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Christoffel Functions and Universality in
the Bulk for Multivariate Orthogonal
Polynomials
A. Kroó and D. S. Lubinsky

Abstract. We establish asymptotics for Christoffel functions associated with multivariate orthogonal
polynomials. The underlying measures are assumed to be regular on a suitable domain. In particular,
this is true if they are positive a.e. on a compact set that admits analytic parametrization. As a conse-
quence, we obtain asymptotics for Christoffel functions for measures on the ball and simplex under
far more general conditions than previously known. As another consequence, we establish universality
type limits in the bulk in a variety of settings.

1 Introduction

Let µ be a positive measure on the real line with infinitely many points in its support,
and let

∫
x jdµ(x) be finite for j = 0, 1, 2, . . . . Then we may define orthonormal

polynomials
pn(x) = γnxn + · · · , γn > 0,

satisfying ∫ ∞
−∞

pn pmdµ = δmn.

The n-th reproducing kernel is

Kn(x, t) =

n−1∑
j=0

p j(x)p j(t),

and the n-th Christoffel function is

λn(µ, x) =
1

Kn(x, x)
= inf

deg(P)<n

∫
P(t)2dµ(t)

P2(x)
.

Asymptotics for Christoffel functions play a crucial role in analysis of orthogonal
polynomials and in weighted approximation [12]. The most general asymptotics for
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the case where the support supp[µ] is compact, require µ to be regular in the sense of
Stahl, Totik, and Ullman , or just regular. This requires [15, p. 66] that

(1.1) lim sup
n→∞

(
sup

deg(P)≤n

|P(x)|2∫
|P|2dµ

) 1/n
≤ 1, q.e. in supp[µ]

Here q.e. (quasi-everywhere) means except on a set of logarithmic capacity 0. This
type of regularity should not be confused with the notion of a regular Borel measure.
When the complement of supp[µ] is regular in the sense of the Dirichlet problem
(yet another notion of regularity!) [15, p. 68], one may replace (1.1) by

lim sup
n→∞

(
sup

deg(P)≤n

‖P‖L∞(supp[µ])∫
|P|2dµ

) 1/n
≤ 1.

If supp[µ] consists of finitely many intervals, a sufficient condition for regularity,
called the Erdős–Turán criterion, is that µ ′ > 0 a.e. in supp[µ]. See the comprehen-
sive monograph [15].

When µ is regular and in some subinterval I of the support, we have

(1.2)

∫
I

logµ ′ > −∞.

Totik [17] proved that for a.e. x ∈ I,

lim
n→∞

nλn(µ, x) =
µ ′(x)

ω(x)
.

Here ω is the equilibrium density for supp[µ], in the sense of potential theory. In the
special case that the support of µ is an interval, this result was established earlier by
Maté, Nevai, and Totik [10].

One application of asymptotics for Christoffel functions is to universality limits.
These arise in analysis of random matrices associated with unitary ensembles and,
for compactly supported µ, may be reduced to the limit

lim
n→∞

Kn

(
x + aµ ′(x)

nω(x) , x + bµ ′(x)
nω(x)

)
Kn(x, x)

=
sinπ(a− b)

π(a− b)
,

uniformly for a, b in compact subsets of the real line. For the case of compactly
supported µ that are regular and satisfy (1.2), Totik [18] showed that universality
holds for a.e. x ∈ I. The second author showed that universality holds in measure
without assuming regularity [9]. We emphasize that there is a vast literature on this
topic, and varying measures are of more interest to physicists than fixed measures
with compact support. See [4, 5, 13, 14].

In this paper, we shall analyze asymptotics of Christoffel functions for multivariate
orthogonal polynomials and apply these to universality type limits. Let d ≥ 2 and let
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Πd
n denote the space of polynomials in d variables of degree at most n. Let Nd

n denote
its dimension, so

Nd
n =

(
n + d

n

)
.

Let µ be a positive measure on Rd with compact support and {x ∈ Rd : µ ′(x) > 0}
having non-empty interior. This ensures that∫

P2dµ > 0

for every non-trivial polynomial P.
We let Kn(µ, x, y) denote the reproducing kernel for µ and Πd

n, so that for all P ∈
Πd

n, and all x ∈ Rd,

P(x) =

∫
Kn(µ, y, x)P(y)dµ(y).

Note that this notation is different to the one-dimensional case, where we assumed
exactness for polynomials of degree ≤ n − 1, in accordance with the standard uni-
variate notation. We adopt this difference to be consistent with the most common
multivariate convention.

One of the convenient features of the reproducing kernel is that it is independent
of how we order the monomials and generate orthonormal polynomials. The n-th
Christoffel function for µ is

λn(µ, x) =
1

Kn(µ, x, x)
.

It admits the extremal property

λn(µ, x) = inf
P∈Πd

n

∫
P(t)2dµ(t)

P2(x)
.

When µ is absolutely continuous with respect to d dimensional Lebesgue measure
and µ ′ = W , we shall write λn(W, x).

Asymptotics for these multivariate Christoffel functions have been established in
a number of papers [1–3, 19, 20, 23] for Jacobi weights and weights that satisfy some
structural restriction, such as being radially or centrally symmetric. For our pur-
poses, the most general result is due to Bos, Della Vecchia, and Mastroianni [2]. They
showed that for a centrally symmetric weight W (x) on the d dimensional ball, for
which W (x)

√
1− ‖x‖2 satisfies a centrally symmetric Lipschitz condition of some

positive order on the unit ball in Rd,

lim
n→∞

(
n + d

d

)
λn(W, x) =

π
d+1

2

Γ( d+1
2 )

√
1− ‖x‖2W (x), ‖x‖ < 1.

