and only if it is monotonic.

Surprisingly enough, the only-if direction on the conjecture does not hold in bsp

settings under the broadcasting communication model. Before showing this, we have

to adapt the definition of coordination-free as expressed in Ameloot et al. (2013) to

our synchronous model.

The concept of coordination suggests that all the nodes in a network need to

exchange information and wait until an agreement is reached about a common

property of interest. Following this intuition, Ameloot et al. established that a

specification is coordination-free if communication is not strictly necessary to obtain

a consistent final result. Put in a more formal context: A specification is coordination-

free if (i) it is independent and (ii) a “perfect” distribution function exists such that

communication is not required to achieve the final outcome. That is, the class

generated from that specification admits a unique output, independently of the

configuration. Hence, among all the possible distribution functions we can select

one such that, if we turn communication off, the correct result is still returned.

Definition 5

Let N be an independent specification, and F its communication-free version.

We say that N is coordination-free if ∀I ∈ inst(Υdb) a non-trivial configuration

(N,D) exists s.t., Sbsp
F is convergent, where Sbsp

F is constructed by adjoining to the

convergent class Sbsp
N (I) the run defining Sbsp

F (N,D, I).

In the following, we will say that runs such as Sbsp
N (N,D, I) and Sbsp

F (N,D, I) are

eventually consistent with each other. That is, their complete execution may differ,

but they eventually converge to the same unique final output. To simplify the

notation, we will sometimes directly say that N and F are eventually consistent.

It is now easy to see that with this definition there are non-monotonic queries

that can be distributively computed by coordination-free specifications, as the next

example shows.

Example 5

Let Qemp be the “emptiness” query of Ameloot et al. (2013): Given a nullary database

relation schema R(0) and a nullary output relation T (0), Qemp outputs T iff IR is

empty. The query is non-monotonic: if IR is initially empty, then T is produced, but

if just one fact is added to R, T is not derived, i.e., IT is now empty. A broadcasting

fo-transducer network N can be easily generated to distributively compute Qemp:

first, every node emits R if its local partition is not empty, and then each node

locally evaluates the emptiness of R. Since the whole initial instance is installed on

every node when R is checked for emptiness, T is true only if R is actually empty

on the initial instance. The complete specification follows.
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Schema: Υdb = {R(0)},Υmem = {Ready(0)},Υcom = {S (0)},
Υout = {T (0)}.

Program: Ssnd()← R().

Readyins()← ¬Ready().
Tout()← ¬S(), Ready().

Assume that (N,D) is a non-trivial configuration and let F be the communication-

free version ofN above. Clearly, whichever initial instance I we select, Sbsp
N (N,D, I)

and Sbsp
F (N,D, I) are eventually consistent when D installs I on every node.

Note that, in asynchronous settings, the same query requires coordination: Since

emitted facts are non-deterministically received, the only way to compute the correct

result is that every node coordinates with each other in order to understand if the

input instance is globally empty.

The above example shows that the only-if direction of CALM, stating that only

monotonic queries can be computed in a coordination-free way, does not hold in

general in synchronous settings (Contribution 1). This result is indeed interesting

although expected: When we move from the general asynchronous model to the

more restrictive, bsp setting, we no longer have a complete understanding of which

queries can be computed without coordination, and which ones, instead, do require

coordination. It turns out that the communication model and the definition

of coordination proposed in Ameloot et al. (2013) cannot capture a notion of

coordination freedom appropriate also for synchronous systems. As the reader

may have realized, this is due to the presence of (i) broadcasting communication

and (ii) bsp system semantics: In broadcasting synchronous systems, the form of

coordination defined by Ameloot et al. is already “baked” into the model because

synchronization barriers per se provide nodes with the possibility of “indirectly

deducing” the global status of the network. As a result, some of the queries that, in

the asynchronous communication model, were not computable in a coordination-

free way turn out to be so in synchronous systems. Arguably, one could conjecture

that all computable queries are actually coordination-free computable (using again

the notion introduced in Ameloot et al. (2013)) in synchronous systems.

In Section 5.2, we provide a new, less permissive definition of coordination-freedom,

more appropriate for synchronous settings. Under this definition, the discriminating

condition for coordination freedom is not the absence of communication among nodes,

but the more restrictive one that nodes do not need to acquire knowledge of a global

property of the network to correctly compute a query. We will then see that by

weakening first (i) (Section 4) and then (ii) (Section 6), the coordination baked into

the synchronization barrier results inappropriate to make specific classes of queries

(described later) consistent, whereby additional forms of coordination are required.

In Section 6, we will additionally show that indeed our definition of coordination

subsumes the one previously introduced by Ameloot et al.: When we remove all the

constraints imposed on the synchronous system, the two definitions fall together.
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The intuition is that, if a node does not know when all the other nodes are “done,”

conclusions (such as deducing that negation can be applied over a relation) might

be applied “too early.” That is, in order to apply certain specific types of deductions

(which specific type will be made clear in the next sections), common knowledge

(Fagin et al. 2003) is required. Acquiring common knowledge of a global property

in asynchronous systems requires exchange of messages among all nodes, and this is

why communication-freedom can be connected to coordination freedom in this type

of systems (i.e., no coordination can be reached without communication). Conversely,

using synchronous broadcasting specifications, common knowledge can be acquired

by each node indirectly, even without having any fact being communicated.

4 Hashing transducer networks and parallel computation

In the previous section, we have seen that synchronization barriers, together with a

broadcasting communication model, allow non-monotonic queries to be computed in

a coordination-free way (cf . Example 5); more than that, broadcasting specifications

do not appear to be really useful from a practical perspective. As a consequence,

following other parallel programming models such as MapReduce and Spark, in

this section, we are going to introduce hashing transducers (Contribution 2), i.e.,

relational transducers equipped with a content-based communication model. Under

this new model, the node to which an emitted fact must be addressed is derived

using a hash function applied to a subset of its terms called keys.

4.1 Hashing transducer networks

Let Υ be a transducer schema. For each relation R(a) ∈ Υcom, we fix a subset of its

terms as the key-terms for that relation. W.l.o.g. we will then use the notation R(k,a)

to refer to a relation R of arity a having the first k terms specifying its key. As a

notation, we associate to every transducer schema Υ a key-set K mapping every

relation R for which a key is defined, to the related set of keys.

It is now appropriate to define how a hashing transducer T is represented. T is

hashing if defined by a tuple (P,Υ,K), where P is the transducer program, Υ the

schema, and K a key-set. With each transducer network, we can now associate a

distributed hash mapping H binding each communication fact with the non-empty

set of nodes to which the fact belongs. Given a family H of unary hash functions

h : dom → N and a fact R(u1, . . . ua) over a relation R(k,a) ∈ Υcom, H distributes

R(u1, . . . ua) to the nodes in the following way:

H(R(u1, . . . ua)) =

{
N if k = 0⋃
i∈1..k{hi(ui)} otherwise

(3)

Informally, we employ hash functions to deterministically obtain the location(s) to

which a fact belongs from its key-term values specified in K, so that H maps

each fact to the set of nodes to which it must be delivered. Two characteristics are

noteworthy in our model. First, we allow a fact to be hashed to multiple target
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nodes13. This multicasting model enables us to gracefully move from broadcasting

to unicast situations, while studying how different classes of queries behave. Ad-

ditionally, this allows to model both regular MapReduce-style shuffling, as well as

Hypercube shuffling (Afrati and Ullman 2010) requiring records to be replicated

over multiple nodes. Second, we consider a family of hash functions instead of a

single function. In this way, we are able to express specific behaviors when needed;

for instance, we can establish that facts containing a certain constant in certain cases

are addressed to a predefined node, while, in general, they can be addressed to all

nodes. To maintain our model simple, we assume the codomain of each hash family

to coincide with N, i.e., N =
⋃
h∈H

⋃
c∈dom{h(c)}.

Given a relation R(k,a), two key-settings are of special interest: (i) no key is set,

and we write k = 0; and (ii) the set of keys is maximal, i.e., k = a. In the former

case, we have that every tuple is addressed to all the nodes N. We then say that a

send query is broadcasting if the head relation R is such that k = 0. Furthermore, in

the case in which all the relations in the domain ofK have k = 0, we say thatK is

unrestricted ; it is restricted if, instead, for no relation k = 0. We can now base the

definition of the communication function γ onH and we then call hashing this new

type of synchronous specification. Unless stated otherwise, from now on, the term

“specification” will actually denote a hashing specification (transducer network).

The definition of communication-free can now be slightly revisited: a hashing

specificationN is communication-free also when, for all relations R ∈ Υcom, if R(ū)

is a fact derived at node i by a sending query, then H(R(ū)) = {i}.

Example 6

This program is the hashed version of Example 2:

Schema: Υdb = {R(2), T (2)},Υcom = {S (1,2), U(1,2)},
Υout = {J(3)}

Program: Ssnd(u, v)← R(u, v).

Usnd(u, v)← T (u, v).

Jout(u, v, w)← S(u, v), U(u, w).

In this new guise, every tuple emitted over S and U is hashed on the first term,

so that we are assured that at least a node exists to which each pair of joining

tuples is issued. Note that such program models exactly how (reduce-side) joins are

implemented in the MapReduce framework.

Shuffling transducers. Given a hashing transducer network, we can directly apply

hashing functions to the database relations and, once all the initial tuples are

hashed, the actual queries can be applied. We refer to such type of transducers as

13 Note that this one-to-many distributed mapping is used here for coherence with the set oriented
datalog semantics. One-to-one communication behavior can also be employed, for example, by using
surrogate keys.
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shuffling. Intuitively, when K is unrestricted, the same behavior described in the

proof of Lemma 1 under the broadcasting communication model is obtained.

More formally, given a query Q : inst(Din) → inst(Dout) over input and output

schema Din and Dout, respectively, a shuffle transducer network can be devised so

that the transducer schema Υ has Υdb = Din,Υmem = {Ready(0)},Υsnd = D′in, and

Υout = Dout, where D′in is composed by the primed version of the relations in Din;

the transducer program T is instead formed by the queries Qins = {Readyins() ←
¬Ready().}, Qsnd = {R′snd(ū) ← R(ū)|R ∈ Υdb}, and Qout = Q′, where Q′ is generated

from Q by priming all relations over the input schema Din and where the predicate

Ready() is adjoined to the query.

We will often use shuffling transducers in the proofs and examples we are going

to introduce in the remainder of this section and in the following ones. But we first

introduce some properties of shuffling specifications.

4.2 Properties of shuffling transducer networks

Safety and liveness are common properties used to describe specifications over

distributed systems (Kindler 1994). Informally, the safety property is used to

state that “nothing bad will ever happen,” while the liveness property certifies that

“something good will eventually happen.” In our model, the two properties can be,

respectively, restated as “no wrong fact will ever be derived,” and “some fact will

eventually be derived.”

