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LONGEST CYCLES IN 2-CONNECTED GRAPHS 
WITH PRESCRIBED MAXIMUM DEGREE 

J. A. BONDY AND R. C. ENTRINGER 

1. Introduction. The relationship between the lengths of cycles in 
a graph and the degrees of its vertices was first studied in a general con­
text by G. A. Dirac. In [5], he proved that every 2-connected simple 
graph on n vertices with minimum degree d contains a cycle of length at 
least m'm{2d, n}. Dirac's theorem was subsequently strengthened in 
various directions in [7], [6], [13], [12], [2], [1], [11], [8], [14], [15] and [16]. 

Our aim here is to investigate another aspect of this relationship, 
namely how the lengths of the cycles in a 2-connected graph depend on 
the maximum degree. Let us denote by fin, d) the largest integer k such 
that every 2-connected simple graph on n vertices with maximum degree 
d contains a cycle of length at least k. We prove in Section 2 that, for 
d ^ 3 and n ^ d + 2, 

(1) 41ogd_iw - 41ogd_ilogrf_itt - 20 < fin, d) < 41ogd_in + 4. 

Thus, for every d ^ 3, 

lim/M_ = 4. 
n^ x \ogd-in 

In Section 3, we examine the special case of regular graphs. If gin, d) 
denotes the largest integer k such that every 2-connected ^-regular simple 
graph on n vertices contains a cycle of length at least k, then it follows 
from (1) and the above-mentioned theorem of Dirac that, for d ^ 3 and 
n ^ 2d, 

(2) g{n, d) ^ max {2d, 41ogd_itt - 41ogd_ilogd_iW - 20}. 

We establish upper bounds on gin, d) by means of appropriate construc­
tions. In particular, we prove that, for d ^ 3 and n è hid — 1) id2 + 
U + 1), 

(3) gin,d) ^ 4{logd_^} +2d. 

The bounds in (2) and (3) are fairly close to one another both for small 
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values of d (d = 0(1)) and for large values of d (d = 0(nc), where 
0 < c ^ J) . However, they are markedly different at intermediate 
values of d, and the lower bound (2) could, no doubt, be improved in this 
range. The bound (2) is also rather weak for very large values of 
d (d = 0(n)). For example, Jackson [9] has proved that, for d ^ w/3, 

g(n, d) = n 

and it has been conjectured (see [3]) that, for d §: n/k, where k §: 3 and 
n is sufficiently large, 

g(n,d) ^ 2n/(k- 1). 

We conclude the paper with a discussion of some related problems and 
results. 

2. Graphs with prescribed maximum degree. The lower bound in 
(1) is established by means of a construction based on the following 
lemma. We first have a definition. If G is a graph whose block-cutvertex 
tree is a path, and if x and y are two vertices of G belonging to the blocks 
which correspond to the ends of this path, then G is referred to as an 
(x, y)-block-path. 

LEMMA 1. Let T be a tree with s vertices u\, u2} . . . , us of degree one, 
where s ^ 2. Let T' be a tree isomorphic to T with corresponding vertices 
Uiy U2, . . . , Us of degree one and, for 1 ^ i g s, let d be a (vi} v/)-block-
path, where T, T', Gi, G2, . . . , Gs are pairwise disjoint. Denote by G the 
graph obtained on identifying ut with vt and u( with v( for all i} 1 ^ i S s. 
Then G is 2-connected and any cycle in G includes vertices of at most two 
of the graphs Gt. 

Proof. G is clearly 2-connected. Let C be a cycle in G. We may suppose 
that no d entirely contains C. Then, since both T and T' are trees, C must 
include some (uu w^-path of T. But if C includes an edge e of T, it also 
includes the corresponding edge e' of T', because {e, e'\ is an edge cut of 
G. Therefore C also includes the (u/, u/)-ps,th of T'. It follows that C 
consists of these two paths together with a (vt, v/)-path in G* and a 
(Vj, y/)-path in G;. 

Construction. Let n and d be positive integers with d ^ 3 and n ^ d + 2. 
Set 

5 = did - \y 

where 

/ = [loga^dnid - 2) +4)A/2)] 
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and let (ax, a2, . . . , as) be a sequence of integers, as equal as possible, 
such that 

A _ n(d- 2) + 4-d\d - 1)' 
kat~ ~d-2~ 

In order to apply Lemma 1, we now define a tree T and graphs Gi} 

1 ^ i fg 5, as follows. 
Let r be a tree in which every vertex of degree greater than one has 

degree d and every vertex of degree one is at distance t + 1 from the 
centre. Observe that T has 5 vertices of degree one and that, if d* is the 
number of vertices of T at distance i from the centre, 

v{T) = Z dt = 1 + £ d{d - I)1"1 = ^ J ^ 1 ) Ç I L 2 

where v{T) denotes the number of vertices of T. 
For 1 ^ i ^ s, let 

lid if a, = 0 
d: = \ K2 if at = 1 

(^2(fli_1 i f a , ^ 2 . 