Here and in the sequel the norm is the Euclidean norm. Xu [20] established one-
sided asymptotics under more general conditions.
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By using “needle polynomials”, we shall generalize the above quoted results to a
much larger class of measures. We first extend the notion of regularity to d dimen-
sions. A compactly supported measure µ on Rd is said to be regular if

(1.3) lim
n→∞

(
sup

P∈Πd
n

‖P‖2
L∞(supp[µ])∫
|P|2dµ

) 1/n

= 1.

This is often called the Bernstein–Markov condition [3], but we prefer the term reg-
ularity.

Our most general ratio asymptotic is the following theorem.

Theorem 1.1 Let µ, ν be positive measures whose support is a compact set K ⊂ Rd

and both are regular. Let D ⊂ D1 ⊂ K, where D is compact and D1 is open. Assume
that ν and that µ are mutually absolutely continuous in D, and the Radon–Nikodym
derivative dν

dµ is positive and continuous in D, while uniformly in D1,

(1.4) lim
ε→0+

(
lim sup

n→∞

λ[n(1−ε)](µ, x)

λn(µ, x)

)
= 1.

Then uniformly for x ∈ D, and y ∈ B(x, 1√
n

), we have

(1.5) lim
n→∞

λn(ν, y)

λn(µ, y)
=

dν

dµ
(x).

Remark (a) In the statement, [s] denotes the greatest integer ≤ s, while B(x, r) is
the d-dimensional open ball with center x, radius r.

(b) Note that (1.4) is satisfied if for some β > 0 and positive continuous function F,

lim
n→∞

nβλn(µ, x) = F(x)

uniformly in D1.
(c) In Section 7, we shall present a version of Theorem 1.1 in which we replace the

continuity of dν
dµ with a Lebesgue point condition.

A sufficient condition for the regularity (1.3) involves a compact set K with an-
alytic parametrization. This means that for any x ∈ K, there exists a curve γ(t) ∈
Rd, t ∈ [0, 1], analytic and bounded in an open set Ω ⊂ C that contains [0, 1] and
such that γ(0) = x, while for all 0 < t < 1,

B
(
γ(t), φ(t)

)
⊂ K.

Here Ω and the bound on γ depend only on K, while φ is a positive continuous
function tending to 0 as t → 0 and that also depends only on K. In particular, any
polygon or convex set with non-empty interior has analytic parametrization. In fact
local convexity also suffices; see [6] for details.
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Theorem 1.2 Assume that K ⊂Rd is a compact set with analytic parametrization,
and that µ, ν are positive measures on K such that µ ′, ν ′ > 0 a.e. on K. Let D ⊂ D1 ⊂
K, where D is compact and D1 is open. Assume that the Radon–Nikodym derivative ν ′

µ ′

is positive and continuous in D, while (1.4) holds uniformly in D1. Then we have (1.5)
uniformly for x ∈ D and y ∈ B(x, 1√

n
).

The proof of Theorem 1.2 also shows that we may replace the condition that K
has analytic parametrization with a condition that it admits a Remez inequality.

As a consequence, we can deduce asymptotics for Christoffel functions associated
with regular measures on the ball and the simplex.

Theorem 1.3 Let B̄ = B(0, 1) = {x ∈ Rd : ‖x‖ ≤ 1}. Let ν be a regular measure on
B̄ and assume that D is a compact subset of the interior of B̄, such that ν ′ is positive and
continuous in D. Then, uniformly for x ∈ D, and for y ∈ B(x, 1√

n
),

lim
n→∞

(
n + d

d

)
λn(ν, y) =

ν ′(x)

W ball
0 (x)

,

where

W ball
0 (x) =

Γ( d+1
2 )

π
d+1

2

(1− ‖x‖2)−1/2.

Theorem 1.4 Let

Σd =

{
x ∈ Rd : x1, x2, . . . , xd ≥ 0; 1−

d∑
j=1

x j ≥ 0

}

denote the d-dimensional simplex. Let ν be a regular measure on Σd and assume that
D is a compact subset of the interior of Σd, such that ν ′ is positive and continuous in D.
Then, uniformly for x ∈ D and for y ∈ B(x, 1√

n
),

lim
n→∞

(
n + d

d

)
λn(ν, y) =

ν ′(x)

W simplex
0 (x)

,

where

W simplex
0 (x) =

Γ( d+1
2 )

π
d+1

2

x−1/2
1 x−1/2

2 · · · x−1/2
d x−1/2

d+1

and

xd+1 = 1−
d∑

j=1

x j .(1.6)

In the second last line, of course x = (x1, x2, . . . , xd).

We next turn to universality limits. We start with a general ratio result.
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Theorem 1.5 Let µ, ν be positive measures and let K,D,D1 be sets satisfying the
hypotheses of Theorem 1.1. Assume moreover, that µ and ν are absolutely continuous
in D1, while µ ′ and ν ′ are bounded above and below by positive constants in D1. Then,
uniformly for x ∈ D, and for u, v in compact subsets of Rd,

(1.7) lim
n→∞

Kn(µ, x + u
n , x + v

n )− dν
dµ (x)Kn(ν, x + u

n , x + v
n )

Kn(µ, x, x)
= 0.

As a consequence, we can prove the following theorem.

Theorem 1.6 Let µ, ν be positive measures and K,D,D1 be sets satisfying the hy-
potheses of Theorem 1.2. Assume moreover, that µ and ν are absolutely continuous in
D1, while µ ′ and ν ′ are bounded above and below by positive constants in D1. Assume
that for some function F : R2 → R, uniformly for x ∈ D and for u, v ∈ Rn,

lim
n→∞

Kn(µ, x + u
n , x + v

n )

Kn(µ, x, x)
= F(u, v).

Then, uniformly for x ∈ D, and for u, v ∈ Rn,

lim
n→∞

Kn(ν, x + u
n , x + v

n )

Kn(ν, x, x)
= F(u, v).