First of all, note that, by the properties S1–S3′ and R1–R2 of bsp systems and

by definition of hashing communication, every fact P (ū) over a relation P ∈ Υcom

derived by a send query in round t, will be in the instance IiP of node i at round

t + 1, for all i ∈ H(P (ū)). Starting from the above consideration, we can define a

query to be live if all the derived communication facts (globally) satisfying the body

of a query are all co-located on at least one node. A specification is then live if all

the queries satisfy the liveness property. More formally:

Definition 6

Let T = (P,Υ,K) be a shuffling transducer, and I an arbitrary instance over Υdb.

Assume that a query qR inP exists such that qR is satisfied in the trivial configuration

of T with input I. Let q be one of such instantiation of qR , and denote with b the

set of facts over the communication predicates in the body of q. Then, qR is live if

for every instantiation q and (non-trivial) configuration we have that:

(
⋂

P (ū)∈b

H(P (ū)) ) �= ∅ (4)

T is said to be live if the above property holds for all input instance I and queries

in P.

By showing that a query is live, we can state that a (shuffling) specification has

at least the same opportunity to distributively derive a fact as the original query

computed locally on a single node.
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On the other hand, a query is considered safe if every node evaluates all the

negated literals on an instance containing all the facts, over that literal, available in

the network:

Definition 7

Let T = (P,Υ,K) be a shuffling transducer, and N a set of nodes. We say that

evaluating a query qR in P is safe if, for every fact P (ū) over a relation P ∈ Υcom

appearing negated in the body of qR , we have that

∀i ∈ N, i ∈ H(P (ū)) (5)

T is safe if every query in P can be safely evaluated on every input instance.

If a query is not safe, the correctness of a specification can be jeopardized, as shown

next.

Example 7

Consider the following fo-query:

Q(v, w)← R(u, v, w),¬P (v, w)

with Din = {R(3), P (2)} and Dout = Q(2). The following shuffling fo-transducer N
implementing the same query is not safe:

Schema: Υdb = {R(3), P (2)},Υmem = {Ready(0)},
Υsnd = {S (1,3), T (1,2)},Υout = {Q(2)}

Program: Ssnd(u, v, w)← R(u, v, w).

Tsnd(u, v)← P (u, v).

Readyins()← ¬Ready().
Q(v, w)out ← S(u, v, w),¬T (v, w), Ready().

Assume the following input instance I = {R(1,2,3), P(2,3)}. Clearly, the original

query will have empty output over this input instance. However, let (N,D) be a

non-trivial configuration, and H a hash family such that constants 1 and 2 are

hashed to two different nodes. We then have thatN outputs the fact Q(2,3) when

using this configuration, i.e., N is not safe.

4.3 Parallel computation of queries

In our effort toward the creation of a general model for parallel computation,

having modeled communication by means of hashing we are now able to create

different computational strategies by simply customizing the adopted hash functions

and relation keys. While we have already seen that K is embedded directly into

the definition of a transducer, H can be added to the configuration parameters

of transducers and specifications. Henceforth, for configured hashing transducers

(resp. transducer networks), we will refer to transducers (networks) determined

by configurations of the forms (N, i, H) (respectively (N,D,H)). The definition of
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independent specification can now be extended accordingly. Thus, once a set of

keysK has been fixed, a specificationN is called strategy independent if, whatever

H is chosen, N computes the same final result. Finally, a hashing specification is

called independent if it is altogether network-distribution-strategy-independent. The

definition of convergent class of systems (Definition 4) can naturally be generalized

over (shuffling) hashing specifications.

In the next sections, we will explore in detail both the connections existing between

class of queries and type of specifications, and which class is more expensive to

compute with respect to others (e.g., which query can only be computed by an

unrestricted specification).

In Section 3, we have seen that, if the transducer network is broadcasting, a large

class of queries can be distributively computed. We say that a query Q is parallelly

computable if a hashing specification exists such that all the possible runs in Sbsp
N (I)

compute the same query Q(I), whichever initial instances I is given.

Proposition 2

Let L be a query language. Every query that is expressible in L, and that can

be distributively computed by a broadcasting L-transducer network, can also be

parallelly computed by a hashing L-transducer network.

Proof

By definition, every hashing transducer with unrestrictedK emulates a broadcasting

one. �

It is now a straightforward exercise to show that the expressiveness result of Lemma

1 applies also to hashing specifications. W.l.o.g. we will hereafter call broadcasting

every hashing transducer network where K is unrestricted.

Correct specifications. In Section 4.3, we have seen that the set of keys K can

be used to parametrize a transducer. In this way, multiple specifications can be

produced by selecting different sets of keys. Let N be the class of specifications

that can be generated by changing K in a specification N. Intuitively, a wrong

selection of the keys can result in a wrong specification: Consider Example 6 and

assume that we choose the second term as key for both S and U, we can then

incur in the situation in which a tuple is not derived because the joining facts are

issued to two different nodes. Yet, we can define a subclass of N wherein each

specification is consistent with the broadcasting version. By Proposition 2, in fact,

a “correct” broadcasting specification always exists and it does not depend on the

chosen set of keys: it simply broadcasts every emitted fact! Specifically, let Sbsp
N

be the convergent class derived from the broadcasting specification N. For every

input instance I, we can start to add to Sbsp
N all the runs Sbsp

N′ (N,D,H, I) such that

N′ ∈ N is a convergent specification, and Sbsp
N (N,D,H, I) and Sbsp

N′ (N,D,H, I) are

eventually consistent. Denote with Sbsp
CN the class which is maximal with the above

property, and where with CN ⊆ N, we identify the correct class of specifications.

We have the following:
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Definition 8

Let N = (T,Te, γ) be a hashing transducer network with T = (P,Υ,K), and

assume that a non-empty correct class of specifications CN exists. A set of keysK
(specification N) is said to be correct if N ∈ CN.

Note that the specifications in CN are independent by construction.

4.4 Queries computable by a restricted specification

Among the parallelly computable queries, the most interesting ones from a parallel

processing perspective are the ones for which a restricted specification (i.e., having

a restricted set of keys), parallelly computing them, exists. We denote this kind of

queries as restricted. Intuitively, restricted queries are the ones which can be parallelly

computed without having to resort to broadcasting. Note that the reader should not

be deluded into believing that every monotonic query is trivially a restricted one.

Example 8

Assume two relations R(2) and T (1), and the following query Q returning the full

R-instance if T is non-empty.

Q(u, v)← R(u, v), T ( ).

The query is monotonic. Let T be the following broadcasting ucq-transducer

computing Q.

Schema: Υdb = {R(2), T (1)},Υcom = {S (0,2), U(0,1)},Υout = {Q(2)}
Program: Ssnd(u, v)← R(u, v).

Usnd(u)← T (u).

Qout(u, v)← S(u, v), U( ).

Assume now a restricted set of keys K. We have that, whichever (restricted) K we

chose, the related specification might no longer be convergent. To see why this is the

case, consider an initial instance I andK maximal, i.e., every term of every relation

is key14. Assume I such that adom(IR) ⊃ adom(IT ), and a configuration in which

N is large. In this situation, it may well happen that a non-empty set of facts in IR
is hashed to a certain node i, while no fact over T is hashed to i. Hence, no tuple

emitted to i will ever appear in the output, although they do appear in Q(I). Thus,

this transducer is not convergent.

4.4.1 Connected queries

A class of monotonic queries exists which is restricted: connected queries (Guessarian

1990). Informally, a query is connected if every relation in a rule-body is connected

through a join-path with every other relation composing the same rule-body.

14 We choseK to be maximal because if we fail to generate a convergent specification for the maximal
case, even more so specifications where K is less than maximal will fail.
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Definition 9

Let body(qR) be the conjunction of literals defining the body of a rule qR . We say

that two different literals Ri(ūi), Rj(ūj) ∈ body(qR) are connected in qR if either

• ūi ∩ ūj �= ∅; or

• a third literal Rk(ūk) ∈ qR different from Ri(ūi) and Rj(ūj) exists such that

Ri(ūi) is connected with Rk(ūk), and Rk(ūk) is connected with Rj(ūj).

Two relations Ri and Rj are said to be connected in qR if there are two literals Ri(ūi)

and Rj(ūj) that are connected in qR .

Definition 10

We say that a L-query Q is connected if there is no rule qR ∈ Q whose body

contains either a nullary relation or a relation Ri which is not connected with any

other relation Rj ∈ body(qR).

Remarks: (i) Literals can be either positive or negative predicates15; (ii) every

positive query composed by a single rule containing just one non-nullary body

atom is connected by definition; and (iii) every non-nullary unconnected query is an

existential query (Ramakrishnan et al. 1988).

Example 9

The following datalog query returns all the nodes being source of a triangle, if a

non-cyclic path of length four exists. In this query, the build-it predicate �= is used

(in infix notation) to express inequality between variable instantiations.

T (u)← E(u, v), E(v, w), E(w, u).

F()← E(u, v), E(v, w), E(w, x), E(x, y), x �= u, y �= u.

Q(u)← T (u), F().

While the first two rules are connected, the third rule is not. The query is therefore

not connected.

Proposition 3

LetL ⊆ datalog be a language. For every connected (monotonic) query expressible

in L, an equivalent one exists that is restricted.

Proof

From Proposition 2, we know that a specification N exists parallelly computing

every monotonic query Q for all input instances I. Starting fromN, we can construct

a new specification N′ where every rule in Qout is primed and moved to Qsnd. We

then add to Qout a rule to output every fact over the output schema Dout. The

behavior of N′ is very simple: Every time a new fact is derived by a rule, it is

shuffled. We have that the liveness property is naturally enforced also inN′ because

K is unrestricted and, for this reason, every query is live. Every fact in Q(I), and

no more, must hence also be in N′(I) whichever configuration we chose since the

query is monotonic.

15 Note that non-nullary negative literals are connected by definition since we are only considering safe
queries.

https://doi.org/10.1017/S147106841800042X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800042X


A datalog-based computational model for coordination-free, data-parallel systems 899

Consider CN′, the class of correct specifications defined by N′. Assume now

a new specification N′′ derived from N′ by considering a restricted keys-set K′′.
For simplicity, we fix K′′ to be maximal. We have to show that N′′ is eventually

consistent withN′. This is quite straightforward: every query is connected thus the

liveness property still holds becauseK′′ is maximal and hence a non-null intersection

exists among the destinations of all the atoms composing every rule-body. Reasoning

in the same way, every rule is also evaluated on a instance. For what concerns safety,

this is trivially satisfied because the query is monotonic.