We denote the ends of r by ui, u2, . . . , ws. If a* = 0, we label the 
vertex of Gt with A» and v/ ; if a* — 1, we label one vertex of G* with v% 
and the other with v{\ if a* ^ 2, we label one vertex of degree at — 1 in 
G* with fl* and the other with v/. 

On identifying vertices as in Lemma 1, we obtain a 2-connected graph 
Gn>d with maximum degree d. Now 

v{Gnd) = 2,(D + E („(G,) - 2) 
1 = 1 

2d(d - l)t+1 - 4 
+ X)^t *" ̂  = n 

1 = 1 

and, by Lemma 1, a longest cycle in Gntd has length at most 4£ + 8. 
Therefore 

/ (n , d) ^ 41ogd_1(n(d - 2) + 4)/<Z2 + 8 < 41ogd_!W + 4. 

Our proof of the lower bound in (1) makes use of the following lemma. 

LEMMA 2. Let G he a 2-connected graph on n vertices with maximum 
degree d. Then each edge of G lies on a cycle of length at least 2h(n, d) — 1, 
where 

h(n, d) = \ogd-!(n(d - 2) + 2)/2. 

Proof. Let e = uv be any edge of G, and let G' be the graph obtained 
from G by deleting £, inserting a new vertex x, and joining x to both u 
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and v. Then G is also 2-connected and has maximum degree d. In G, let 
dt be the number of vertices at distance i from x. Then d\ = 2 and, 
because G has maximum degree d, dt ^ 2(d — l)1"1 for all i > 1. 
Suppose that dr+i = 0. Then 

so 
r g: fe(w, d). 

It follows that there is a vertex y in G' whose distance from x is at 
least h(n, d). Since G' is 2-connected, there are two internally-disjoint 
(x, ;y)-paths in G. Thus x lies on a cycle of length at least 2h(n, d) in G', 
and e lies on a cycle of length at least 2h(n, d) — 1 in G. 

Let G be a 2-connected graph and let C be a cycle of G. For each com­
ponent Gi of G — C, let 4̂ j be the set of vertices of C which are adjacent, 
in G, to at least one vertex of G, and let Bf be the subgraph of G con­
sisting of A i, Gt and all the edges of G with one end in A t and the other 
in G^ Then the subgraphs Bt are called the proper bridges of G (relative 
to C). The sets A t are the sets of vertices of attachment of the bridges B t. 

THEOREM. 

f(n, d) > 4\ogd-in - 41ogd_ilogd_i» - 20. 

Proof. Let G be a 2-connected graph on n vertices with maximum 
degree d and let G be a longest cycle, of length /, in G. Let Gu B t and A u 

1 ^ i ^ r, be the components of G — C, the corresponding proper 
bridges of G and their sets of vertices of attachment, respectively. For 
1 ^ i ^ r, set 

v(Gi) = tii and \A t\ = at. 

Then 
T 

(4) Yjni = U - l 

and 
r 

(5) I > 4 S / ( d - 2 ) . 
i=l 

Denote by Tt the block-cutvertex tree of Gu and let G be the graph 
one obtains from G on replacing Gi by Tu 1 ^ i ;g r. Let ^ ^ denote the 
set of all paths of length at least two in G having their ends in A t and 
their internal vertices in Tt. Since each such path is determined by its 
two terminal edges, 

(6) [âû
i\^(a^)(d-2)\ 
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Now each vertex of Tt lies on at least at — 1 of these paths. Thus, if we 
define the weight w(P) of a path P £ & { to be the total number of 
vertices in the block path of Gt corresponding to the interior of P , we 
have 

(7) X w(P) ^ (a, - l)nt. 

It follows from (6) and (7) that there is a path Pt £ & { with 

(8) w(Pi) ^ 2ni/ai(d - 2)\ 

Let m = maxj ni/at. Then ma* ^ w* for all i, so 

w Efl< = ]£w*-

Using (4) and (5), we obtain 

w è (« - l)/l(d - 2). 

We now deduce from (8) the existence of a path P G U t ^ i such that 

w(P) è 2(» - Z)//(d - 2)3. 