It is straightforward to compute universality limits for the Chebyshev weight on
the ball and simplex from known representations due to Y. Xu for the reproducing
kernel for the Chebyshev weight on the ball and simplex. Using these and Theo-
rem 1.5 we can obtain general universality results on the ball and simplex. Somewhat
surprisingly, the bulk of the concrete formulations involve the Bessel function

Jα(z) =
( z

2

)α ∞∑
j=0

(− 1
4 z2) j

j!Γ( j + α + 1)

rather than the usual sinc kernel. Of course, on the real line the Bessel function and
its associated Bessel kernel arise primarily at the edge of the spectrum. We shall find
it convenient to also use

J∗α(z) = z−α Jα(z) =
( 1

2

)α ∞∑
j=0

(− 1
4 z2) j

j!Γ( j + α + 1)
.

This has the advantage of being entire, and in particular, non-zero at 0, with

J∗α(0) =
1

2αΓ(α + 1)
.

In the literature, jα(x) is sometimes used to denote J∗α(x)/ J∗α(0), but we shall not use
this.
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Theorem 1.7 Let µ be a regular measure on B̄ and assume that D is a compact subset
of the interior of B̄, such that µ ′ is positive and continuous in D. Then, uniformly for
x ∈ D, and for u, v in compact subsets of Rd,

(1.8) lim
n→∞

Kn(µ, x + u
n , x + v

n )

Kn(µ, x, x)
=

J∗d/2

(√
G(x,u, v)

)
J∗d/2(0)

,

where, if · denotes the standard Euclidean inner product, then

(1.9) G(x,u, v) = ‖u− v‖2 +
(x·(u− v))2

1− ‖x‖2
.

For the simplex, we have the following theorem.

Theorem 1.8 Let µ be a regular measure on Σd, and assume that D is a compact subset
of the interior of Σd such that µ ′ is positive and continuous in D. Then, uniformly for
x ∈ D, and for u, v in compact subsets of Rd,

(1.10) lim
n→∞

Kn(µ, x + u
n , x + v

n )

Kn(µ, x, x)
=

J∗d/2

(√
H(x,u, v)

)
J∗d/2(0)

,

where, with the notation (1.6),

(1.11) H(x,u, v) =

d+1∑
j=1

(u j − v j)2

x j
.

Of course, in the last line, x j is the j-th component of x, and so on, while ud+1, vd+1 are
given by (1.6) for the vectors u, v.

This paper is organized as follows: in Section 2, we prove Theorem 1.1. We prove
Theorem 1.2 in Section 3, and Theorems 1.3 and 1.4 in Section 4. Theorems 1.5 and
1.6 are proved in Section 5, and Theorems 1.7 and 1.8 are proved in Section 6. We
prove an extension of Theorem 1.1 in Section 7.

Throughout, c,C,C1,C2, . . . denote positive constants independent of n, and vec-
tors t, x, y,u, v, as well as polynomials p. A given constant does not necessarily denote
the same constant in different occurrences.

2 Proof of Theorem 1.1

We shall use the “needle” polynomials constructed by Kroó and Swetits [7]. We could
also have used the fast decreasing polynomials of Ivanov and Totik.

Lemma 2.1 Let n ≥ 1, δ ∈ (0, 1), and x ∈ B̄. There exists qn ∈ Πd
n such that

(i) qn(x) = 1;
(ii) 0 ≤ qn ≤ 1 in B̄;
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(iii) |qn(y)| ≤ e−cnδ , y ∈ B\B(x, δ)
(here c is an absolute constant).

Remark We emphasize that qn depends on x and δ. The theory of fast decreasing
polynomials implies that one cannot choose qn independent of δ.

Proof We follow the construction of Lemma 3 and Corollary 2 in [7, pp. 92–93].
Consider the polynomial

rm(t) =
( Tm(1 + δ2 − t2)

Tm(1 + δ2)

) 2
∈ Π1

4m,

where Tm is the usual Chebyshev polynomial. Here rm(0) = 1. For t ∈ [−1, 1], we
have 0 ≤ 1 + δ2 − t2 ≤ 1 + δ2, and Tn is increasing on [1,∞), so in [−1, 1],

0 ≤ rm ≤ 1.

Finally, for |t| ∈ [δ, 1], we have 1 + δ2 − t2 ≤ 1, so

rm(t) ≤ 1

(Tm(1 + δ2))2
≤ e−Cmδ,

an easy consequence of the identity

Tm(t) =
1

2

((
t +
√

t2 − 1
)m

+
(

t +
√

t2 − 1
)−m

)
.

Now we set m = [n/4], and

qn(y) = rm

( ‖y− x‖
4

)
.

Then clearly qn ∈ Πd
n. Properties (i) and (ii) follow directly from those of rm, while if

y ∈ B and ‖y− x‖ ≥ 4δ,

qn(y) ≤ e−Cmδ ≤ e−c1nδ.

Now simply replace δ by δ
4 .

Proof of Theorem 1.1 As the measure µ is regular, with support K, there exists a
sequence {δn} with limit 0 such that for n ≥ 1,

(2.1) sup
P∈Πd

n

‖P‖2

L∞
(

supp[µ]
)∫

|P|2dµ
≤ enδ2

n .

We may assume that

(2.2) lim
n→∞

nδ2
n =∞.
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608 A. Kroó and D. S. Lubinsky

Since h = dν
dµ is uniformly continuous on D,

εn = sup
{
|h(x)− h(y)| : x ∈ D, y ∈ K, ‖x− y‖ ≤ δn

}
→ 0, n→∞.

(2.3)

Let us set m = m(n) = n− [ 2δnn
c ]−1, where c is the absolute constant in Lemma 2.1.

We may assume, by a translation and dilation of the support, that K ⊂ B. Now
choose any x0 ∈ D and any y ∈ B(x0,

δn
2 ). Choose pm ∈ Πd

n that is extremal for
λm(µ, y), so that

λm(µ, y) =

∫
p2

mdµ and pm(y) = 1.