We are now going to show how an inflationary transducer T = (P,Υ,K′′)
composing the specification N′′ can be built. Let Υdb = Din, Υsnd = {R′ | R ∈
sch(Q)}, Υout = Dout (systems and time relations are as usual), and every term in

every communication relation is key. Since Q is monotonic, no result can be derived

that will be retracted in the future. The idea was to apply every rule as it is, and

every new derived fact is sent to the other nodes composing the network. Concretely,

we first add to Qsnd, for each R ∈ Υdb, the following rule implementing the shuffling:

R′snd(ū)← R(ū). (6)

Now, let Q′ the version of Q where every relation is primed. We add to Qsnd all the

rules in Q′, and to Qout a rule:

Rout(ū)← R′(ū) (7)

for each relation R ∈ Dout to output the results. Note that the transducer is

oblivious and monotonic. Is easy to see that a transducer program generated in this

way computes the initial query Q. �

Connected queries have an interesting semantic property: they distribute over

components (Ameloot et al. 2014). An instance J is said to be connected if whichever

pair of constants a, b ∈ adom(J), a chain of facts f 1, . . . , f n exists such that

a ∈ adom(f1), b ∈ adom(fn), and for any pair of consecutive fact fi, fi+1 in the chain

with 0 � i < n, adom(fi) ∩ adom(fi+1) �= ∅. Now, if I is an instance, J is a component

of I if (i) J ⊆ I, (ii) J is non-empty, and (iii) J is connected and maximal with this

property in I. Finally, if with co(I) we denote the components of I, a query Q is said

to distribute over components if Q(I) =
⋃

J∈co(I) Q(J) for all I.

Proposition 4 (Ameloot at al. 2014 )

Let L ⊆ datalog
¬. Every connected L-query distributes over components.

Proposition 5 (Ameloot et al. 2015 )

Every query computable by a datalog
¬-query that distributes over components can

be computed by a connected datalog
¬-query.

Example 10

Consider again Example 9. The query is not connected and in fact it does not

distribute over components. To see why this is the case, assume that the input

instance is composed by two components. The query does not distribute because the

result on each component might depend on the presence of a path of length four

on the other component.
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Conversely, assume the query:

T (u)← E(u, v), E(v, w), E(w, u)

F(u)← E(u, v), E(v, w), E(w, x), E(x, y), x �= u, y �= u

Q()← T (u), F(u)

returning true if a component exist having a triangle, with a path of length four

starting from the same source node. The query is connected and distributes over

components.

Remark: Differently from Ameloot et al. (2015), but according to Ameloot et al.

(2014), we are considering as not connected all the queries having nullary relations

in the body. In Ameloot et al. (2015), a specific type of nullary relations is identified

which can be safely used in rule bodies while maintaining connectedness. Such

nullary relations are however copied to each connected component, which in our

parallel settings means broadcasting all nullary relations, which in turn means that,

for partitioned hash families, if negation is applied over a nullary relation the

query is no longer parallelly computable (because unsafe). We therefore restrict our

attention to non-empty instances (having at least one component) and connected

queries without nullary atoms in the body.

4.4.2 Non-monotonic queries

Clearly, unconnected non-monotonic queries are not restricted. Interestingly, not

every connected non-monotonic query is however restricted.

Example 11

Consider the following datalog
¬-query computing the facts in T not in the transitive

closure of R.

CS(u, v)← R(u, v).

CS(u, w)← CS(u, v), R(v, w).

Q(u, v)← T (u, v),¬CS(u, v).

This query can be parallelly computed by the following oblivious and inflationary

fo-transducer:

Schema: Υdb = {R(2), T (2)},Υcom = {S (1,2), U(1,2), CS (1,2)},
Υmem = {Ready(0)},Υout = {Q(2)}

Program: Ssnd(v, u)← R(u, v).

Usnd(u, v)← T (u, v).

CSsnd(u, v)← S(u, v).

CSsnd(u, w)← S(u, v), CS(v, w).

Readyins()← ¬Ready().
Qout(u, v)← U(u, v),¬CS(u, v), Ready().
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This specification correctly computes the query only when some specific hashing

functions are used. Indeed, it might happen that facts are distributed unevenly

among the nodes, and that a node ends up deriving a new fact over CS after all

the other nodes have already finished their computation. This may result in the

possibility that a fact over Q be retracted: Intuitively, the problem is that negation

is applied too early. In order to avoid this situation, common knowledge of local

termination for each node is required, i.e., nodes must synchronize: Every node

should notify every other node that it has locally terminated the computation of CS

and then, when every node has locally terminated the computation of the closure of

R, and all nodes know this, Q can be safely evaluated. Clearly, this pattern requires

a non-restricted specification. On the other hand, the same query can be correctly

computed if every node has the entire instance locally installed. In this case, we are

in fact guaranteed that every node will apply negation over the complete transitive

closure. This again is obtainable only with an unrestricted specification.

Nevertheless, a class of non-monotonic queries exists that does not require

broadcasting rules: recursion-delimited connected queries.

Definition 11

Given a datalog
¬ query Q, we say that Q is recursion-delimited if, whichever

stratification Q1, . . . ,Qn we choose, Q1, . . . ,Qn−1 are non-recursive programs, while Qn
is expressed in L, with L ⊆ datalog

¬, and negation is applied over extensional

database schemas only16.

Informally, recursion-delimited queries are non-monotonic queries in which recursion

is only allowed in the last stratum.

Proposition 6

Let L ⊆ datalog
¬. Every recursion-delimited, connected query expressible in L is

restricted.

Proof

We follow the same procedure presented in the proof of Proposition 3. Let Q1, . . . ,Qn
be a stratification of the rules of the input query Q. An inflationary transducer

T = (P,Υ,K) can be created where K is maximal and every stratum is evaluated

sequentially. Every derived fact over Dout is then output. Since all the rules are

connected, and the set of keys is maximal, the liveness property is always satisfied

so we have the same opportunity of deriving fact as in the case in which K is

unrestricted. Although the safety property is not satisfied, no wrong result can be

inferred because each stratum is evaluated sequentially and every rule is connected

end evaluated on a instance. We can then conclude that the specification (T,Te, γ)

parallelly computes Q, and Q is a restricted query. More precisely, initially set

Υdb = Din, Υsnd = {R′ | R ∈ sch(Q), Υout = Dout (systems and time relations are

as usual), and every term in every schema relation is key. We start to generate

P by adding to Qsnd a rule in the form of equation (6) for each R ∈ Υdb to

16 This language is commonly referred to as semi-positive datalog
¬ (see also Appendix B.1).
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implement the shuffling (similarly to the proof of Proposition 3). Since Q is non-

monotonic, an appropriate order of evaluation of rules must be enforced if we do

not want to derive wrong results. Thus, consider the stratification Q1, . . . ,Qn of Q.

First, consider the first n− 1 strata. By definition of recursion-delimited query, such

strata are non-recursive, therefore, looking at the predicate dependency graph, we

can assign a set of predicates, inside the same stratum, to a stage. This assignment

follows the dependency graph, so that each predicate that depends on another

predicate belongs to a higher stage. Intuitively, the stratification is maintained since

all predicates belonging to a higher stratum also belong to a higher stage. We then

have that stages, basically, are used to implement distributed stratification. Let m

the highest stage thus obtained. We create a new stage m + 1 containing all the

predicates in the last stratum Qn. Consider now the query Q′ obtained from Q by

(i) priming all relations and (ii) appending to the body of each rule in Qj a nullary

atom Stagej(), with j ∈ 1, . . . , m+ 1, in order to bind the evaluation of rules to the

respective stage. We now add to Qsnd all the queries in Q′ , and to Qout a rule in the

form of equation (7) for each output relation. Finally, in order to advance stage by

stage, we add one rule in the form:

Stagejins()← Stagei() (8)

for each 0 < i < j < n and a rule:

Stage1
ins()← ¬Stage1(),¬Stage2(), . . . ,¬Stagen (9)

to define when the first stage can start.

We are now going to prove that the transducer network derived from P actually

computes the initial query Q. The main difference with respect to the proof of

Proposition 3 is that now the query is non-monotonic and therefore each negative

literal cannot be evaluated before all the related tuples are generated by the lower

strata. Let us proceed inductively: Initially, all the stages are false and only the

rules implementing the shuffling can be evaluated. In the successive super-step, the

first stage is active. Now, all the rules having just extensional relations of Q in the

body are evaluated. Let us denote with qR one of such rules. Since every previously

sent fact is hashed over all the terms composing the tuple, and since every rule is

connected, we have that at least a node which is able to satisfy body(qR) exists,

and a set of facts will be sent. No wrong tuple can be derived because every rule

is connected. All the newly derived intensional facts, plus the previous extensional

tuples, are now sent to a set of nodes based on the parallelization strategy. The

queries of the successive stage will then be evaluated in the successive round, and

again, by construction, they are all evaluated on a instance. Let now assume we are

at stage m and that ever query has been evaluated sequentially on a instance until

that point. Again this means that a new set of facts will be sent, together with the

previously sent ones. At stage m + 1, every rules is clearly still correctly evaluated.

Note that the m + 1th stage can take more than one round to produce all tuples

since it is allowed to be recursive. We finally have that every rule in Q is evaluated

on an instance by construction. This concludes the proof. �
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Example 12

Let Q be the following recursion-delimited, connected query:

T (u, v)← E(u, v),¬F(u)

T (u, w)← E(u, v), T (v, w)

which computes a transitive closure applied over a filtered set of edges. A fo-

transducer parallelly computing the query is the following17:

Schema: Υdb = {E(2), F (1)},Υsnd = {S (2,2), U(1,1), T (2,2)},
Υmem = {Stage1(0), Stage2(0)},Υout = {Q(2)}

Program: Stage1
ins()← ¬Stage1(),¬Stage2().

Stage2
ins()← Stage1().

Ssnd(u, v)← E(u, v).

Usnd(u)← F(u).

Tsnd(u, v)← S(u, v),¬U(u), Stage1().

Tsnd(v, w)← S(u, v), T (u, w), Stage2().

Qout(u, v)← T (u, v).

Remarks: (i) Monotonic queries do not have the same problem as non-recursion-

delimited queries: Even if tuples are hashed unevenly, no retraction can occur because

of monotonicity. (ii) If a mechanism existed for which a recursive datalog query

could be rewritten in a non-recursive form, all connected non-monotonic queries

would be non-broadcasting. The problem of determining if a given recursive query

is equivalent to some non-recursive program is called the boundedness problem, and,

unfortunately, is undecidable (Gaifman et al. 1993).

Corollary 1

Every restricted query is connected.

Proof

The fact that every restricted query computes a connected one directly follows from

the definition of connectedness. Conversely a restricted query cannot be unconnected

as shown for instance in Examples 8 and 11. �

Figure 2 depicts the query taxonomy as discussed so far.

5 Coordination-freedom refined

We have seen in Section 3.6 that, for synchronous and reliable systems, a particular

notion of coordination-freedom is needed. In fact, we have shown that certain

non-monotonic queries – e.g., Example 5 – that under the asynchronous model

17 Note that nullary relations Stagei used to postpone the evaluation of rules can be actually omitted for
this specific example: For clarity, we however follow the technique used in the proof of Proposition 6.
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Fig. 2. Query taxonomy.

require coordination can be computed in a coordination-free way. The key-point is

that, as observed in Ameloot et al. (2013), in asynchronous systems coordination-

freedom is directly related to communication-freedom under ideal distribution. That

is, if the distribution is right, no communication is required to correctly compute a

coordination-free query because (i) no data must be sent (the distribution is correct)

and (ii) no “control message” is required to obtain the correct result (the query

is coordination-free). However, due to its synchronous nature, in bsp settings non-

monotonic queries can be computed in general without resorting to coordination.

