Glasgow Math. J. 42 (2000) 271-274. © Glasgow Mathematical Journal Trust 2000. Printed in the United Kingdom

SOLVABILITY OF FACTORIZED FINITE GROUPS

ANGEL CAROCCA
Facultad de Matematicas, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22, Chile
e-mail:acarocca@mat.puc.cl

(Received 9 October, 1998)

Abstract. Using classification theorems of simple groups, we give a proof of a
conjecture on factorized finite groups which is an extension of a well known theorem
due to P. Hall.
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Let G be a finite group and G = GG,, where G| and G, are subgroups of G.
There are a number of results in which one can deduce the solvability of G from
suitable conditions on G| and G, (see for instance [1]). According to a famous result
of P. Hall ([5] and [6]), a finite group G is solvable if and only if G = P\ P;....P,,
where P; € Syl,,G and P;P; = P;P; for alli,j e {1, ...., m}.

Using classification theorems of simple groups, in this note we present an
extension of the cited theorem of Hall. For this, we consider the following definition.

Let S be the class of all solvable groups. Two subgroups Gy, G, of a given group
G are S-connected whenever for each x € G|, y € G, we have < x,y >€ S.

Considering this definition we prove the following theorem, which proves the
conjecture formulated in [2].

THEOREM. Let G = G1G»....Gy, be a group such that Gy, ...., G, are solvable sub-
groups of G. If G, ...., G, are pairwise permutable and pairwise S-connected, then G is
solvable.

2. Preliminary results. In this section, we collect some of the results that are
needed. If G is the product of two solvable subgroups, it is known that G is not
necessarily solvable. Particular cases of finite groups factorizable by two subgroups
were studied by many authors. Kazarin [8] studied the general case and obtained the
following result.

2.1. LemMA (Kazarin [8].) Let G = GGy be a group with Gy and G, solvable
subgroups of G. If all composition factors of G are known groups, then the nonabelian
simple composition factors of G belong to the following list of groups:

(a) PSL(2, g) with g > 3,
(b) My,
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(c) PSL(3, q) with q <9,
(d) PSp(4, 3),
(e) PSU(3, 8),
() PSL(4, 2).

A consequence of Kazarin’s result is the following lemma.

2.2. LemMa (Fisman [3].) Let G = G1G>....G, be a group such that G;G; is a sol-
vable subgroup, for every i,j € {1, 2, ..., m}. Then G is solvable.

REMARK 1. Let G = PSL(2, ¢) with ¢ = p’ and p a prime number. The following
properties of G are well known.

@) |G| = w where d = (2, ¢ — 1).

(b) A Sylow-p-subgroup P of G is elementary abelian of order ¢ = p' and P is
disjoint from its conjugates. Further |G : Ng(P)| = ¢ + 1.

(c) If r is a prime distinct from p or 2, then a Sylow-r-subgroup of G is cyclic.

(d) If p is odd, then a Sylow-2-subgroup of G is dihedral.

. . 1 -1
(e) G contains cyclic subgroups U of orders s = % and s = qT For each

1 # u € U, we have that Ng(< v >) is a dihedral group of order 2s.

For a proof see [7, Satz 8.2/8.3/8.4, p.192].

2.3. LEMMA Let G = G1G> = G| N = G,N be a group, where G| and G, are sol-
vable subgroups of G and N is the unique minimal normal subgroup of G and N is
nonsolvable. Then

(a) Gy acts transitively as a permutation group on the set of normal subgroups

m m
of Nand GiN N = HL,'fOI‘ N= HN,» (with N; 22 Nj) for every i,j e {1, ..., m} and
L, =N;NG,. i i
(b) |Ny| divides |Out(Ny)||N1 N G1]|N; N Gyl.

For a proof see [8, Lemmas 2.3 and 2.5].

2.4. LEMMA Let G =< x >< y > be a group. Then G is supersolvable. In parti-
cular, the Sylow-p-subgroup of G, where p is the largest prime divisor of |G|, is normal
inG.

For a proof see [7, Satz 10.1, p.722].

REMARK 2. Let G be a solvable group, P e Syl,(G) and Q e Syl,(G). If

Ng(P) = P and Ng(Q) = Q, then p = g¢.
This is a corollary of Carter’s Theorem [7, Satz 12.2, p.736].