Choose qn−m as in Lemma 2.1, with the properties qn−m(y) = 1, 0 ≤ qn−m ≤ 1 in B,
and

|qn−m(x)| ≤ e−c(n−m) δn2 , x ∈ B\B
(

y,
δn

2

)
.

Set
Sn = pmqn−m ∈ Πd

n.

We have Sn(y) = 1, and so the extremal property of λn, followed by the properties of
qn−m, give

λn(ν, y) ≤
∫
K

S2
ndν

≤
∫

B(x0,δn)
p2

mhdµ + e−c(n−m)δn‖pm‖2
L∞(K)

∫
K\B(x0,δn)

dν

≤
(

h(x0) + εn

) ∫
B(x0,δn)

p2
mdµ + e−c(n−m)δn enδ2

n

(∫
K

p2
mdµ

)(∫
K

dν

)
,

by (2.1) and (2.3). Using our choice of m, we continue this as

λn(ν, y) ≤
(∫

K

p2
mdµ

)(
h(x0) + εn + e−2nδ2

n+nδ2
n

∫
K

dν

)
= λm(µ, y)

(
h(x0) + εn + e−nδ2

n

∫
K

dν

)
.

Since δn and εn are independent of x0 ∈ D, y ∈ B(x0,
δn
2 ), we have

λn(ν, y)

λn(µ, y)
≤ λm(µ, y)

λn(µ, y)

(
h(x0) + εn + e−nδ2

n

∫
K

dν
)
≤ h(x0) + o(1),

uniformly for x0 ∈ D, y ∈ B(x0,
δn
2 ), because m

n = 1 + o(1) and by our hypothesis
(1.4). Thus we have shown that uniformly for such x0, y,

(2.4) lim sup
n→∞

λn(ν, y)

λn(µ, y)
≤ h(x0).
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Since (2.2) holds, B(x0,
δn
2 ) ⊃ B(x0,

1√
n

), for large enough n. For the converse in-

equality, we note that with m1 = m1 (n) = n + [ 2δnn
c ], we obtain, by swapping the

roles of µ and ν in the above,

λm1 (µ, y) ≤ λn(ν, y)

(
h−1(x0) + o(1) + e−nδ2

n

∫
K

dµ

)
,

and hence

λm1 (µ, y)

λn(µ, y)
≤ λn(ν, y)

λn(µ, y)

(
h−1(x0) + o(1) + e−nδ2

n

∫
K

dµ

)
.

Here the left-hand side is 1 + o(1) by our hypothesis (1.4), and, as m1
n = 1 + o(1),

1 ≤ lim inf
n→∞

λn(ν, y)

λn(µ, y)
h−1(x0),

which, together with (2.4), gives the result.

3 Proof of Theorem 1.2

Recall that we defined the notion of analytic parametrization before Theorem 1.2. It
suffices to prove the following theorem, and then apply Theorem 1.1.

Theorem 3.1 Assume that K is a compact set with analytic parametrization and that
µ is a positive measure on K such that µ ′ > 0 a.e. on K. Then µ is regular.

Proof Let m denote Lebesgue measure on Rd. The first fact we need is a Remez
inequality, proved in [6, Thm. 5, p. 30]. There exists a positive continuous function
φ∗ defined on [0,∞), such that

(3.1) lim
ε→0+

φ∗(ε) = 0

and if n ≥ 1, P ∈ Πd
n, and F ⊂ K with m(F) ≤ ε, then

(3.2) ‖P‖L∞(K) ≤ enφ∗(ε)‖P‖L∞(K\F).

Next, for δ > 0, we set

ψ(δ) = inf
{
µ(L) : L ⊂ K,m(L) ≥ δ

}
.

Since µ ′ > 0 a.e. on K, ψ (δ) > 0 for δ > 0, and ψ is monotonically increasing, with
limit 0 at 0.

We proceed to prove regularity. Let ε ∈ (0,min{1,m(K)}) and P ∈ Πd
n be a

non-constant polynomial. Choose a = a(ε) ∈ (0, 1) such that

Qa =
{

x ∈ K : |P(x)| > a‖P‖L∞(K)

}
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has m(Qa) = ε. Note that m(Qa) is a strictly decreasing continuous function of a,
with limit 0 at 1 and limit m(K) at 0, so we can choose such an a. Now we have

|P| ≤ a‖P‖L∞(K) in K\Qa.

Moreover, since m(Qa) = ε, the Remez inequality (3.2) gives

‖P‖L∞(K) ≤ enφ∗(ε)‖P‖L∞(K\Qa).

Combining these two inequalities, yields aenφ∗(ε) ≥ 1. In addition, as m(Qa) = ε,
µ(Qa) ≥ ψ(ε). These last two inequalities give∫

K

|P|2dµ ≥
∫

Qa

|P|2dµ ≥ a2‖P‖2
L∞(K)µ(Qa) ≥ e−2nφ∗(ε)‖P‖2

L∞(K)ψ(ε).

As ε > 0 , ψ and φ∗ are independent of P, we obtain

sup
P∈Πd

n

‖P‖2
L∞(K)∫

K
|P|2dµ

≤ 1

ψ(ε)
e2nφ∗(ε).

Taking n-th roots and lim sup’s gives

lim sup
n→∞

(
sup

P∈Πd
n

‖P‖2
L∞(K)∫

K
|P|2dµ

) 1/n

≤ e2φ∗(ε).

Finally, as ε is arbitrary, and (3.1) holds, we have the result.

4 Proofs of Theorems 1.3 and 1.4

It is easily seen that the ball and simplex admit analytic parametrization, and we can
take the curve γ to be just a straight line segment. All we need are asymptotics for
the Christoffel functions for the Chebyshev weight on the ball or simplex, and these
have been established by Bos and Xu.