As already anticipated, this is due to the fact that the above concept of coordination

is already “baked” into the bsp model: Each node is synchronized with every other

one, hence “control messages” are somehow implicitly assumed. In this section, we

will introduce a novel knowledge-oriented perspective linking coordination with the

way in which explicit and implicit information flow in the network (Contribution

3). Under this new perspective, we will see that a specification needs coordination

if, in order to maintain convergence, a node must have some form of information

exchange with all the other nodes.

5.1 Syncausality

Achieving coordination in asynchronous systems – i.e., systems where each process

proceeds at an arbitrary rate and no bound exists on message delivery time – is

a very difficult and costly task. A necessary condition for coordination in such

systems is the existence of primitives enforcing some control over the ordering of

events (Hunt et al. 2010). In a seminal paper (Lamport 1978), Lamport proposed

a synchronization algorithm exploiting the relation of potential causality (→) over

asynchronous events. According to Lamport, given two events e, e′, we have that

e→ e′ if e happens before e′18, and thus e might have caused e′. From a high-level

perspective, the potential causality relation models how information flows among

processes, and therefore can be employed as a tool to reason on the patterns which

cause coordination in asynchronous systems. A question now arises: What is the

counterpart of the potential causality relation for synchronous systems? Synchronous

potential causality (syncausality in short) has been recently proposed (Ben-Zvi and

18 The potential causality relation is often quoted as happened-before.
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Moses 2014) to generalize Lamport’s potential causality to synchronous systems.

Using syncausality, we are able to model how information flows among nodes with

the passing of time. Given a run ρ and two points (cf . Section 3.2) (ρi, t), (ρj, t′) for

not necessarily distinct nodes i, j ∈ N, we say that (ρj, t′) causally depends on (ρi, t)

if either i = j and t � t′ – i.e., a local state depends on the previous one – or a tuple

has been emitted by node i at time t, and received by node j, with t < t′19. We refer

to these two types of dependencies as direct.

Definition 12

Given a generic system S, and a run ρ ∈ S, we say that two points (ρi, t), (ρj, t′)

are related by a direct potential causality relation →, if at least one of the following

is true:

(1) t′ = t+ 1 and i = j.

(2) t′ � t+ 1 and node j receive a tuple at time t+ 1 which was sent by i at time t.

(3) There is a point (ρk, t′′) s.t. (ρi, t)→ (ρk, t′′) and (ρk, t′′)→ (ρj, t′).

Note that direct dependencies define precisely Lamport’s happen-before relation –

and hence here we maintain the same symbol →.

Differently from asynchronous systems, we however have that a point in node

j can occasionally indirectly depend on another point in node i even if no fact

addressed to j is actually sent by i. This is because j can still draw some conclusion

simply as a consequence of the bounded delay guarantee and deterministic delivery

(S3) of synchronous systems. That is, each node can use the common knowledge that

every sent tuple is received at most after a certain bounded delay to reason about the

state of the system. The bounded delay guarantee can be modeled as an imaginary

NULL fact, as in Lamport (1984). Under this perspective, indirect dependencies appear

the same as the direct ones, although, instead of a flow generated by “informative”

facts, with the indirect relationship we model the flow of “non-informative”, NULL

facts. The interesting thing about the bounded delay guarantee is that it can be

employed to specify when negation can be safely applied to a predicate. In general,

negation can be applied to a literal R(ū) when the content of R is sealed for what

concerns the current round. In local settings, we have that such condition holds for

a predicate at round t′ if its content has been completely generated at round t, with

t′ > t. In distributed settings, we have that, if R is a communication relation, being in

a new round t′ is not enough, in general, for establishing that its content is sealed.

This is because tuples can still be floating, and therefore, until we are assured that

every tuple has been delivered, the above condition does not hold. The result is that

negation cannot be applied safely20.

We will model the fact that, in synchronous systems, the content of a communication

relation R is stable because of the bounded delay guarantee S3, by having every

node i emit a fact NULLiR at round t, for every communication relation R, then each

19 Note that a point in a synchronous system is what Lamport defines as an event in an asynchronous
system.

20 Note that we can reason in the same way also for every other negative literal depending on R. For this
reason, here we consider only the case in which negation is only applied over communication relations.
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NULLiR fact will be delivered to node j exactly by the next round. We thus have that

the content of R is stable once j has received a NULLiR fact from every i ∈ N. The

sealing of a communication relation at a certain round is then ascertained only when

|N| NULLR facts have been counted. We call this Snapshot Closed World Assumption

(SCWA): Negation on relation R can be applied by a node just when it has surely

received a consistent snapshot (Babaoğlu and Marzullo 1993) of the global instance

IR .

We can assume that the program generating NULL facts is adjoined to the

transducer program. Recall however that not necessarily the NULLiR facts must be

physically sent: This in particular is true under the deterministic delivery semantics

of bsp, where the strike of a new round automatically seals all the communication

relations. In other words, under bsp the program generating NULL facts is virtual :

No rule is fired and no fact is actually sent because the system definition already

implicitly assume SCWA. Still these virtual facts will help us in reasoning about

indirect flows of information, therefore we will still assume that such NULL facts are

“virtually” derived and sent. Example 13 below shows a concrete situation showing

that although no NULL fact is sent, still SCWA holds. The reader however should

not believe that this is always the case. In fact, in Section 6.2, we will see how

by simply dropping the deterministic delivery property S3′ the situation becomes

more complicated, and the virtual program generating NULL facts must actually be

evaluated. As a final remark, note that no NULLiR fact need be issued if no SCWA

must be enforced over R or over a dependent relation.

Definition 13

Given a run ρ, we say that two points (ρi, t), (ρj, t′) are related by an indirect potential

causality relation , if i �= j, t′ � t+ 1 and a NULLiR fact addressed to node j has been

(virtually) sent by node i at round t.

Example 13

Consider the program of Example 5, a proper configuration and an initial instance.

At round t+1, we have that the SCWA does hold for relation S , and hence negation

can be applied. Note that if R is empty in the initial instance, no fact is sent. Despite

this, every node can still conclude at round t+ 1 that the content of S is stable. In

this situation, we clearly have an indirect potential causality relation.

Corollary 2

A necessary condition for an indirect potential causality relation to exist is the

presence of a negated literal.

We are now able to introduce the definition of syncausality: A generalization of

Lamport’s happen-before relation which considers not only the direct information

flow, but also the flow generated by indirect dependencies.

Definition 14

Let ρ be a run in the synchronous system Srsync. The syncausality relation � is the

smallest relation such that

1. if (ρi, t)→ (ρj, t′), then (ρi, t)� (ρj, t′);
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2. if (ρi, t) (ρj, t′), then (ρi, t)� (ρj, t′); and

3. if (ρi, t)�(ρj, t′) and (ρj, t′)�(ρk, t′′), then (ρi, t)�(ρk, t′′).

5.2 From syncausality to coordination

We next propose the predicate-level syncausality relationship, modeling causal rela-

tions at the predicate level. That is, instead of considering how (direct and indirect)

information flows between nodes, we introduce a more fine-grained relationship

modeling the flows between predicates and nodes.

Definition 15

Given a run ρ ∈ Srsync, we say that two points (ρi, t), (ρj, t′) are linked by a relation

of predicate-level syncausality
R
�, if any of the following holds:

1. i = j, t′ = t + 1 and a tuple over R ∈ Υmem ∪ Υout has been derived by a query

in Qins ∪ Qout.

2. R ∈ Υcom and node i sends a tuple over R at time t addressed to node j, with

t′ � t+ 1.

3. R ∈ Υcom and node i (virtually) sends a NULLiR fact at time t addressed to node

j, with t′ � t+ 1.

4. There is a point (ρk, t′′) s.t. (ρi, t)
R
� (ρk, t′′) and (ρk, t′′)

R
� (ρj, t′).

We are now able to specify a condition for achieving coordination. Informally,

we have that coordination exists when all the nodes of a network reach a common

agreement that some event has happened. But the only way to reach such agreement

is that an (direct or indirect) information flow exists between the node in which

the event actually occurred, and every other node. This is a sufficient and necessary

condition because of the reliability and bounded delay guarantee of rsync system.

We formalize this intuition using the (predicate level) syncausality relationship:

Definition 16

We say that a correct specification class CN manifests the coordination pattern if,

for all possible initial instances I ∈ inst(Υdb), whichever run ρ ∈ SCN(I) we select

where N is not trivial, a point (ρi, t) and a communication relation R exist so that

∀j ∈ N there is a predicate-level syncausality relation with (ρi, t)
R
� (ρj, t′) and t′ � ∗.

We call node i the coordination master. A pattern with a similar role has been named

broom in Ben-Zvi and Moses (2011). Note that the condition t′ � ∗ is needed since

only those points which actually contribute to the definition of the final state are of

interest, while all the others can be ignored.

Remark: The reader can now appreciate to which extent coordination was already

“baked” inside the broadcasting synchronous specifications of Section 3. Note that

broadcasting, in bsp, brings coordination. This is not necessarily true in asynchronous

systems.

Intuitively, the coordination master is where the event occurs. If a broadcasting of

(informative or non-informative) facts occurs, then such event will become common
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knowledge among the nodes. On the contrary, if broadcasting is not occurring,

common knowledge cannot be obtained, therefore if the correct final outcome is

still reached, this is obtained without coordination. That is, if at least a non-trivial

configuration exists s.t. the coordination pattern does not manifest itself, we have

coordination-freedom:

Definition 17

Given a correct class CN and an initial instance I, we say that CN is coordination-

free if a non-trivial configuration (N,D,H) can be selected for which SN(N,D,H, I)

does not manifest the coordination pattern, where N ∈ CN.

W.l.o.g., we will also dub the specifications belonging to CN as coordination-free.

From Definition 17, we can deduce the following proposition:

Proposition 7

Every coordination-free specification parallelly computes a restricted query.

Proof

If a specification is coordination-free, the only flow of information is the direct flow.

In addition, the direct flow must be such that a master node does not exist, i.e., no

communication relation is allowed to have a key set to 0 because no broadcasting

must occur. �

The reverse result clearly does not hold: A restricted query might require coordina-

tion, e.g., non-monotonic, connected, recursion-delimited queries are restricted and

not coordination-free.

Note that our definition of coordination-freedom based on syncausality rela-

tion makes it rather intuitive, in contrast with the original, declarative definition

of Ameloot et al. (2013).

5.3 From coordination-freedom to communication-freedom

Ameloot et al. (2013) relates coordination-freedom with absence of communication

under ideal distribution. It would then also be interesting to explore which relation-

ship exists between our definition of coordination-freedom and communication.