Suppose that P Ç &jf and that the ends of P are w and v. Then the 
subgraph i7 of Bj corresponding to P, together with the edge uv, is 
2-connected and 

By Lemma 2, wz; lies in a cycle of length at least 2h — 1, where 
h = h(v(H), d). Therefore Bj contains a (uf u)-path of length at least 
2h — 2. Since C is a longest cycle in G, it follows that / è 4& — 4. Thus 

/ â 4 l o g t f - i ( ~ f ~ y 2 + d - l ) - 4 > 4 logd_i» - 4 logd_i/ - 12. 

But this implies that 

f(n, d) > 41ogd_iW - 41ogd_ilogrf_i7z - 20. 

3. Regular graphs. Here, we describe constructions which yield fairly 
good upper bounds on g(n, d). The first makes use of Lemma 1. 

Let n and d be positive integers with d ^ 3 and n ^ d2 + d + 2. Set 

s = t(d - 2) + 2 

where 
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and let (ai, a2, . . . , as) be a sequence of integers, as equal as possible 
subject to the condition t ha t each at be even if d is odd, and such t h a t 

X) di = n — 2t. 

Let r be a tree with 5 vertices U\, u^, . . . , us of degree one and / 
vertices of degree d. Choose T so t h a t the maximum distance m from the 
centre of T to a ver tex of degree one is as small as possible. T h u s 

m = {logd-i(s/d)} + 1 ^ {logd_is}. 

For 1 ^ i ^ 5, let Gt be a (z^, ^ / ) -b lock-pa th on at vertices, where 
Vi and VÎ have degree d — 1 and the remaining vertices have degree d. 
On identifying vertices as in Lemma 1, we obtain a 2-connected ^-regular 
graph Hntd. Now 

v{HnA) = 2v(T) + E (v(Gt) - 2) = 2(5 + /) + è (a, - 2) = « 
z = l i = l 

and, by Lemma 1, a longest cycle in i^w,d has length a t most 

(9) 4w + 2mdiX iCit — 2. 

Since 

< in ~ 2t\ JL. 1 maxjflj <* S / + 1 

we obtain 

Z(n,d) S 4{1OR,_I5J + 2 

This bound has the d isadvantage t ha t the roles of n and d are not 
expressed explicitly. However, it is amenable to some simplification when 
n ^ h(d - l)(d2 + 3d + 1). In t ha t case, using the fact t ha t 

t è (n - (d2 + d + l ) ) / ( d 2 - d) 

a routine computa t ion yields 

in - 2t\ ^ , .. 

and hence 

maXjflj ;g d + 3. 

Also 

5 = t(d - 2) + 2 g (n(d - 2) + 4)/d(<Z - 1) < w/(d - 1). 

Subst i tu t ing these bounds into (9), we obtain 

g(n,d) £ 4{logd_m} +2d. 

in - 2t\ 

rr-f-
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We now briefly describe a construction valid for d ^ 3 and d + 2 ^ 
n ^ d2 -\- d + 2. It is the natural extension of one due to Lang and 
Walther [10]. 

Let (ai, a2, . . . , ar) be a partition of n — 2 into integers ait where 
(ii ^ d + 1, #i is even if J is odd, and max* at is as small as possible 
subject to these conditions. For 1 ^ i ^ r, let Gt be a (/-regular 2-con-
nected graph on at vertices (the graphs Gt being pairwise disjoint), and 
let M = \UjVj\l ^ j ^ d) be a matching in H = U G* which intersects 
each G<. Let G be the graph obtained from H — M by adding two new 
vertices w and v and the edges uuh wjt 1 ^ j ^ d. Then G is a 2-con-
nected (/-regular graph on n vertices with no cycle of length greater than 
2 max id i + 2. 

4. Graphs of higher connectivity. The transition from 2-connected 
graphs to graphs of higher connectivity has a striking effect on the 
problems treated above. Bondy and Simonovits [4] have proved, for 
example, that 

ecxS*£Tn ^f3(Hj 3 ) g £2Wlog8/log9 

where fk(n, d) is the analogue of f(n, d) for ^-connected graphs. They 
conjecture that 

/»(»,3) > nc 

for some c > 0. Another conjecture, due to R. Hâggkvist (see [9]), 
concerns gk(n, d), the analogue of g(n, d) for ^-connected graphs, and 
asserts that, for d ^ k + 2 and n S d(k + 1), 

&(«, d) = «. 

It is perhaps worth pointing out here that Dirac's theorem cannot be 
improved by considering graphs of connectivity greater than two; if 
n ^ 2c/, then KdiTl-d is a (/-connected graph, and yet has no cycle of 
length greater than 2d. 

Added in Proof. Jackson [9] has announced that this conjecture is false. 
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