Proof of Theorem 1.3 Bos [1, p. 100] and Xu [20, Theorem 4.1, p. 266] proved that
for ‖x‖ < 1,

lim
n→∞

(
n + d

d

)
λn(W ball

0 , x) = 1.

Bos states the uniform convergence in compact sets, while Xu omits it from his state-
ment, but it is clear from his proof. Our normalization of W ball

0 is that of Xu. Then
Theorem 1.1, with dµ (x) = W ball

0 (x)dx, gives the result. Note that this µ satisfies
(1.4) uniformly in compact subsets of B.

Proof of Theorem 1.4 Xu [23, Cor. 2.4, p. 127] proved that for x in the interior of
Σd,

lim
n→∞

(
n + d

d

)
λn(W simplex

0 , x) = 1.

Again, the uniform convergence in compact sets is obvious from the proof. We note

a minor misprint in [23, p. 123] in the definition of W simplex
0 : the normalization con-

stant should be replaced by its reciprocal. Again, we can apply Theorem 1.1.
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5 Proofs of Theorems 1.5 and 1.6

The method follows that in [8]. We begin with the following lemma.

Lemma 5.1 Assume that µ, µ∗ are measures with compact support K ⊂ Rd, and for
some ρ > 0, dµ ≤ ρ dµ∗ in K. Then for x, y ∈ Rd,

(5.1)
∣∣∣Kn(µ, x, y)− 1

ρ
Kn(µ∗, x, y)

∣∣∣/Kn(µ, x, x) ≤

(
Kn(µ, y, y)

Kn(µ, x, x)

) 1/2[
1− Kn(µ∗, x, x)

ρKn(µ, x, x)

] 1/2

.

Proof This is essentially the same as in [8], but we include the details because of the
different setting. Now∫

K

(
Kn(µ, x, t)− 1

ρ
Kn(µ∗, x, t)

) 2
dµ(t)

=

∫
K

K2
n(µ, x, t)dµ(t)− 2

ρ

∫
K

Kn(µ, x, t)Kn(µ∗, x, t)dµ(t)

+
1

ρ2

∫
K

K2
n(µ∗, x, t)dµ(t)

= Kn(µ, x, x)− 2

ρ
Kn(µ∗, x, x) +

1

ρ2

∫
K

K2
n(µ∗, x, t)dµ(t),

by the reproducing kernel property. As dµ ≤ ρ dµ∗, we also have∫
K

K2
n(µ∗, x, t)dµ(t) ≤ ρ

∫
K

K2
n(µ∗, x, t)dµ∗(t) = ρKn(µ∗, x, x).

So

(5.2)

∫
K

(
Kn(µ, x, t)− 1

ρ
Kn(µ∗, x, t)

) 2
dµ(t) ≤ Kn(µ, x, x)− 1

ρ
Kn(µ∗, x, x).

Next, for any polynomial P ∈ Πd
n, we have the Christoffel function estimate

|P(y)| ≤ Kn(µ, y, y)1/2

(∫
K

P2dµ

) 1/2

.

Applying this to P(t) = Kn(µ, x, t)− 1
ρKn(µ∗, x, t) and using (5.2) gives, for all x, y ∈

Rd,

∣∣∣Kn(µ, x, y)− 1

ρ
Kn(µ∗, x, y)

∣∣∣ ≤
Kn(µ, y, y)1/2

[
Kn(µ, x, x)− 1

ρ
Kn(µ∗, x, x)

] 1/2
.
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612 A. Kroó and D. S. Lubinsky

Next, we establish an elementary bound on Christoffel functions.

Lemma 5.2 Let µ be a measure with compact support K, and let B(x0, δ) be a ball
inside that support. Assume that µ is absolutely continuous in B(x0, δ), satisfying a.e.
there

0 < C1 ≤ µ ′ ≤ C2 <∞.

Then, given 0 < η < δ, there exist C3,C4 > 0, such that for n ≥ 1,

(5.3) C3 ≤
(

n + d

d

)
λn(µ, x) ≤ C4 in B(x0, η).

Proof The lower bound follows from Theorem 1.3 and monotonicity of Christoffel
functions in the measure. Indeed, let ν ′1 = 1 in B(x0, δ) and 0 elsewhere. By a scaled
form of Theorem 1.3,

lim
n→∞

(
n + d

d

)
λn(ν1, x) = C

√
1−

( ‖x− x0‖
δ

) 2
, x ∈ B(x0, δ),

where C depends only on d and δ. The convergence is uniform in compact subsets
of B(x0, δ). Since λn(µ, x) ≥ C1λn(ν1, x), the lower bound in (5.3) follows. Next,
choose r > 0 so large that B(x0, r) containsK, and let dν2 = dµ|K\B(x0,δ)+C2dx|B(x0,r).
Thus dν2 is the sum of µ restricted to K\B(x0, δ) and a multiple of the Legendre
weight for the ball B(x0, r). Since dν2 ≥ C2dx|B(x0,r), and the latter is regular on
B(x0, r), it is easily seen that ν2 is also regular. Moreover, ν ′2 is positive and continuous
on B(x0, δ), so Theorem 1.3 gives uniformly on B(x0, η),

lim
n→∞

(
n + d

d

)
λn(ν2, x) = C

√
1−

( ‖x− x0‖
r

) 2
,

for some C depending on r. But also µ ≤ ν2, so λn(µ, · ) ≤ λn(ν2, · ), and the upper
bound in (5.3) follows.

Proof of Theorem 1.5 Let x0 ∈ D, ε ∈ (0, 1) and choose δ > 0 such that h = dν
dµ

(which is positive and continuous on D) satisfies

(5.4) 1− ε ≤ h(y)/h(x) ≤ 1 + ε for x, y ∈ B(x0, δ).