Since in a coordination-free specification, broadcasting queries are not strictly

needed, we can deduce that every coordination-free specification can be made

communication-free. That is, at least a configuration exists for which the correct

result is computed without emitting any fact: The trivial case is the configuration in

which the partition function installs the full initial instance on one node only, and

H addresses every constant to the same node.

Example 14

As an example of a coordination- and communication-free specification, consider

the following ucq-network N computing the transitive closure of the relation R(2):

Each node computes the closure of R on its local data and then emits the derived

atoms.
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Schema: Υdb = {R(2)},Υcom = {S (1,2)},Υout = {T (2)}
Program: Tout(u, v)← R(u, v).

Tout(v, w)← S(u, v), T (u, w).

Ssnd(u, v)← T (u, v).

N is oblivious and Sbsp
N (I) is convergent for every initial instance I. Since there is

no negation, we have only to show that for every initial instance, a configuration

exists such that the sending queries are not broadcasting. Consider D and H such

that the full instance is installed on one node, and every constant is hashed to that

the same node. NN,D,H is communication-free.

We can therefore deduce that coordination-freedom might be a sufficient condition

for a specification to be communication-free; however, it is not a necessary condition,

as shown by the next example.

Example 15

Let Q be the following non-monotonic query:

Q(v)← R(u, v),¬T (u).

The following fo-transducer network parallelly computes Q:

Schema: Υdb = {R(2), T (1)},Υmem = {Ready(0)},
Υcom = {S (1,2), U(1,1)},Υout = {Q(1)}.

Program: Ssnd(u, v)← R(u, v).

Usnd(u)← T (u).

Readyins()← ¬Ready().
Qout(v)← S(u, v),¬U(u), Ready().

The specification is non-monotonic (and thus requires coordination), restricted, and

can be made communication-free. Consider in fact a distribution function D which

installs the entire instance on a node i. Assume then H such that a hash function

exists by which every emitted tuple is addressed to i, and non-trivial N. Whichever

initial instance I is given, we clearly have that NN,D,H is communication-free.

Unfortunately, coordination-freedom is undecidable in general21. However, from the

above intuitions, we can draw the following:

Proposition 8

Every restricted query is parallelly computable by a hashing specification which can

be made communication-free.

21 Recall that for a specification to be coordination-free, it must first of all be independent. Independence
is undecidable (cf . Appendix A).
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Proof

By definition, every restricted query is parallelly computable by a specification N.

We have to show thatN can be made communication-free. Consider a configuration

where N is non-trivial and D, H are such that the full initial instance is installed on

node i, and a hash function exists so that every constant is hashed to the same node

i. We have that NN,D,H is independent by definition, and communication-free. �

Corollary 3

Every coordination-free specification is communication-free.

With Proposition 8, we have described one of the characteristics of restricted

queries: they are communication-free. In the next section, we will see that a larger

class of queries can be computed in a communication-free way. These will be called

embarrassingly parallel queries22.

6 CALM in Rsync systems

As we have seen, the original version of the CALM principle as postulated in

Conjecture 1 is trivially not satisfiable in bsp systems, because some monotonic

queries exist – i.e., unconnected queries, cf . Section 4.3 and Example 8 – that are

not coordination-free in the sense of Definition 17. We will then prove the CALM

conjecture just for the remaining class of monotonic queries. In the remainder of the

section, we will then close the circle by discussing how the notion of coordination

introduced in Ameloot et al. (2013) collapses into the one we proposed, once the

synchronization constraints are weakened.

6.1 The CALM conjecture for bsp systems

Let us first introduce the following lemma:

Lemma 2

Let L ⊆ datalog
¬ be a query language. Every query that is parallelly computed by

a coordination-free L-transducer network is monotone and connected.

Proof

Let N be a coordination-free L-transducer network parallelly computing a query

Q. By applying Proposition 7 and Corollary 1, we know that Q is connected, but

might still be non-monotonic (cf . Figure 2). It remains then to show that Q is indeed

monotonic. Let I and J be two initial instances over Din such that I ⊆ J. We have

to show that Q(I) ⊆ Q(J). Assume first that adom(J\ I)∩adom(I) = ∅. Our intuition

is that, under this assumption, a configuration exists such that communication is

not required to prove monotonicity. We will then use such configuration to show

that indeed this holds also for any arbitrary pair of instances. Since N parallelly

computes Q,N is independent, therefore a non-trivial configuration exists such that

22 The term embarrassingly parallel comes from the parallel computing field, where it refers to the class
of problems parallelly solvable by a set of tasks, without resorting to communication (Foster 1995).
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D installs I on one single node, while J \ I is completely installed in another node.

In addition, assume a hash function in H such that all the constant in I are hashed

to the same node i in which I is installed, while all the constant in adom(J \ I)

are hashed to the node j �= i in which J \ I resides. Consider a fact f ∈ Q(I). By

construction, f will appear in the output of NN,D,H (I) at node i at a certain round

t. Consider now the case in which the input instance is J. We have a node j �= i

such that Ijdb = J \ I, while again Iidb = I. Let us consider the point (ρ, t) of the run

ρ ∈ Sbsp
N (N,D,H, I). Because local transitions are deterministic, and no fact in J \ I

can be addressed from j to i, f is output also in run ρ. Again, by construction, being

N independent,NN,D,H (J) parallelly computes the query Q(J), therefore f must also

belong to Q(J).

Consider now the communication-free specification F built from N: We can

freely use this procedure since N is communication-free by Proposition 8. We then

have that NN,D,H (I) = FN,D,H (I) and, similarly, NN,D,H (J) = FN,D,H (J). Consider

now two generic input instances J′, I′ with J′ ⊇ I′, and the same distribution function

D installing I′ on node i and J′ \ I′ on node j. Also, in this case, we have thatFN,D,H

parallelly computes Q and, reasoning as above, FN,D,H (I′) ⊆ FN,D,H (J′), thus F is

monotonic. As a consequence, N is also monotonic. �

We are now able to prove the restricted version of the CALM conjecture for bsp

systems (Contribution 4):

Theorem 1

A query can be parallelly computed by a coordination-free transducer network iff it

is monotone and connected.

Proof

Starting from the if direction, by Proposition 3, we know that a connected datalog

(i.e., monotonic) query can be parallelly computed by an oblivious hashing transducer

network N ∈ CN. It remains to show that N is coordination-free. We can notice

that, because the transducer network is monotonic, no coordination pattern can

occur because of indirect information flow (from Corollary 2). On the other hand,

a coordination pattern might occur because of direct information flow caused by

broadcasting rules. Let N′ ∈ CN be a specification (not necessarily different from

N) such that K is restricted. Note that a restricted specification exists because

every connected datalog query is restricted by Proposition 3. It remains to show

that a non-trivial configuration (N,D,H) exists, such that for every initial instance

I, a run ρ ∈ Sbsp
N′ (N,D,H, I) exists where the coordination pattern does not appear.

Let us assume H to contain a hash function such that every fact emitted is always

addressed to the same node. Indeed the coordination pattern cannot exists in ρ

since all the tuples are not broadcasted but addressed to the same node. Finally,

N ∈ CN, thereforeNN,D,H correctly computes the query.

For what concerns the only-if direction, it is covered by Lemma 2.23 �

23 Note that the Lemma – and thus the Theorem – still holds although it is well known that a set of
monotonic queries exists which are not expressible in datalog (Afrati et al. 1995).
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Corollary 4

A datalog query can be parallelly computed by a coordination-free transducer

network iff it is monotone and distributes over components.

Proof

The corollary directly follows from Theorem 1 and Propositions 4–5. �

So far we have considered coordination-freedom. But what about communication-

freedom? As previously mentioned, we name the class of communication-free queries

as embarrassingly parallel.

Definition 18

Let L be a language and Q a L-query. Q is embarrassingly parallel if it is parallelly

computable by a specification that can be made communication-free.

As a preliminary answer to the above question, we can try to give a different

reading of the CALM principle, by relating communication-freeness (instead of

coordination-freeness) with monotonicity.

Lemma 3

Every oblivious specification parallelly computing a datalog query can be made

communication-free.

Proof

Assume that a proper initial instance I is given. Consider first a coordination-free

specification N computing a restricted monotonic query. We have already seen

in Preposition 8 that a configuration exists which makes N communication-free.

Consider now the case in which the monotonic specification N is computing a

query Q which is not restricted. Consider a configuration (N,D,H) as described in

Preposition 8: D installs the full instance on a unique node i, H addresses all the

emitted facts to i, and N, is arbitrary but not trivial.N(N,D,H, I) is communication-

free. We have to show thatN(N,D,H, I) computes the query Q(I). Consider first all

the nodes j �= i in N. Such nodes will output nothing since their instance is empty

and the query is monotone. For what concern i, it exactly computes Q(I) since it

contains the full instance. �

We can now state the following Theorem:

Theorem 2

Let L be a query language containing ucq. For every query Q expressible in L, the

following are equivalent:

1. Q can be parallelly computed by an oblivious, inflationary transducer network.

2. Q is embarrassingly parallel.

Proof

2 ⇒ 1 follows from Proposition 3. It remains to prove that every oblivious and

inflationary transducer can be made communication-free. We will show that the

only kind of queries which can be parallelly computed and are not communication-

free are the non-recursion-delimited queries. From Lemma 3, we already know that
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monotonic queries are communication-free. From Proposition 8, we instead know

that non-monotonic restricted recursion delimited queries also communication-free.

We now proceed by contradiction: Assume N is a non-monotonic transducer

network computing the query Q, and Q is not recursion-delimited, i.e., a recursive

stratum m exists, which is followed my another stratum m + 1. By definition of

stratification, the stratum m+1 cannot be evaluated before stratum m has terminated,

otherwise wrong facts could be derived. The transducer, in order to correctly compute

the query, must therefore be able to detect when the recursion is terminated and

hence the evaluation of the m+1th stratum can start. Since each node composing the

network could end up having different (overlapping) partitions of the initial instance,

different nodes might terminate the recursive computation in different rounds. Note

that, although a partition might exist for which recursion terminates at the same

round for all nodes, N is independent by definition, therefore it must be able to

compute Q even in the case in which recursion terminates unevenly. Every node can

detect that every other node has terminated its local recursive computation only

by a direct information flow. In particular, a broadcasting communication must be

executed since every node must communicate to every other node that it has finished

its local computation. To express that a node has finished its computation, id must

be clearly read, otherwise some receiving node might not be able to identify which

node has actually terminated the computation. Every node, in addition, in order to

deduce that every other node has terminated its local computation, must read the

All relation to know which nodes in the network have communicated that their

local computation is completed. Clearly, this is not an oblivious specification since

the system relations are employed. �

Discussion: Summarizing, we have seen that three different classes of coordination

patterns can be identified under the bsp semantics (Contribution 5), all of them

requiring acquisition of common knowledge of a property: snapshot coordination,

which implements the SCWA, and require the common knowledge of a relation

instance to be globally sealed; broadcasting coordination is required for unconnected

queries and necessitate each node to know that a relation instance is not empty; and

synchronized coordination requiring common knowledge of local termination of all

the nodes. Broadcasting coordination is simple to implement because it only requires

a broadcasting query. Snapshot coordination exploits the indirect information flow

and hence is communication-free, and is used by any non-monotonic, recursion-

delimited query. Finally, synchronized coordination necessarily requires access to

system relations, since non-monotonic, non-recursion-delimited queries must be

synchronized by a direct information flow in order to maintain consistency (cf .