3. Proof of the theorem. Suppose that the Theorem 1 is false and let G be a
counterexample of smallest order with m least possible. By Lemma 2.2, we have that
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G = G1G,. Clearly the hypothesis is inherited by factor groups. Hence G has a
unique minimal normal subgroup N, and N is nonsolvable. Since
G|N = G(GINN G,) and Gy, GiINN G, are S-connected solvable subgroups of
G| N, we have that G| N = G = G, N, by the minimality of G.

By Lemma 2.1, we have that the composition factors of G belong to the fol-
lowing list:

(a) PSL(2, ¢) with ¢ > 3,
(b) My,

(c) PSL(3, ¢) with ¢ < 9,
(d) PSp(4, 3),

(e) PSU(3, 8),

(f) PSL(4, 2).

From now on we denote by L a nonabelian simple composition factor of G. By
the above arguments L < G. Put H=L NG| and K= LN G,.

(I) Assume that L = PSL(2, q) with ¢ = p* an odd number.

Let r € 7(L) — {2, p} and R be an r-subgroup of L. Since ("er—l,‘%l) =1 we have
that [N, (R)| = 2s with s = %1 or s = %1 by Remark 1 (e). In particular p is not a
divisor of [N.(R)|.

Let x be a p-element of H and y an r-element of H or K. Since M =< x,y > is
solvable there exist P; € Syl,(M) and R € Syl,(M) such that P{R; = R P,. Since p
is not a divisor of |[N.(R;)|, by Remark 2 we have that r divides |[N,,(P;)|. Hence, if
P e Syl,(L), then r divides |N.(P)| by Remark 1 (a). It follows that every odd prime
number in (L) divides |[Np(P)| = @, by Lemma 2.3 (b). Again, since
(ﬂzl,%) =1 we have ¢ + 1 = 2°. We shall obtain a contradiction proving that 2
divides |N.(P)|.

Let w be a 2-element of H or K and M =< x,w >. Let S| € SylL(M) and
Py € Syl,(M) be such that P;.S; = S§;P;. Since 2 does not divide [N (P)] it follows
that 2 does not divide |Ny(P;)| by Remark 1 (a). Hence p divides [Ny (S)|. Let
P> € Syl,(Ny(S1)). If there exist a subgroup Z of S; of order two normalized by
some subgroup P; of P,, then P;<ZP; and we obtain a contradiction. Therefore,
since S| is cyclic or dihedral, we have that S; is of order 4 and P, acts faithfully on
S1. Hence P, < GL(2,2) and p = 3. It follows that ¢ = 3, a contradiction.

(I1) Assume that L = PSL(2, 2").

Let p be the largest prime and r ## p an odd prime both dividing w|L|, x be
a p-element of H and y an r-element of H or K. Since M =< Xx, y > is solvable, there
are Py =<x; >e Syl[,(M) and R =<y >e€ Syl,(G») such that PR = R P;.
Hence, by Lemma 2.4 it follows that P; 2 R; P;. We deduce that every odd prime in
(L) divides w (by Remark 1(e)) and 2" = 2, a contradiction.

(IIT) Assume that L is isomorphic to some group of the following list: {PSL(3, q)
with ¢ <9 (here q # 2 since PSL(3,2) = PSL(2, 7)), My, PSp(4, 3), PSL(4,2) or
PSU(3, 8)}.

By Lemma 2.3 (b) we have that |L| divides |Out(L)||H||K|. Therefore, for every
{p, q} € (L) there is a solvable {p, g}-subgroup S of L. Since
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PSL(3, 3) does not have a {2, 13}-subgroup,
PSL(3, 4) does not have a {5, 7}-subgroup,
PSL(3, 5) does not have a {5, 31}-subgroup,
PSL(3, 7) does not have a {7, 19}-subgroup,
PSL(3, 8) does not have a {7, 73}-subgroup,
M;; does not have a {3, 11}-subgroup,
PSp(4, 3) does not have a {3, 5}-subgroup,
PSU(3, 8) does not have a {7, 19}-subgroup,
PSL(4, 2) does not have a {5, 7}-subgroup,

we have a contradiction.
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