Set ρ = h(x0)(1 + ε). We shall apply Lemma 5.1 twice. Define a measure µ∗ by
dµ∗ = dµ in B(x0, δ), and

dµ∗ = max
{

1,
1

ρ

}
(dµ + dν) in K\B(x0, δ).

Step 1: µ and µ∗

Since µ∗ ≥ µ, we have the inequality (5.1). Moreover, since µ is regular and µ∗ ≥ µ,
µ∗ is also regular. Next, from Theorem 1.1,

lim
n→∞

Kn(µ∗, x, x)

Kn(µ, x, x)
= 1
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uniformly in B(x0, η), for any η < δ, while from Lemma 5.2, for x, y ∈ B(x0, η),

Kn(µ, y, y)

Kn(µ, x, x)
≤ C.

It is only here that we need the extra hypothesis in Theorem 1.5 that µ ′ is bounded
above and below by positive constants on D1. Then Lemma 5.1, with ρ = 1 there,
shows that for x ∈ B(x0, η), and uniformly for u, v in compact subsets of Rn,

(5.5) lim
n→∞

Kn(µ, x + u
n , x + v

n )− Kn(µ∗, x + u
n , x + v

n )

Kn(µ, x, x)
= 0.

Step 2: ν and µ∗

Now dν ≤ ρ dµ∗ in K\B(x0, δ). Also, in B(x0, δ),

dν =
dν

dµ
dµ ≤ ρ dµ = ρ dµ∗.

So in K, dν ≤ ρ dµ∗. By Theorem 1.1 and (5.4),

lim
n→∞

Kn(µ∗, x, x)

ρKn(ν, x, x)
=

1

ρ

dν

dµ∗
(x) =

1

ρ

dν

dµ
(x) ≥ 1− ε

1 + ε
,

uniformly in B (x0, η), for any η < δ. Note that (1.4) holds for ν and x in B(x0, δ);
indeed, this follows from the ratio limit in Theorem 1.1. Furthermore, from Lemma
5.2, for x, y ∈ B(x0, η),

Kn(ν, y, y)

Kn (ν, x, x)
≤ C.

Here again we need the extra hypothesis in Theorem 1.5 that ν ′ is bounded above
and below by positive constants on D1. Then Lemma 5.1 gives

|Kn(ν, x + u
n , x + v

n )− 1
ρKn(µ∗, x + u

n , x + v
n )|

Kn(ν, x, x)
≤ C

[
1− Kn(µ∗, x, x)

ρKn(ν, x, x)

] 1/2

≤ C1(2ε)1/2

for n ≥ n0, x ∈ B (x0, η), and u, v in compact subsets of Rd. Since C and C1 are
independent of u, v, x, n, we obtain from this, equation (5.5), and the bound on the
Christoffel functions in Lemma 5.2,∣∣∣ρKn

(
ν, x + u

n , x + v
n

)
− Kn

(
µ, x + u

n , x + v
n

)∣∣∣
Kn(µ, x, x)

≤ C1ε
1/2,

and hence for large enough n, and uniformly for x ∈ B(x0, η), and u, v in compact
subsets of Rn,

| dνdµ (x0)Kn(ν, x + u
n , x + v

n )− Kn(µ, x + u
n , x + v

n )|
Kn(µ, x, x)

≤ C1ε
1/2,

where C1 is independent of u, v, x, n. Then using (5.4) again, we obtain (1.7). The
uniformity in B (x0, η) was also established above. As D is compact, uniformity in D
follows.

Proof of Theorem 1.6 This follows directly from Theorems 1.5 and 3.1.
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6 Proofs of Theorems 1.7 and 1.8

We need only compute the universality limit for the Chebyshev weight on the ball or
simplex and then apply Theorem 1.5. We make essential use of known representa-
tions for the reproducing kernel. These involve the standard Jacobi polynomial P(α,β)

n

of degree n that satisfies the orthogonality relation∫ 1

−1
P(α,β)

n (x)x j(1− x)α(1 + x)βdx = 0, 0 ≤ j ≤ n− 1,

and normalized by

P(α,β)
n (1) =

(
n + α

n

)
.

Lemma 6.1 (i) Let

cn =
Γ( d+2

2 )

Γ(d + 1)

Γ(n + d)

Γ(n + d
2 )
.

Then

Kn(W ball
0 , x, y) = cn

{
P(d/2,d/2−1)

n (x · y+
√

1− ‖x‖2
√

1− ‖y‖2)

+ P(d/2,d/2−1)
n (x · y−

√
1− ‖x‖2

√
1− ‖y‖2)

}
.

(6.1)

(ii) Let

dn =
Γ( d

2 + 1)

Γ(d + 1)

Γ(2n + d + 1)

Γ(2n + d
2 + 1)

.

Then

(6.2) Kn(W simplex
0 , x, y) =

dn

22d+2

∑
εi=±1

P(d/2,d/2)
2n (

d+1∑
j=1

√
x j y jε j),

where

xd+1 = 1−
d∑

j=1

x j ; yd+1 = 1−
d∑

j=1

y j .

Proof (i) See [22, eqn. (3.8), Thm 3.3, p. 2449].
(ii) See [21, Theorem 2.3, p. 3032]. We have also taken account of Xu’s convention

of replacing integrals by sums in the confluent case “αi = 0” when the Jacobi param-
eters reduce to those of the Chebyshev weight. Note that Xu uses the ultraspherical
polynomial C(λ)

n , defined [16, eqn. (4.7.1), p. 80] by

C(λ)
n (x) = dn,λP

(λ− 1
2 ,λ−

1
2 )

n (x),
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where in our case λ = d+1
2 , and

dn,λ =
Γ(λ + 1

2 )

Γ(2λ)

Γ(2n + 2λ)

Γ(2n + λ + 1
2 )
.

Next, we turn to asymptotics of Jacobi polynomials.