Example 11). Figure 3 updates Figure 2 with the new results we have just discussed.

An interesting difference among the three coordination patterns is that the first

two depend on the system’s semantics, while synchronized coordination is tolerant

to any changes over the distributed system model. In the next section, we will

hence show how the semantics of snapshot and broadcasting coordination patterns

changes if we weaken the constraint of the system definition. So far, in fact, we

have only considered the deterministic delivery model (cf . Section 3.3), i.e., tuples
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Fig. 3. Complete analysis of parallelly computable queries

arrive exactly after Δ physical time once emitted. But what happens if we assume

less constrained systems, e.g., in MapReduce we start to pipeline Reducers with

Mappers? Below, we first take a look at systems with non-deterministic delivery

but bounded delay (Section 6.2, Mappers and Reducers tasks can be pipelined but

in a single MapReduce step), and then conclude with rsync systems, i.e., systems

with non-deterministic delivery and arbitrary, finite delay (Section 6.3, Mappers and

Reducers are full pipelined).

6.2 Coordination and non-deterministic delivery

In Section 3.3, we have seen that bsp systems assume that all emitted messages arrive

exactly after Δ physical time (i.e., condition S3′). In this section, we will instead

assume that messages arrive non-deterministically within the Δ bound. Under this

weaker condition, we are not any longer certain about when successive rounds can

start: If we let rounds start after Δ physical time (as under bsp systems), we may

spend unnecessary time waiting; conversely, if we start the next round right after all

nodes have finished the current round (i.e., before Δ time has elapsed, hence before

all messages are received with certainty), we may receive late facts and eventually

have to retract wrong deductions.

Consider now an invertible function θ mapping each round number to the physical

time in which it occurs, and two values Δmax, Δmin representing, respectively, the

maximum and the minimum network latency of the given physical system. Let us

simplify our model by substituting property S3′ with the following constraint, named

bounded delay:

S3′′ Let del = Δmax−Δmin, with del� θ(t+1)−θ(t) for every pair of rounds t, t+1.

S3′′ specifies that, between two consecutive rounds, the variance of the communi-

cation delay is amply lower than the time spent for computation. From the above
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Fig. 4. bsp-d system computation model. Differently than bsp systems, the next round starts

right after the end of the current one. Additionally, data communication may take arbitrary

(although bounded) time.

assumptions, it follows that each tuple, derived by a send query at round t, will be

available at the receiving site no later than the physical time θ(t+ 1) + del, and that

θ(t+1) � θ(t+1)+del < θ(t+2), i.e., facts are received during the successive round.

Note that although the delay is bounded, and hence we are assured that every fact is

delivered during the successive round, the actual instant in which a fact is received

falls non-deterministically in the range [θ(t+ 1), θ(t+ 1) + del]. Henceforth, we will

then use Sbsp-d to denote a rsync system with bounded delay and non-deterministic

delivery (bsp-d). Figure 4 depicts how bsp-d systems behave, which is in line with

frameworks such as MapReduce online (Condie et al. 2010), where key-value records

are pipelined between Map and Reduce operations.

Given a synchronous transducer networkN, if we assume a synchronous system

with non-deterministic delivery and bounded delay Sbsp-d, we have that different

behaviors arise based on the kind of transducer program. In fact, let us consider

first the case in which the program is monotonic: In this circumstance, no wrong

result can be derived by definition, even if an emitted fact is received after the round

has already started. Therefore, monotonic transducer networks behave equivalently

under bsp-d and bsp systems. The same thing cannot be stated for non-monotonic

programs, as the next example shows.

Example 16

Consider the transducer of Example 5 computing the emptiness query. Under non-

deterministic delivery, it is not clear when negation can be safely applied over S . For

instance, if negation is immediately applied, it may happen that a previously sent

fact appears later, therefore invalidating the derived results.

In synchronous systems with non-deterministic delivery, we have that, in general,

snapshot coordination is no more achievable “indirectly,” without exchanging any

message; under this model, we can therefore appreciate more in detail the nature of

snapshot coordination.
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In order to explain how snapshot coordination can be implemented in bsp-d

systems, we first solve the problem under the constraint that communication24

implement First In First Out (FIFO) delivery25, and then consider the general case.

As a first step, we introduce how monotonic and non-monotonic (stratified) aggregates

can be used in queries.

6.2.1 Queries with aggregates

Aggregate relations are usually employed in query languages to express aggregate

queries. In the next subsections, we will use aggregate relations in positive rule-heads

and in the form R(Λ < w̄ >), with Λ one of the usual aggregate functions, and

w̄ a set of variables from the body (Ramakrishnan and Ullman 1995). Aggregate

relations appear in the heads of aggregation rules:

R(Λ < w̄ >)← B1(ū1), . . . , Bn(ūn). (10)

If we denote with W̄ the finite multi-set containing all the existing ground assignments

of w̄ which satisfy the body of the rule, we have that R(a) is true, where a = Λ < W̄ >.

That is, a is the result of the application of Λ to the multi-set W̄ (Beeri et al. 1987).

We consider two different types of aggregate predicates: usual stratified aggregates

and monotonic aggregates (Mazuran et al. 2013). For the former, they are stratified

and hence the entire body must the stable (no holes are allowed in the local

knowledge base) before the aggregate function can be applied. We then always

assume the aggregate predicates to depend negatively on every predicate composing

the body. This assumption is quite natural since head-aggregation rules can be

easily rewritten as body-aggregation rules, which, in turn, can be specified using the

stratified semantics of datalog
¬ with built-in relations (Mumick and Shmueli 1995).

For what concerns the latter type of aggregates (the monotonic ones), since

aggregation is monotonic, it is, for instance, allowed to appear in recursive rules.

In order to differentiate between monotonic and stratified aggregation functions,

we label the former with the m prefix. While we will not explain in detail the

semantics behind monotonic aggregation – we suggest the interested reader to refer

to Mazuran’s paper or Zaniolo et al. (2016; 2017; 2018) for more recent evolvements

– we nonetheless remark here the main operational differences between the two

types of aggregation: stratified aggregation always returns a single value, which is

the application of the function Λ over the stable multi-set W̄ once its computation is

terminated; for monotonic aggregation, whenever the system is fed with new tuples,

new values are returned forming a monotonically evolving distribution. For instance,

if m max < w > returns the max value of the term w, every time a new tuple is

generated defining a new max value for w, m max < w > will return it. Conversely,

max < w > will return the single maximum value for the stable multi-set W.

24 By communication here, we mean both the nodes’ local buffers and the actual communication medium.
25 Although non-deterministic delivery may look impractical with FIFO communication, this is a

simplifying assumption by which facts are communicated in sequential order but where a bounded
delay may occur between consecutive facts.
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6.2.2 Snapshot coordination under FIFO

Under the FIFO assumption, we have that tuples are received in the same order in

which they are locally derived26. Recall that snapshot coordination – implementing

the SCWA – is used to ascertain that a relation is sealed. We can reduce the problem

of detecting the sealed state of a relation to the problem of detecting a global

stable property in a distributed system (Babaoğlu and Marzullo 1993), and therefore

apply one of the well-known snapshot protocols working under FIFO (Chandy and

Lamport 1985).

Let T be a transducer used to parallelly compute a non-monotonic, recursion-

delimited query Q. In Section 5.2, we have seen that NULL messages are implicitly

derived by send queries under the deterministic delivery assumption; by contrast,

under non-deterministic delivery it might be necessary to explicitly send NULL

messages. Consider a relation R occurring negated in the body of a rule in Q.

Let B be the body of the query qR ∈ Qsnd emitting R. We can add to Qsnd the

following rules defining, respectively, a unary stratified aggregate relation CntR(1),

and a new unary communication relation SealR(0,1) emulating the NULL message for

R:

CntR(count < ū >)← B. (11)

SealRsnd(i)← CntR(u), Id(i). (12)

In this way, by exploiting the stratified semantics, each node i can send the NULL

message for relation R once the computation of the count of the number of tuples

in R is completed. Since count is a stratified aggregate, CntR – and therefore also

SealR – belongs to a higher stratum. In this way, we are assured that the NULL

message is emitted after the instance over R has been completed. Under the FIFO

semantics, we are then guaranteed that once a node receives a SealR tuple, the

content of R is sealed for what concerns that emitting node. This clearly does not

mean that R is globally sealed, since a tuple produced by a different node can still

be floating. To have the SCWA hold on R, a node must have received a number of

NULL messages equal to the number of nodes composing the network: i.e., negation

is applied on a stable snapshot of R. To obtain this, we can add to T the rules:

CntSlR(m count < u >)← SealR(u), (13)

CntAll(count < u >)← All(u), (14)

FSR()← CntSlR(u), CntAll(u), (15)

and we attach the final seal FSR() to the queries in which R is negated. Queries

(13)–(15) are used to define when FSR is true, i.e., when n NULL messages have

been received for relation R, with n the number of nodes in the network. Once

FSR is true, negation can be safely applied over R, so the related query can be

evaluated (if no other negative literal appears in the same query). Note how we have

employed monotonic and stratified aggregates: Since we do not know when SealR

26 Note that this does not mean that tuples that are derived by different nodes in a certain global order
are also received in the same order. FIFO can therefore be seen as enforcing a partial order.

https://doi.org/10.1017/S147106841800042X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800042X


918 M. Interlandi and L. Tanca

Fig. 5. Taxonomy for parallelly computable queries under bsp-d

is stable, we cannot apply to it stratified aggregates nor negation, while we can

definitely use a stratified aggregate over All. Interestingly, just by moving from a

bsp system to a bsp-d system, both system relations must be employed to implement

snapshot coordination, and non-monotonic, connected, recursion-delimited queries

are no longer embarrassingly parallel. This is consistent with Ameloot et al. (2013):

non-monotonic queries are neither coordination- nor communication-free, and both

Id and All relations are required. In bsp-d systems, we then have that syncausality

degenerates into the Lamport’s happens-before relation (Lamport 1978). Figure 5

depicts this new situation in which snapshot coordination code is injected into

non-monotonic specifications.

6.2.3 Generic snapshot coordination

If we drop the FIFO assumption, we can end up in a situation in which a NULL

message is received before a regular (informative) fact, therefore negation can end

up being applied to a non-stable relation. Indeed this problem is related to how

a partial order of events can be enforced in distributed settings (Lamport 1978).

However, in our specific case, we are not interested in a complete ordering of the

emitted tuples over R, but, instead, we just want to be able to state that FSR is true

when n NULL messages have been received and no other tuple over R is still floating.

More concretely, we are interested in implementing just the gap-detection property

(Babaoğlu and Marzullo 1993) of ordered events, that is, we want to be able to

determine if, once an event (the NULL message) is received, there is some other event

(sent tuples) happened before it, which has not been received yet. Negation cannot,

in fact, be applied until we are not guaranteed that our knowledge base has no gap.

To implement this, query (12) can be modified as follows:

SealRsnd(i, u)← CntR(u), Id(i), (16)
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where SealR is now a binary relation containing also the number of tuples originally

emitted for R. Before applying (13)–(15), we have to ensure that the number of tuples

over R is equal to the number of tuples originally sent. We then add toT the clauses:

CntR(m count < ū >)← R(ū), (17)

SmNR(m sum < u >)← SealR(i, u), (18)

counting the number of tuples in R and the total number of tuples over R derived

globally, and finally we modify equation (15) as follows:

FSR()← CntSlR(u), CntAll(u), SmNR(v), CntR(v). (19)

In this way, we are ensured that negation can be applied over R only if the proper

number of NULL messages is received and, at the same time, all the emitted R-facts

have also been received.

6.3 Coordination under arbitrary delay

If now we assume that condition S3′′ does not hold, we are into the initial rsync

semantics whereby delays can be arbitrary long although finite. Surprisingly, in

this situation, we have that monotonic unconnected queries become coordination-

free. To see why this is the case, first remark that a fact emitted at round t is

still delivered at most at time θ(t + 1) + del, but, since del is now arbitrary, we

are not assured that θ(t + 1) � θ(t + 1) + del < θ(t + 2) any more. Despite this,

the notion of coordination still maintains its semantics, even if, in this case, the

coordination pattern may span multiple rounds. LetN be a specification parallelly

computing a monotonic unconnected query, I an instance, and (N,D,H) a non-trivial

configuration. Under the rsync semantics, we have that the system Srsync
N (N,D,H, I)

is composed by multiple convergent runs, modeling the fact that sent tuples can

be non-deterministically received in different rounds. A configuration (N,D,H) can

then be chosen – e.g., the one where D installs the entire initial instance I on every

node – so that no coordination pattern arises because the final state is already

reached without having any broadcasted fact been received.

Example 17

Consider the monotonic unconnected query of Example 8. Assume a rsync specifi-

cationN defined as in Example 8 but where now S is hashed on both attributes, U

is broadcasted, and Q contains also the query:

Qout(u, v)← S(u, v), T ( ). Consider the non-trivial configuration (N,D,H) in which

D installs the full instance I on every node, while H(IS ) ⊂ N – i.e., the instance

over S is not hashed to every node. We then have that a run ρ ∈ Srsync
N (N,D,H, I)

exists such that every fact emitted over S at round t is received by round t′ � ∗,
while every fact over U that should be sent to a node in N \ H(IS ) is received in

a round t′′ > ∗. Clearly, we still have that the correct output is returned since IT
consists of at least one fact, and every sent S-tuple has been correctly received. The

class defined by N is coordination-free.
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Fig. 6. Taxonomy for parallelly computable queries under rsync.

We can therefore conclude that the if direction of the original CALM principle

is fully satisfied under the rsync semantics since every monotonic (datalog) query

can now be computed in a coordination-free way. One can also show that indeed

also the only-if direction is satisfied. The reader can now completely appreciate how

the notion of coordination we introduced perfectly aligns with the one of Ameloot

et al. (2013) when arbitrary delay comes into play (Contribution 6): Embarrassingly,

parallel queries are all coordination-free. Nevertheless, our definition is more general

since it can be seamlessly used in both synchronous and asynchronous systems.

Figure 6 shows the new taxonomy when rsync systems are considered.

Remark: From a states of knowledge perspective, in bsp systems (respectively bsp-d

– rsync), common knowledge (δ-common knowledge) can be obtained by simply using

broadcasting (Fagin et al. 2003). However, if the final outcome is returned before

δ-common knowledge is reached, the former was computed without coordination.

For what concerns non-monotonic queries, the result of a query can be correctly

computed only if the stability of the negated predicates is common knowledge among

the nodes in the network. This highlights the main difference between broadcasting

and snapshot/synchronized coordination: The former exists in bsp – bsp-d just

because of the tight requirements imposed on the system; the latter are required by

the actual semantics of the query.

7 Comparison with other work

In this period, we are witnessing new trends such as cloud computing and multicore

processing becoming popular. It is well-known that programming such architectures

is very difficult, thus declarative networking has been proposed to simplify such task.

The idea of declarative networking is to use high-level, declarative languages, leaving

to the system the burden of organizing an efficient execution plan (Ameloot 2014).
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In this paper, we propose to apply the same techniques to synchronous systems,

in order to set forth the theoretical basis also for parallel dataflow optimizations.

This application was first identified by Hellerstein (2010), who also pointed out

that a tradeoff exists between efficiency of pipelining and fault-tolerance provided

by full materialization and that, however, the run-time should decide which of

the two strategies must be selected. Similarly, decomposable plans were identified

in the 80’s to speed up the evaluation of datalog programs through parallel

execution (Wolfson and Silberschatz 1988). The general pivoting technique (Seib

and Lausen 1991) implemented in BigDatalog (Shkapsky et al. 2016) provides only

a sufficient condition to determine if a program is decomposable; decomposability

is in fact undecidable in general (Wolfson and Ozeri 1990). Clearly, a relation exists

between decomposable programs and programs that distribute over components:

Every decomposable program distributes over components, while the opposite is not

true. For instance, the following program distributes over components, but is not

decomposable (Wolfson and Ozeri 1990):

Q(u, v)← R(u, w), E(w, x), F(x, v),

R(u, v)← G(u, v).

Ameloot et al. (2015) consider a superset of decomposable plans called parallel-

correct, where queries are parameterized by a distribution policy and are allowed to

generate not-unique facts.

In Afrati et al. (2011), the authors study how the MapReduce model can be

extended with recursion. Additionally, a model is proposed suggesting that the

optimal computation time can be obtained by minimizing the volume of data

passed as input to each task. This work is orthogonal to our contribution: in fact,

while we focus on how a property of queries (coordination freeness) could be used

to optimize queries, (Afrati et al. 2011) mainly focus on adding support for recursion

to a MapReduce framework. In our datalog implementation of Shkapsky et al.

(2016), we also proposed a better way to support recursion in Apache Spark. From

our practical experience, we found that the best way to implement transitive closure

is through a decomposable plan which not necessary is optimal from a data-volume

perspective since the full input dataset is passed to each task in each iteration.

The fact that CALM does not hold in general in rsync systems was first suggested

in Wolfson and Ozeri (1990)27 and only recently, with the advent of parallel

processing systems such as MapReduce and Spark, revamped by Interlandi and

Tanca (2015) for distributed parallel settings. From the latter work, we borrow

the basic techniques we used to build the hashing transducer network model and

our notion of coordination-freedom. Our computational model merges the original

transducer network model of Ameloot et al. (2013) – representing how distributed

computation is carried out by an asynchronous system – with the BSP model

of Valiant (1990). We differ from the original transducer network model both

semantically – our definition of global transition implements a synchronous and

27 More precisely, they identified that a class of non-monotonic program exists that is communication-
free.
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reliable communication model – and structurally – we have (i) an input clock driving

the computation, and (ii) a special environment transducer modeling everything

not functionally related with the system. Additionally, our bounded-delay and

asynchronous BSP models are somehow related to the Stale Synchronous Parallel

and A-BSP models introduced in Cui et al. (2014). We borrow the concept of

environment from the multi-agent systems domain (Fagin et al. 2003). Although in

contexts different than ours, synchronous transducer networks were also employed

in Furche et al. (2014) and Interlandi et al. (2013). Another interesting model related

to ours is the Massive Parallel Model of Koutris and Suciu (2011). In Massive

Parallel Model, each round is divided into three phases: the usual computation and

communication phases, and a broadcasting phase. As we have demonstrated, in

parallel systems broadcasting implements coordination, therefore Massive Parallel

Model expresses exactly those queries that require coordination in order to proceed.

Koutris et al. showed that by employing their model, a specific class of chained

conjunctive queries, denoted tall-flat, can be computed in one round by a load-

balanced algorithm. Conversely, if a query is not tall-flat, then every algorithm

consisting of one round is not load-balanced. This work as well as Ameloot et al.

(2015) focus on how to efficiently execute queries in parallel. Conversely, our main

focus is on how to extend CALM over rsync systems in order to unlock asynchronous

plans. A similar investigation on efficiency is among our future plans.

The reader could be induced to believe that CALM indeed would not hold in

synchronous settings, since systems of this kind already embed some notion of

coordination. Indeed, Ben-Zvi and Moses (2010; 2011) prove that this is not true

if a formal definition of coordination is taken into consideration, i.e., coordination

viewed as a particular state of knowledge required to obtain a shared agreement in

a group of nodes.

Our work is addressing a complementary domain with respect to Bloom (Alvaro

et al. 2011, 2014) In Bloom programs, points of order are identified, i.e., code

positions defining a non-monotonic behavior that could bring inconsistent outcomes

(Alvaro et al. 2011). From our perspective, points of order identify where an indirect

information flow exists. In Alvaro et al. (2014), two different coordination strategies

have been identified at the basis of the cause of inconsistency: sealing and ordering.

They are both comparable to our snapshot coordination. In addition, we have

identified broadcasting and synchronized coordination. Finally, note that the CALM

principle in its original form is satisfied only if no node is granted access to any

information on how data was originally distributed; in this case, in fact, certain

weaker forms of monotonic programs can be evaluated in a coordination-free

way (Zinn et al. 2012; Ameloot et al. 2014). From our viewpoint, this is possible

because the way data is distributed is already common knowledge before the

computation starts, i.e., nodes already embed a notion of coordination. In practice,

using synchronous specifications, nodes are able to compute non-monotonic queries

in a coordination-free way “by construction,” without any awareness of how data

was initially partitioned. We are planning to investigate how the weaker forms of

monotonicity identified in Ameloot et al. (2014) are related to our work, and whether

a tradeoff exists between “distribution awareness” and “synchronization.”
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8 Conclusions

In this paper, the CALM principle is analyzed under synchronous and reliable

settings. By exploiting CALM, in fact, we would be able to break the synchronous

cage of modern parallel computation models, and provide optimizations such as

pipelining and decomposability when allowed by the program logic. This topic has

recently acquired much attention because, in spite of the increasing number of

applications showing better performance (and accuracy) for asynchronous execution

over synchronous one (Niu et al. 2011; Cui et al. 2014; Xie et al. 2015), only few

practical systems provide this feature as optimization (Han and Daudjee 2015;

Shkapsky et al. 2016).