Lemma 6.2 (i) Let α > 0, β > −1. Uniformly for s in bounded subsets of [0,∞), we
have

(6.3) lim
n→∞

n−αP(α,β)
n (1− s

2n2
) = 2α J∗α(

√
s).

(ii) Let α, β ≥ − 1
2 . Then

(6.4) sup
n≥1

n1/2 sup
x∈(−1,1)

|P(α,β)
n (x)|(1− x)

α+1/2
2 (1 + x)

β+1/2
2 ≤ C <∞.

Proof (i) This is Mehler–Heine’s asymptotic formula [16, Thm. 8.1.1, p. 192].
(ii) See, for example, [11, Lemma 29, p. 170], and use the fact that if ρn is the constant
such that ρnP(α,b)

n is an orthonormal polynomial, then ρn grows like Cn1/2(1 + o(1))
for some positive C . See, for example, [16, p. 68].

Next, we compute asymptotics for the arguments in the kernel in (6.1) and (6.2):

Lemma 6.3 (i) Assume that ξ ∈ B, and

(6.5) x = ξ +
1

n
u and y = ξ +

1

n
v.

Then

(6.6) x · y +
√

1− ‖x‖2
√

1− ‖y‖2 = 1− G

2n2
+ O
( 1

n3

)
,

where G = G(ξ,u, v) is defined by (1.9).
(ii) Let ξ lie in the interior of Σd, and let x, y be given by (6.5). Then

(6.7)
d+1∑
j=1

√
x j y j = 1− H

8n2
+ O
( 1

n3

)
,

where H = H(ξ,u, v) is given by (1.11).

Proof (i) We see that

x · y = ‖ξ‖2 +
1

n
ξ · (u + v) +

1

n2
u · v.
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Also, √
1− ‖x‖2 =

√
1− ‖ξ‖2 − 2

n
ξ · u− 1

n2
‖u‖2.

A straightforward computation, using the Maclaurin series
√

1 + t = 1 + t
2 −

t2

8 +
O(t3), gives

√
1− ‖x‖2

√
1− ‖y‖2

= 1− ‖ξ‖2 − 1

n
ξ · (u + v)− 1

2n2

(
‖u‖2 + ‖v‖2

)
+

2(ξ · u)(ξ · v)

n2(1− ‖ξ‖2)
− (ξ · (u + v))2

2n2(1− ‖ξ‖2)
+ O
( 1

n3

)
.

Then

x · y +
√

1− ‖x‖2
√

1− ‖x‖2

= 1 +
1

n2
u · v− 1

2n2

(
‖u‖2 + ‖v‖2

)
− 1

2n2(1− ‖ξ‖2)

(
ξ · (u− v)

) 2
+ O
( 1

n3

)
= 1− G

2n2
+ O
( 1

n3

)
.

(ii) For 1 ≤ j ≤ d,

√
x j y j =

√(
ξ j +

u j

n

)(
ξ j +

v j

n

)
= ξ j +

1

2n
(u j + v j) +

1

2n2ξ j
u jv j −

1

8n2ξ j
(u j + v j)

2 + O
( 1

n3

)
.

(6.8)

Also,

√
xd+1 yd+1 =√(

1−
d∑

j=1
x j

)(
1−

d∑
j=1

y j

)
= 1−

d∑
j=1
ξ j −

1

2n

d∑
j=1

(u j + v j) +
1

2n2
(

1−
d∑

j=1
ξ j

) ( d∑
j=1

u j

)( d∑
j=1

v j

)

− 1

8n2
(

1−
d∑

j=1
ξ j

) ( d∑
j=1

(u j + v j)
) 2

+ O
( 1

n3

)
.

(6.9)
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Combining (6.8) and (6.9) gives

d+1∑
j=1

√
x j y j =

1 +
1

2n2

d∑
j=1

u jv j

ξ j
− 1

8n2

d∑
j=1

(u j + v j)2

ξ j

+
1

2n2ξd+1

( d∑
j=1

u j

)( d∑
j=1

v j

)
− 1

8n2ξd+1

( d∑
j=1

(u j + v j)

) 2

+ O
( 1

n3

)
= 1− H

8n2
+ O
( 1

n3

)
.

Proof of Theorem 1.7 As remarked before, we need only establish the limit (1.8) for
the Chebyshev weight W ball

0 and then can apply Theorem 1.5. Let x, y be given by
(6.5). Now the dominant term in the right-hand side in (6.1) is the term with argu-
ment x · y+

√
1− ‖x‖2

√
1− ‖y‖2. Since x · y−

√
1− ‖x‖2

√
1− ‖y‖2 remains in a

compact subset of (−1, 1) as n → ∞, the bound (6.4) shows that it is of essentially
smaller size than the other term. We then have, using (6.6),

n−d/2Kn(W ball
0 , x, y)

= cnn−d/2

{
P(d/2,d/2−1)

n

(
x · y+

√
1− ‖x‖2

√
1− ‖y‖2

)
+ P(d/2,d/2−1)

n

(
x · y−

√
1− ‖x‖2

√
1− ‖y‖2

)}
= cn

{
n−d/2P(d/2,d/2−1)

n

(
1− G(ξ,u, v)

2n2
+ O
( 1

n3

))
+ o(1)

}
= cn

{
2d/2 J∗d/2

(√
G(ξ,u, v)

)
+ o(1)

}
,

by (6.3). Using this with u = v = 0 gives

n−d/2Kn(W ball
0 , ξ, ξ) = cn

{
2d/2 J∗d/2(0) + o(1)

}
.

Then (1.8) follows on changing ξ to x.