To reach our goal, we have introduced a new abstract model emulating BSP com-

putation, and a novel interpretation of coordination with sound logical foundations

in distributed knowledge reasoning. By exploiting such techniques, we have shown

that the CALM principle indeed holds also in rsync settings, but in general only

for the subclass of monotonic queries defined as connected. Finally, we have drawn

attention to a hierarchy of queries with related coordination-patterns and we showed

how our definition of coordination-freedom is related to the assumptions imposed

on the behavior of the system: Our formalization generalizes the one employed by

Ameloot et al. because applicable in synchronous as well as asynchronous settings.

Our next step will be to investigate to which extent the CALM principle is satisfied

when queries with aggregates are considered; monotonic aggregation (Ross and Sagiv

1997; Mazuran et al. 2013) has been a hot topic in databases for many years: Does

a relationship between monotone computation and coordination-freedom exist also

for aggregate queries?

Finally, consider that all the queries in this paper are formulated in some sub-

language of datalog
¬. In the last few years, datalog

+− (Calı̀ et al. 2011) was

defined: a family of rule-based languages that extends datalog to capture the most

common ontology languages for which query answering is tractable, and provides

efficiently checkable, syntactic conditions for decidability and tractability. We plan

to study extensions of our work to (sub-languages of) datalog
+−, in order to apply

our results to semantic web settings.
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Babaoğlu, O. and Marzullo, K. 1993. Consistent global states of distributed

systems: fundamental concepts and mechanisms. In Distributed systems, 2nd ed. ACM

Press/Addison-Wesley Publishing Co., New York, NY, USA, 55–96.

Beeri, C., Naqvi, S. A., Ramakrishnan, R., Shmueli, O. and Tsur, S. 1987. Sets and negation

in a logic data base language (ldl1). In Proc. of ACM Symposium on Principles of Database

Systems. ACM, 21–37.

Ben-Zvi, I. and Moses, Y. 2010. Beyond lamport’s happened-before: On the role of time

bounds in synchronous systems. In DISC., Vol. 6343. N. A. Lynch and A. A. Shvartsman,

Eds. Lecture Notes in Computer Science. Springer, 421–436.

Ben-Zvi, I. and Moses, Y. 2011. On interactive knowledge with bounded communication.

Journal of Applied Non-Classical Logics 21, 3–4, 323–354.

Ben-Zvi, I. and Moses, Y. 2014. Beyond lamport’s happened-before: On time bounds and

the ordering of events in distributed systems. Journal of the ACM 61, 2, 13:1–13:26.

Borkar, V., Carey, M., Grover, R., Onose, N. and Vernica, R. 2011. Hyracks: A flexible and

extensible foundation for data-intensive computing. In Proc. of the International Conference

on Data Engineering, ICDE, 1151–1162.

Brewer, E. A. 2000. Towards robust distributed systems. In Proc. of the 19th Annual ACM

Symposium on Principles of Distributed Computing, PODC ’00. ACM, New York, NY, USA,

7–.

https://doi.org/10.1017/S147106841800042X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800042X


A datalog-based computational model for coordination-free, data-parallel systems 925

Calı̀, A., Gottlob, G., Lukasiewicz, T. and Pieris, A. 2011. Datalog+-: A family of

languages for ontology querying. In Proc. of Datalog Reloaded – 1st International Workshop,

Datalog 2010, Oxford, UK, March 16–19, 2010. Revised Selected Papers, 351–368.

Chandy, K. M. and Lamport, L. 1985. Distributed snapshots: Determining global states of

distributed systems. ACM Transactions on Computer Systems 3, 1, 63–75.

Condie, T., Conway, N., Alvaro, P., Hellerstein, J. M., Elmeleegy, K. and Sears, R. 2010.

Mapreduce online. In NSDI. USENIX Association. 313–328.

Cui, H., Cipar, J., Ho, Q., Kim, J. K., Lee, S., Kumar, A., Wei, J., Dai, W., Ganger, G. R.,

Gibbons, P. B., Gibson, G. A. and Xing, E. P. 2014. Exploiting bounded staleness to speed

up big data analytics. In Proc. of the USENIX Conference on USENIX Annual Technical

Conference, USENIX ATC’14. USENIX Association, Berkeley, CA, USA, 37–48.

Dean, J. and Ghemawat, S. 2008. Mapreduce: Simplified data processing on large clusters.

CACM 51, 1, 107–113.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P. and Vogels, W. 2007. Dynamo: Amazon’s highly

available key-value store. SIGOPS Operating Systems Review 41, 6, 205–220.

Fagin, R., Halpern, J. Y., Moses, Y. and Vardi, M. Y. 2003. Reasoning About Knowledge.

MIT Press, Cambridge, MA, USA.

Foster, I. 1995. Designing and Building Parallel Programs: Concepts and Tools for Parallel

Software Engineering. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Furche, T., Gottlob, G., Grasso, G., Guo, X., Orsi, G., Schallhart, C. and Wang,

C. 2014. DIADEM: Thousands of websites to a single database. PVLDB 7, 14, 1845–

1856.

Gaifman, H., Mairson, H., Sagiv, Y. and Vardi, M. Y. 1993. Undecidable optimization

problems for database logic programs. Journal of the ACM 40, 3, 683–713.

Guessarian, I. 1990. Deciding boundedness for uniformly connected datalog programs. In

International Conference on Database Theory ICDT, Vol. 470, S. Abiteboul and P. Kanellakis,

Eds. Lecture Notes in Computer Science, 395–405.

Han, M. and Daudjee, K. 2015. Giraph unchained: Barrierless asynchronous parallel

execution in pregel-like graph processing systems. VLDB 8, 9, 950–961.

Hellerstein, J. M. 2010. The declarative imperative: Experiences and conjectures in

distributed logic. SIGMOD Record 39, 5–19.

Hunt, P., Konar, M., Junqueira, F. P. and Reed, B. 2010. Zookeeper: Wait-free coordination

for internet-scale systems. In Proc. of the USENIX Conference on USENIX Annual Technical

Conference, USENIXATC’10. USENIX Association, Berkeley, CA, USA, 11–11.

Interlandi, M. and Tanca, L. 2015. On the CALM principle for BSP computation. In Proc.

of the Alberto Mendelzon International Workshop on Foundations of Data Management.

Interlandi, M. and Tanca, L. 2017. On the CALM principle for bulk synchronous parallel

computation. CoRR abs/1405.7264.

Interlandi, M., Tanca, L. and Bergamaschi, S. 2013. Datalog in time and space,

synchronously. In Proc. of the Alberto Mendelzon International Workshop on Foundations of

Data Management.

Kindler, E. 1994. Safety and liveness properties: A survey. Bulletin of the European

Association for Theoretical Computer Science 53, 268–272.

Koutris, P. and Suciu, D. 2011. Parallel evaluation of conjunctive queries. In Proc. of ACM

Symposium on Principles of Database Systems, PODS ’11. ACM, New York, NY, USA,

223–234.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM 21, 7, 558–565.

https://doi.org/10.1017/S147106841800042X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800042X


926 M. Interlandi and L. Tanca

Lamport, L. 1984. Using time instead of timeout for fault-tolerant distributed systems. ACM

Transactions on Programming Languages and Systems 6, 2, 254–280.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N. and

Czajkowski, G. 2010. Pregel: A system for large-scale graph processing. In Proc. of the

ACM SIGMOD International Conference on Management of data, SIGMOD ’10. ACM, New

York, NY, USA, 135–146.

Mazuran, M., Serra, E. and Zaniolo, C. 2013. Extending the power of datalog recursion.

VLDBJ 22, 4, 471–493.

Mumick, I. and Shmueli, O. 1995. How expressive is stratified aggregation? Annals of

Mathematics and Artificial Intelligence 15, 3–4, 407–435.

Niu, F., Recht, B., Re, C. and Wright, S. J. 2011. Hogwild!: A lock-free approach to

parallelizing stochastic gradient descent. In Proc. of the 24th International Conference

on Neural Information Processing Systems, NIPS’11. Curran Associates Inc., USA, 693–

701.

Olston, C., Reed, B., Srivastava, U., Kumar, R. and Tomkins, A. 2008. Pig latin: A not-so-

foreign language for data processing. In Proc. of the Special Interest Group on Management

of Data, SIGMOD. ACM, 1099–1110.

Ramakrishnan, R., Beeri, C. and Krishnamurthy, R. 1988. Optimizing existential datalog

queries. In Proc. of Symposium on Principles of Database Systems. ACM, 89–102.

Ramakrishnan, R. and Ullman, J. D. 1995. A survey of deductive database systems. Journal

of Logical Programming 23, 2, 125–149.

Ross, K. A. and Sagiv, Y. 1997. Monotonic aggregation in deductive databases. Journal of

Computer and System Sciences 54, 1, 79–97.

Seib, J. and Lausen, G. 1991. Parallelizing datalog programs by generalized pivoting. In Proc.

of ACM Symposium on Principles of Database Systems, 241–251.

Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T. and Zaniolo, C.

2016. Big data analytics with datalog queries on spark. In Proc. of the International

Conference on Management of Data, SIGMOD ’16. ACM, New York, NY, USA, 1135–

1149.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff,

P. and Murthy, R. 2009. Hive: A warehousing solution over a map-reduce framework.

VLDB 2, 2, 1626–1629.

Valiant, L. G. 1990. A bridging model for parallel computation. CACM 33, 8, 103–111.

Vogels, W. 2009. Eventually consistent. Communications of the ACM 52, 1, 40–44.

Wolfson, O. and Ozeri, A. 1990. A new paradigm for parallel and distributed rule-

processing. In Proc. of the Special Interest Group on Management of Data SIGMOD, 133–

142.

Wolfson, O. and Silberschatz, A. 1988. Distributed processing of logic programs. In Proc.

of the Special Interest Group on Management of Data SIGMOD, 329–336.

Xie, C., Chen, R., Guan, H., Zang, B. and Chen, H. 2015. Sync or async: Time to fuse for

distributed graph-parallel computation. In Proc. of the Principles and Practice of Parallel

Programming PPoPP, 194–204.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J.,

Shenker, S. and Stoica, I. 2012. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In Proc. of the NSDI.

Zaniolo, C., Yang, M., Das, A. and Interlandi, M. 2016. The magic of pushing extrema

into recursion: Simple, powerful datalog programs. In Proc. of the 10th Alberto Mendelzon

International Workshop on Foundations of Data Management, Panama City, Panama, May

8–10, 2016.

https://doi.org/10.1017/S147106841800042X Published online by Cambridge University Press

https://doi.org/10.1017/S147106841800042X


A datalog-based computational model for coordination-free, data-parallel systems 927

Zaniolo, C., Yang, M., Das, A., Shkapsky, A., Condie, T. and Interlandi, M. 2017. Fixpoint

semantics and optimization of recursive datalog programs with aggregates. TPLP 17, 5–6,

1048–1065.

Zaniolo, C., Yang, M., Interlandi, M., Das, A., Shkapsky, A. and Condie, T. 2018.

Declarative bigdata algorithms via aggregates and relational database dependencies.

In Proc. of the 12th Alberto Mendelzon International Workshop on Foundations of Data

Management, Cali, Colombia, May 21–25, 2018.
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