Proof of Theorem 1.8 The dominant terms in the right-hand side in (6.2) are the
two terms with all ε j = 1 or with all ε j = −1. For all other choices of {ε j}, the
argument

∑d+1
j=1
√

x j y jε j remains in a compact subset of (−1, 1) as n → ∞, so the
bound (6.4) shows that the corresponding terms in (6.2) are of essentially smaller size
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than the above two terms. Because of the evenness of P(d/2,d/2)
2n , we have, using (6.7),

(2n)−d/2Kn(W simplex
0 , x, y)

=
dn

22d+1
(2n)−d/2P(d/2,d/2)

2n

( d+1∑
j=1

√
x j y j

)(
1 + o(1)

)
=

dn

22d+1
(2n)−d/2P(d/2,d/2)

2n

(
1− H(ξ,u, v)

2(2n)2
+ O
( 1

n3

))(
1 + o(1)

)
=

dn

22d+1
2d/2 J∗d/2

(√
H(ξ,u, v)

)(
1 + o(1)

)
,

by (6.3). Using this with u = v = 0 gives

(2n)−d/2Kn

(
W simplex

0 , x, y
)

=
dn

22d+1
2d/2 J∗d/2(0)

(
1 + o(1)

)
.

Then (1.10) for the Chebyshev weight W simplex
0 follows. Now apply Theorem 1.5.

7 An Extension of Theorem 1.1

We can weaken the continuity of dν
dµ in Theorem 1.1 to a Lebesgue point condition.

Recall that x0 is a Lebesgue point of a function h of d variables if

lim
r→0+

∫
B(x0,r) |h(x0)− h(t)|dt

m(B(x0, r))
= 0,

where m denotes Lebesgue measure on Rd.

Theorem 7.1 Let µ, ν be positive measures, whose support is a compact set K ⊂ Rd,
and both are regular. Let x0 ∈ K and assume thatµ, ν are absolutely continuous in some
ball B(x0, δ) ⊂ K, while µ ′, ν ′ are bounded above and below a.e. by positive constants
there, and (1.4) holds uniformly in B(x0, δ) ⊂ K. Assume that x0 is a Lebesgue point of
ν ′

µ ′ . Then, given r > 0, we have, uniformly for y ∈ B(x0,
r
n ),

lim
n→∞

λn(ν, y)

λn(µ, y)
=

dν

dµ
(x0).

Proof We may assume that K ⊂ B = B(0, 1). Fix r > 0 and let y ∈ B(x0,
r
n ). Let

τ ≥ 2r and ε ∈ (0, 1). Let `n = [ εn
2 ] and m = m(n) = n − 2`n. Choose pm ∈ Πd

m

that is extremal for λm(µ, y), so that

λm(µ, y) =

∫
p2

mdµ and pm(y) = 1.

Choose q(k)
`n

, k = 1, 2, as in Lemma 2.1, with the properties q(k)
`n

(y) = 1, 0 ≤ q(k)
`n
≤ 1

in B, and ∣∣q(1)
`n

(x)
∣∣ ≤ e−c`n

τ
n ≤ e−Cετ , x ∈ B\B

(
y,
τ

n

)
,(7.1) ∣∣q(2)

`n
(x)
∣∣ ≤ e−c`nδ ≤ e−Cεn, x ∈ B\B(y, δ).(7.2)
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As above, let h = dν
dµ and Sn = pmq(1)

`n
q(2)
`n
∈ Πd

n. We have Sn(y) = 1, so

λn(ν, y)

≤
∫
K

S2
ndν

≤ h(x0)

∫
B(y, τn )

p2
mdµ + ‖pm‖2

L∞(B(y, τn ))

∫
B(y, τn )

|h(x0)− h(t)|dµ(t)

+ e−Cετ

∫
B(x0,2δ)\B(y, τn )

p2
mh dµ + ‖pm‖2

L∞(K)e
−Cεn

∫
K\B(x0,2δ)

dν

=: T1 + T2 + T3 + T4,

by (7.1), (7.2). First, T1 ≤ h(x0)λm(µ, y). Next, Lemma 5.2 gives

‖pm‖2
L∞(B(y, τn )) ≤ ‖λ−1

m (µ, ·)‖L∞(B(y, τn ))

∫
p2

mdµ

≤ Cndλm(µ, y),

so as τ > r and ‖y− x0‖ <
r
n ,

T2 ≤ Cndλm(µ, y)‖µ ′‖L∞(B(x0,δ))

∫
B(x0,

2τ
n )
|h(x0)− h(t)|dt = o(λm(µ, y)),

as x0 is a Lebesgue point of h. Next, by (7.1),

T3 ≤ e−Cετ‖h‖L∞(B(x0,δ))

∫
B(x0,δ)\B(y, τn )

p2
m dµ ≤ C1e−Cετλm(µ, y).

Finally, using the regularity of µ,

T4 ≤ (1 + o(1))n

(∫
p2

m dµ

)
e−Cεn

∫
K\B(x0,δn)

dν = o(λm(µ, y)).

Combining all the above estimates gives

λn(ν, y)

λn(µ, y)
≤ λm(µ, y)

λn(µ, y)

(
h(x0) + C1e−Cετ + o(1)

)
.

Here τ is independent of ε and may be chosen as large as we please. We deduce that

lim sup
n→∞

λn(ν, y)

λn(µ, y)
≤ h(x0) lim sup

n→∞

λn−2[ εn
2 ](µ, y)

λn(µ, y)
.

The proof may now be completed as in Theorem 1.1.

We note that the absolute continuity of µ and boundedness below of µ ′, were
needed only for the upper bound for ‖λ−1

m (µ, · )‖L∞(B(y, τn )). If we assumed a suitable
bound for this, we could allow µ to have a singular part.
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[12] , Géza Freud, orthogonal polynomials and Christoffel functions: A case study. J. Approx.

Theory 48(1986), no. 1.
[13] B. Simon, Two extensions of Lubinsky’s universality theorem. J. Anal. Math. 105(2008), 345–362.

http://dx.doi.org/10.1007/s11854-008-0039-z
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